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The TP73 gene belongs to the p53 family comprised by p53, p63, and p73. In response
to physiological and pathological signals these transcription factors regulate multiple
molecular pathways which merge in an ensemble of interconnected networks, in which
the control of cell proliferation and cell death occupies a prominent position. However,
the complex phenotype of the Trp73 deficient mice has revealed that the biological
relevance of this gene does not exclusively rely on its growth suppression effects,
but it is also intertwined with other fundamental roles governing different aspects of
tissue physiology. p73 function is essential for the organization and homeostasis of
different complex microenvironments, like the neurogenic niche, which supports the
neural progenitor cells and the ependyma, the male and female reproductive organs,
the respiratory epithelium or the vascular network. We propose that all these, apparently
unrelated, developmental roles, have a common denominator: p73 function as a tissue
architect. Tissue architecture is defined by the nature and the integrity of its cellular
and extracellular compartments, and it is based on proper adhesive cell-cell and cell-
extracellular matrix interactions as well as the establishment of cellular polarity. In this
work, we will review the current understanding of p73 role as a neurogenic niche
architect through the regulation of cell adhesion, cytoskeleton dynamics and Planar Cell
Polarity, and give a general overview of TAp73 as a hub modulator of these functions,
whose alteration could impinge in many of the Trp73−/− phenotypes.

Keywords: p53-family, p73, tissue architecture, cell adhesion, actin cytoskeleton, cell polarity, central nervous
system development, neurogenic niche

INTRODUCTION

The TP73 gene belongs to an evolutionary conserved family of transcription factors, the p53 family,
with key functions to vertebrate’s biology. The genes that constitute this family, TP53, TP63, and
TP73, have evolved from a common ancestor and, consequently, share a similar modular structure
which consists of an amino-terminal transactivation domain (TAD), a central DNA binding domain
(DBD) and a carboxy-terminal oligomerization domain (OD) (Dötsch et al., 2010). Although TP53
was the first member of the family to be discovered (Lane and Crawford, 1979; Levine, 2020), TP63
and TP73 are the evolutionary older homologs (Kaghad et al., 1997; Yang et al., 1998; Belyi et al.,
2010; Chillemi et al., 2017) and differ from TP53 in that the full-length proteins that they encode
contain a carboxy-terminal sterile a-motif (SAM) domain. This C-terminal region, involved in
protein–protein interaction, might give p63 and p73 their unique signaling network of regulators
and transcriptional targets (Serber et al., 2002; Straub et al., 2010). In addition, due to alternative
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splicing of the N-terminal and C-terminal regions and to the use
of cryptic promoters, the TP73 and TP63 genes can be expressed
as transcriptionally competent TA-isoforms or as N-terminally
deleted DN-isoforms. Moreover, multiple alternative splicing at
the 3′ region of the pre-RNA can give rise to C-terminal isoforms
which, in the case of p63 and p73, can include the SAM domain
(Vikhreva et al., 2018).

The first studied function of p73 was its p53-like growth
suppressor capacity (Jost et al., 1997). Even though p53
is the central regulator of the cellular genomic integrity,
TAp73 isoforms can perform similar functions in response to
stress. Following DNA damage, TAp73 generates a coordinated
response that induces either cell cycle arrest and DNA repair
mechanisms, or provokes cell elimination signals leading to
apoptosis or senescence (Pflaum et al., 2014). These p53-like
responses, executed through the activation of target genes shared
with p53, are known as p73-canonical functions. However,
elimination of these canonical functions could not account for
all the phenotypes observed in the knockout mice lacking all
p73 isoforms, the Trp73−/− (Yang et al., 2000). These animals
display multiple maladies, including gastrointestinal and cranial
hemorrhages, rhinitis, hippocampus dysgenesis and enlarged
ventricles, female and male infertility, chronic infection and
inflammation in lungs, sinus, and ears, and runting (Yang et al.,
2000). Several laboratories, including ours, have demonstrated
that the biological relevance of p73 does not exclusively rely on
its growth suppression effects (Pflaum et al., 2014), but also on
p73-non-canonical functions. Some of these functions, like the
regulation of cell adhesion establishment, cytoskeleton dynamics,
multiciliogenesis and Planar Cell Polarity (PCP) are related to
the maintenance of the structural organization and homeostasis
of different complex microenvironments, like the neurogenic
niche and the ependymal barrier in the central nervous system
(CNS), the respiratory and reproductive epithelia, or the
vascular network. Thus, important questions arise: How does
p73 orchestrate such an ample array of biological processes?
Are there some common molecular functions underlying these
phenotypes? May this p73 fundamental role be related to the
organization of epithelia, a hallmark tissue of metazoans? Could
this function represent a primitive p53/p63/p73-ancestor ability
kept by p73 throughout evolution, and which is now fundamental
in mammals?

DIVERSIFYING BIOLOGICAL ACTIVITIES:
THE YING-YANG MODE OF ACTION OF
p73 ISOFORMS

As mentioned before, the Trp73 gene gives raise to functionally
different TA and DNp73 isoforms (Candi et al., 2014). TAp73
proteins can transactivate canonical-p53 targets as well as non-
p53 related genes involved in development and/or other cell
growth associated functions (Engelmann et al., 2015; Wang et al.,
2020). TA-isoforms differ in their transactivation efficiency and
target gene specificity depending on their carboxy terminus (De
Laurenzi et al., 1998; Ueda et al., 1999). Thus, TAp73 function will
vary in a cell-context dependent manner and greatly depending

upon their C-terminal domain (Logotheti et al., 2013; Vikhreva
et al., 2018). Conversely, DN-isoforms can act as dominant-
negative inhibitors of p53 and TAp73 and thus, have oncogenic
properties (Ishimoto et al., 2002; Engelmann and Pützer,
2014), but they also carry out their own distinct p53/TAp73-
independent transcriptional activities (Marqués-García et al.,
2009; Wetterskog et al., 2009; Niemantsverdriet et al., 2012).
The generation of transactivation-deficient DN-isoforms from
the TP73 gene is quite complex and has been reviewed elsewhere
(Murray-Zmijewski et al., 2006; Engelmann et al., 2015). Briefly,
there are two types of DN-p73 isoforms, the ones that originate
from differential splicing events at the 5′-end of P1-derived
transcripts (1Ex2p73, 1Ex2/3p73, 1N′p73; generally called
1TA), and DN-isoforms, per se, which arise from the alternative
P2 promoter within intron 3 (Stiewe et al., 2002; Buhlmann
and Pützer, 2008; Engelmann et al., 2015). Even though most
DN-isoforms are transcriptionally inactive, there are reports
indicating that the 13 unique residues of DNp73 β and γ,
together with the N-terminal PXXP motifs, constitute a novel
activation domain capable of inducing some p53 target genes
(Liu et al., 2004).

A detailed analysis of the total Trp73−/− mice revealed a wide
range of novel p73 physiological roles governing different aspects
of cell and tissue physiology. However, p73 bimodal function
has difficulted the identification of the responsible isoform for
each of the observed phenotypes. The generation of isoform-
specific knockout mice has provided a useful tool to disentangle
some of the p73 isoforms-specific activities in various tissues and
cellular processes, endorsing the proposed isoform-based model
of p73 function.

Beginning with p73 tumor suppressor function, TAp73
deficient mice revealed an increased predisposition to
spontaneous tumorigenesis (Tomasini et al., 2008),
demonstrating the role of TAp73 as a tumor suppressor and
substantiating previous reports of enhanced rate of spontaneous
tumors in Trp73 ± mice (Flores et al., 2005). On the other hand,
elimination of DNp73 greatly inhibits tumor-forming capacity
in vivo (Wilhelm et al., 2010). In this Ying-Yang model, while
DNp73 possesses oncogenic properties that include impairment
of the DNA damage-response pathway, cellular immortalization,
as well as a dominant negative function of the p53/TAp73-
canonical functions (Petrenko et al., 2003; Wilhelm et al., 2010;
Billant et al., 2016), TAp73 tumor suppressor activity mainly
relies on p53-canonical functions, like its ability to induce cell
cycle arrest, apoptosis or regulation of DNA damage response,
as well as other functions like immune cell regulation (Tomasini
et al., 2008; Costanzo et al., 2014; Wolfsberger et al., 2021).
It is noteworthy that TAp73, unexpectedly, activates anabolic
pathways compatible with proliferation and promotion of
cancer cells by regulating glucose metabolism to control cellular
biosynthetic pathways and antioxidant capacity (Du et al.,
2013; Fets and Anastasiou, 2013; Amelio et al., 2014). However,
whether this metabolic effect reflects cancer-associated metabolic
changes, or instead suggests a role for TAp73 in promoting
adaptative cellular mechanisms to stress conditions (Agostini
et al., 2014; Marini et al., 2018), remains to be determined and has
been reviewed elsewhere (Nemajerova et al., 2018). Nevertheless,
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the lack of these p73-associated functions could not explain
many of the cytoarchitecture alterations resulting from p73
deficiency in vivo.

In morphologically complex animals such as mammals, the
establishment and maintenance of tissue structure and function,
known as tissular architecture (Hagios et al., 1998), regulates the
development and functionality of organs such as the digestive,
respiratory, reproductive, neural, sensory, and vascular systems
(Rodriguez-Boulan and Macara, 2014). Consequently, it would
be expected that the disruption of a gene involved in tissue
architecture could result in a plethora of developmental defects,
such as the ones observed in the Trp73−/− mice. Thus, we
propose that some of the, apparently unrelated, phenotypes
showed by these mice could reflect p73 requirement in the
maintenance of functional tissue organization and we ask
whether this task could represent one of the original roles of the
p53/p63/p73-ancestor.

EVOLUTION OF THE p53 GENE FAMILY
AND THE EMERGENCE OF TISSULAR
ARCHITECTURE

Identifying the original p53/p63/p73-ancestor functions might be
elusive since data on the molecular characterization or function
of most of these proteins are lacking. However, a canvass of the
published data regarding consensus phylogenetic trees, together
with the evidence of the p53 family presence spanning the early
Metazoa through the primates, can lead to propose that the
organization of the epithelia could be a primitive p73-function,
since the appearance of the ancestral p73 paralogs seems to
coincide with the phylogenetic emergence and organization of the
epithelia (Belyi et al., 2010; Rutkowski et al., 2010; Åberg et al.,
2017; Figure 1).

Within the animal kingdom, p53-family sequences are
encoded in almost all sequenced genomes. The most primitive
multicellular organisms encoding p53/p63/p73-ancestor-like
proteins are the cnidaria starlet sea anemone Nematostella
vectensis, and the placozoa Trichoplax adherens (Rutkowski et al.,
2010). In these basal animals with radial symmetry, the ancestral
gene is most closely related to a combined p63/p73-like gene
(Belyi et al., 2010), and one or more ancestor sequences are found,
while the radiation into p53, p63, and p73 protein coding genes
has been described as a vertebrate event (Rutkowski et al., 2010;
Figure 1).

It is precisely in placozoa where the p53/p63/p73-ancestor’s
TAD first appeared and thus, the transactivation function (Åberg
et al., 2017). Based on the presence of the conserved SAM domain
and the greater sequence similarity between the vertebrate p63
and invertebrate p53/p63/p73-ancestor, an initial study suggested
that the ancestral and invertebrate function of p53/p63/p73
mainly resembled the p63 vertebrate function (Rutkowski et al.,
2010). However, a subsequent detailed phylogenetic analysis
with a particular focus on the TAD led to the hypothesis that,
since all three family members are equally evolutionarily close
to the p53/p63/p73-ancestor, some of its primitive functions
would be similar to that of p63, while others would resemble

typical p53-functions and still others, not yet identified, could
be p73-related functions (Åberg et al., 2017). So, which are these
p73-related functions?

In N. vectensis, an invertebrate model susceptible to genetic
analysis, it was shown that the p53/p63/p73-ancestor gene
responds to DNA damage, causing apoptosis in its gametes
(Pankow and Bamberger, 2007). These experiments prompted
the idea that one of the functions of the p53/p63/p73-ancestor
could be to trigger apoptosis in response to DNA damage to
eliminate damaged germ cells (Pankow and Bamberger, 2007).
This role, preserving genome stability of female germ cells, has
been kept in mammals by p63 (Suh et al., 2006; Tomasini et al.,
2008; Deutsch et al., 2011) where it serves as a quality control
(QC) factor that ensures elimination of damaged oocytes before
they can be recruited for ovulation (Suh et al., 2006; Livera
et al., 2008). This QC function probably evolved into p53 tumor
suppression function when more complex organisms required
preservation of the somatic cells genome to prevent cancer
(Levine, 2020).

Interestingly, p73, which is also involve in orchestrating
germ cell maintenance, appears to exert this function not only
through a QC mechanism, but also through the maintenance
of the cytoarchitecture that provides the nurturing environment
required during spermatogenesis (Holembowski et al., 2014;
Inoue et al., 2014) and during the ovarian follicle development
(Santos Guasch et al., 2018). This is in accordance with the
idea that the regulation of tissue architecture could be one of
the functions of the p53/p63/p73-ancestor that has been kept
in vertebrate-p73. Nevertheless, whether p53/p63/p73-ancestor
is required for epithelial organization in N. vectensis, or if the
knockdown of the protein would result in defects in germ line
maturation of this organism, remains unknown and further
functional experiments are required.

The p53/p63/p73-ancestor role as a tissue organizer is
supported by its apparent coincidental emergence with the
primitive “true” epithelium, which first evolved in Placozoan
and Cnidaria (Cereijido et al., 2004; Srivastava et al., 2008;
Adams et al., 2010; Figure 1). True occluding epithelia are
defined by cells that display an aligned polarity, are connected
by belt-forming junctions that anchor the cytoskeleton and are
associated with extracellular matrix (ECM) basal lamina (Fahey
and Degnan, 2010). The placozoa Trichoplax adhaerens, which
encodes the p53/p63/p73-ancestor like protein, is considered to
have true occluding epithelia (Srivastava et al., 2008; Adams
et al., 2010). It has an asymmetric epithelial bilayer with
cells joined by apical junctions that manifest features of the
Eumetazoa’s epithelia (Smith and Mayorova, 2019). In addition,
its genome also encodes cell-surface adhesion proteins, all
polarity complex members, a diverse set of genes that code for
putative ECM proteins, as well as cytoskeleton linker proteins
(Srivastava et al., 2008; Belahbib et al., 2018). Moreover, the ZO
genes, which encode the ZO1-3 scaffold proteins of the tight
junction, surge in Placozoa and are expanded in the Craniata
(González-Mariscal et al., 2011).

The epithelium constitutes the core tissues of all metazoans,
and it is the fundamental building block of all animal’s
body structural design and function (Miller et al., 2013). The
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FIGURE 1 | The emergence of epithelia and the proposed relationship with p53 family members phylogeny. p53/p63/p73-ancestor proteins appear for the first time
in Placozoan and Cnidaria. Coincidentally, these organisms are the first ones to fulfill the three criteria that distinguish the “true” epithelial phenotype: i) cells
displaying aligned polarity; ii) cells connected by belt-forming junctions; and iii) cells associated with extracellular matrix, with a basal lamina. As vertebrates develop,
the p53/p63/p73-ancestor gave rise to the three members of the p53 family. The phylogenetic tree is based on Timetree public knowledge-base. The pictures
were created with BioRender.com. Photos were a courtesy of Robert Aguilar, Smithsonian Environmental Research Center, United States
(https://commons.wikimedia.org/wiki/File:Nematostella_vectensis_(I1419)_999_(30695685804).jpg) and Bernd Schierwater, Institute of Animal Ecology and Cell
Biology, Hannover (Germany). https://commons.wikimedia.org/wiki/File:Trichoplax_adhaerens_photograph.png.

establishment and maintenance of tissular architecture requires
the correct arrangement of the epithelial cells maintaining their
central features: apico-basal cell polarity, cell-cell junctions and
basal lamina, as well as their associated signaling complexes.
Hence, architecture depends upon the organization of cell
adhesion complexes, which hold epithelial cells together and
connect them with the environment, as well as on the
establishment and maintenance of an epithelial polarity program,
including cellular cytoskeleton polarity. All these processes

have been associated to p73 function in a variety of in vitro
and in vivo models and could constitute the groundwork
for its role as tissue organizer in several microenvironments
(Zhang et al., 2012; Medina-Bolívar et al., 2014; Gonzalez-
Cano et al., 2016; Fuertes-Alvarez et al., 2018; Santos Guasch
et al., 2018). In this work, we will review the current
understanding of p73 role as a brain architect. In particular, we
will focus on the architecture of the subventricular neurogenic
niche, which is of crucial importance for the maintenance of
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neural stem cell identity and for their neurogenic potential
(Morante-Redolat and Porlan, 2019).

p73 FUNDAMENTAL ROLE IN MOUSE
BRAIN DEVELOPMENT

The role of p73 in the development of the CNS was
recognized early on based on the profound defects of the
total Trp73−/− mice (Yang et al., 2000). These animals suffer
from severe progressive ex vacuo hydrocephalus, hippocampal
dysgenesis with abnormalities in the pyramidal cell layers
(CA1 and CA3) and in the dentate gyrus, and loss of Cajal-
Retzius (CR) neurons (Killick et al., 2011). However, the
distinct elimination in the isoform-specific knockouts (TAp73KO
and DNp73KO), generates subtle effects, and some of the
phenotypes detected in the Trp73−/− mice do not even
appear in them (Tomasini et al., 2008; Tissir et al., 2009;
Wilhelm et al., 2010). This is likely the reflection of either
compensatory or redundant mechanisms in the absence of
one of the isoforms, and/or possible differences in the genetic
background of the mice models (Murray-Zmijewski et al.,
2006). This, together with the ability of some isoforms to
interact and regulate each other (Murray-Zmijewski et al.,
2006), makes the study of the biological functions of this gene
extremely complicated.

TAp73 is the predominant isoform expressed in embryonic
neural stem cells (NSCs) (Tissir et al., 2009; Agostini et al.,
2010; Gonzalez-Cano et al., 2010) and has been shown to
regulate NSCs stemness and differentiation in vitro (Hooper
et al., 2006; Agostini et al., 2010; Fujitani et al., 2010; Gonzalez-
Cano et al., 2010; Talos et al., 2010). In accordance with
TAp73 predominant role in neurogenesis, TAp73KO mice
show hippocampal dysgenesis, but not ventricle enlargement
or hydrocephalus (Tomasini et al., 2008). On the other hand,
the DNp73KO mice display signs of neurodegeneration and
a small reduction in cortical thickness and neuron number
in older mice but do not show hippocampal abnormalities
nor hydrocephalus (Tissir et al., 2009; Wilhelm et al., 2010).
This led to propose that while DNp73 carries out neural
protection functions, TAp73-isoforms are the main contributor
to the development of the CNS. A recently developed mice
model, with a selective knockout of the C-terminus of the
full-length alpha isoform (Trp73113/113 mice), has shed new
light on the role of p73 isoforms in the development of
the murine brain (Amelio et al., 2020). These mice, which
express the TAp73 beta isoforms at physiological levels, but lack
the alfa-isoforms, suffer from a depletion of CR neurons in
embryonic stages, leading to aberrant hippocampal architecture,
reduced synaptic functionality and impaired learning and
memory capabilities, altogether resembling the Trp73−/− mice
phenotype (Amelio et al., 2020). The authors concluded that
the hippocampal dysgenesis was a consequence of deprivation
of the CR cells, whose early function is the secretion of
reelin that will orchestrate the arrival, size and stratification of
all pyramidal neurons of the neocortex gray matter (Marín-
Padilla, 2015). Interestingly, several groups have reported a

link between cell adhesion and reelin-induced functions in
corticogenesis (Sanada et al., 2004; Soriano and del Río,
2005; Sekine et al., 2012; Matsunaga et al., 2017). In the
subventricular zone (SVZ), reelin controls the behavior of
SVZ-derived migrating neurons, triggering them to leave
prematurely the rostral migratory stream (Pujadas et al., 2010;
Courtès et al., 2011). However, could lack of CR cells alone
explain the severe structural defects of the SVZ in p73-
deficient mice?

p73 AS AN ARCHITECT OF THE SVZ
AND THE EPENDYMA

Neurogenesis in the mammalian brain is complex and
requires specialized microenvironments called “niches”
(Scadden, 2006). In the adult brain, two niches haven been
identified, the subventricular zone of the lateral walls of
the ventricles (Alvarez-Buylla and Garcìa-Verdugo, 2002)
and the subgranular zone of the dentate gyrus of the
hippocampus (Doetsch et al., 1997). In the SVZ ventricular
surface, multiciliated ependymal cells (EpCs) surround
monociliated NSCs (B1 cells) forming a unique pinwheel
architecture that is essential to maintain neurogenesis (Kuo
et al., 2006; Mirzadeh et al., 2010; Paez-Gonzalez et al., 2011).
In these pinwheels, the EpCs are polarized within the
plane of the tissue, a process that is known as PCP. This
essential feature of animal tissues (Butler and Wallingford,
2017) makes feasible that EpCs coordinate cilia beating
and direct the cerebrospinal fluid circulation; therefore,
PCP disruption results in ciliopathies and hydrocephalus
(Marques et al., 2019).

One of the most striking features of the Trp73−/− mice is
the complete lack of cytoarchitecture in the SVZ neurogenic
niche (Gonzalez-Cano et al., 2016; Fuertes-Alvarez et al., 2018;
Marques et al., 2019). TAp73, but not DNp73, is expressed in the
EpCs and its precursors, the radial glia cells (Tissir et al., 2009;
Hernández-Acosta et al., 2011; Medina-Bolívar et al., 2014;
Fujitani et al., 2017), and it is essential for the ependymal
cell assembly into neurogenic pinwheels (Gonzalez-Cano et al.,
2016). Total p73 deficiency results in altered pinwheels where the
EpCs have an aberrant membrane morphology with waves and
pleats (Figure 2A), reflecting severe defects on the intercellular
junctions at the apical surface of these cells (Gonzalez-Cano et al.,
2016). These cell-junction defects also compromise the integrity
of the ependymal barrier (Figure 2B), all pointing toward a
TAp73 role in the establishment of intercellular junctions.

Compiled evidence indicates that the combination of
alterations in vesicle trafficking, cell junction defects and loss
of ependymal barrier integrity constructs a common pathway
leading to ventricular zone disruption (Ferland et al., 2009).
All these processes, as we will discuss later on, have been
associated to TAp73 transcriptional regulation. Moreover, it is
now accepted that abnormal junction complexes in the cells of the
ventricular zone, including NPC, may lead to disruption of the
ventricular and subventricular zones, resulting in hydrocephalus
and abnormal neurogenesis (Rodríguez et al., 2012; Guerra
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FIGURE 2 | p73 role as an architect of the SVZ neurogenic niche. (A) p73 is essential for the formation of the neurogenic pinwheels. In the absence of p73, EpCs
show an aberrant membrane morphology and fail to organize into pinwheels, disrupting SVZ niche cytoarchitecture. Analysis of lateral ventricle wall whole-mounts of
the indicated genotypes at postnatal day P160 immunostained for b-catenin (green), g-tubulin (red), and GFAP (blue). Pinwheel structures are marked by dotted
yellow lines. Scale bars: 10 mm. (B) p73-deficient EpCs cell-junction defects compromise the integrity of the ependymal layer and halt the formation of the
mono-stratified epithelium. In addition, cells with abnormal marker expression profiles are observed in p73KO brains. Coronal sections of the lateral wall of the lateral
ventricle from P15 WT and p73KO mice were stained with the indicated antibodies and analyzed by confocal microscopy. Scale bars: 10 mm. (C) p73 is required for
ciliogenesis and planar cell polarity establishment. p73KO cells displayed an abnormal cilia organization and basal body-cluster displacement. SEM (P7 mice) and
confocal microscopy analysis (P15 mice, γ-tubulin, yellow; β-catenin, purple) of WT and p73KO lateral ventricle wall wholemounts. (D) p73 is also necessary for the
formation of the polarized apical and sub-apical actin lattices in EpCs. Confocal images of WT and p73KO P15 wholemounts displaying as indicated: actin
cytoskeleton (phalloidin, green), basal bodies (γ-tubulin, red) and the cell membrane (β-catenin, blue). Images from Dr. Marin’s research group (Gonzalez-Cano et al.,
2016, Fuertes-Alvarez et al., 2018).

et al., 2015). Thus, the “cell junction pathology,” resulting from
p73 ablation, might be underneath some of the functional and
structural alterations of the Trp73−/− mice in the CNS, but also
in other organs.

Trp73 function in the establishment of intercellular junctions
has been strongly demonstrated in the reproductive epithelia.
In the multilayered epithelia of the seminiferous tubules, lack
of total p73 or TAp73 results in defective cell-cell adhesion
of germ cells with Sertoli cells, leading to the premature
detachment of the developing spermatids and concomitant cell
death (Holembowski et al., 2014; Inoue et al., 2014). Interestingly,
Sertoli cells do not express p73, but they are also affected
by the loss of germ cell adhesion in Trp73−/− testes, losing
their characteristic morphology as well as the inter-Sertoli cell
adhesions that form the blood-testis barrier (Holembowski et al.,
2014). Furthermore, in the developing ovary, p73 regulates a

set of core genes involved in biological adhesion, thus acting
as a regulator of intercellular adhesion, ECM interactions, and
cell migration processes required for proper follicle development
(Santos Guasch et al., 2018).

However, there are other pathological features of the
Trp73−/− mice in which the possible link with cell junctional
defects has not been addressed. That is the case of the chronic
respiratory and gastrointestinal infections that these animals
suffer from Yang et al. (2000). While p73 signaling has been
associated to the epithelial cell response to infections caused by,
for example, H. pylori (Wei et al., 2008), the cause of the increased
susceptibility to infections, per se, in p73-deficient animals is
not understood. Interestingly, loss of epithelial integrity has been
widely demonstrated to be central to pathogen infection, since
disruption of junctional integrity facilitates viral or bacterial entry
and spread (Lu et al., 2014). Thus, it would be interesting to
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address whether the aforementioned “cell junction pathology”
resulting from p73-deficiency is at the root of the susceptibility
to chronic infections in these mice.

Another interesting scenario are the defects in the vascular
network described in the Trp73−/− mice. These mice exhibit
extensive gastrointestinal and cranial hemorrhages (Yang et al.,
2000) which are suggestive of vascular fragility or other defects
in their vascular compartment. Our group reported that Trp73
deficiency in vivo results in aberrant retinal vascular morphology,
while in vitro ablation of p73 in 3D mESC and iPSC models
impairs the early stages of vasculogenesis, demonstrating the
essential role of Trp73 in vascular development (Fernandez-
Alonso et al., 2015). Compiled data from several groups supports
the idea that this function is, at least in part, due to DNp73
modulation of pro-angiogenic signaling pathways (Dulloo et al.,
2015a; Fernandez-Alonso et al., 2015; Stantic et al., 2015).
As for TAp73, its role in vascular morphogenesis is unclear,
especially regarding tumor angiogenesis. Collectively, several
studies have demonstrated that TAp73 can act as both a positive
and negative regulator of tumor angiogenesis under different
spatio-temporal contexts and therefore, a bi-functional role
for TAp73 in angiogenesis has been proposed (Amelio et al.,
2015; Dulloo et al., 2015b; Stantic et al., 2015, reviewed in
Sabapathy, 2015). However, TAp73 physiological function in
vascular morphogenesis still needs to be addressed. Regarding
the latter, Stantic et al. reported that TAp73-deficient tumor cells
produce and secrete factors that disrupt intercellular contacts in
endothelial cells cultured with the tumor cells-conditioned media
(Stantic et al., 2015). However, whether the absence of TAp73 in
endothelial cells leads to junctional defects, in vivo and/or in vitro,
and the possible consequences of this in vascular morphogenesis
remains an important open question.

p73 REGULATION OF CYTOSKELETON
DYNAMICS AT THE CENTER STAGE OF
PCP AND MULTICILIOGENESIS
ESTABLISHMENT

An in-depth analysis of the SVZ of Trp73−/−, TAp73KO, and
DNp73KO mice revealed that the lack of total p73 results in
profound alterations of ependymal multiciliogenesis and PCP
establishment (Gonzalez-Cano et al., 2016; Fuertes-Alvarez et al.,
2018). The role of p73 on ciliogenesis is complex and has
been reviewed elsewhere (Marques et al., 2019; Nemajerova
and Moll, 2019). p73-deficiency affects different stages of the
process depending on the absence of one or both isoforms. EpCs
with total lack of p73 have severe ciliary defects, with many
cells lacking ciliary axoneme and others displaying disorganized
and aberrant cilia (Gonzalez-Cano et al., 2016; Figure 2C).
TAp73 role in cilia formation has been demonstrated in other
systems such as in the respiratory and reproductive epithelia,
where TAp73 was found to function as a master transcriptional
regulator governing motile multiciliogenesis (Marshall et al.,
2016; Nemajerova et al., 2016).

TAp73 isoform elimination in TAp73KO mice does not
recapitulate total Trp73−/− phenotype in ependymal cells but
rather results in a mild phenotype. In these mice, most EpCs
display ciliary axoneme but with defective basal body docking
and a “disheveled” appearance (Fuertes-Alvarez et al., 2018;
Wildung et al., 2019). These defects are most likely due to the
observed alterations -linked to TAp73 deficiency- in the sub-
apical actin cytoskeleton dynamics and microtubule polarization,
which regulates basal body docking and spacing (Vladar and
Axelrod, 2008; Werner et al., 2011). On the other hand, DNp73-
deficient EpCs do not display any ciliary defects indicating that,
in the presence of TAp73, DNp73 is not necessary to orchestrate
ciliogenesis. These data suggest that redundant ciliary programs
are induced in the absence of TAp73 but that cannot compensate
total p73 deficiency. In the same line, the Trp73113/113 mice
do not display any apparent alteration in the airway ciliated
epithelium, neither in the EpCs, suggesting that p73β or other
redundant mechanisms can substitute the function of the longer
isoform p73α (Buckley et al., 2020).

The spatial and temporal frame of TAp73 expression in
the developing brain is an important question to pinpoint its
physiological function. In mice, the transition of neuroepithelial
cells to radial glial cells occurs between the embryonic days (E)
10 and 12, when the tight junctions that couple neuroepithelial
cells convert into adherens junctions, and the cells acquire
features associated with glial cells (Fuentealba et al., 2015). It
is noteworthy that TAp73 expression in the Trp73113/113
mice was detected in the neuroepithelium from E11.5 to E16.5
(Amelio et al., 2020). This is an important stage during CNS
development in mice, since birth dating experiments suggest
that the majority of telencephalic EpC are produced between
E14 and E16 (Spassky et al., 2005). By E16 the primary cilia of
many transforming radial glial cells have become asymmetrically
displaced within its apical surface, a key step in the ependymal
cell’s differentiation and in the establishment of the organizations
of the SVZ neurogenic niche (Redmond et al., 2019). Moreover,
Fujitani and colleagues proposed that p73 regulates embryonic
primary ciliogenesis, since disruption of p73 (both TA and
DNp73) during early postnatal EpC development (P1-P5) did
not cause hydrocephalus (Fujitani et al., 2017). Nevertheless,
compiled data strongly support the idea that p73 functions at
several stages during radial glial cell transformation into EpC
(Marques et al., 2019). Thus, considering the reported early
expression of TAp73 during development (Amelio et al., 2020),
should we expect the cytoarchitecture of the SVZ in these mice to
be maintained? or by the contrary, would sustained expression of
TAp73 will be required for organization? Do these mice display
PCP defects related to cell-junctions and cytoskeleton alterations
as the TAp73KO mice do?

The coordinated polarization of EpC motile cilia within the
plane of the tissue allows the synchronized beating that drives
directional fluid flow and is required for EpC functionality
(Ohata and Alvarez-Buylla, 2016). Multiciliated ependymal cells
display two types of PCP, translational PCP (tPCP) and rotational
(rPCP). While tPCP is unique to EpCs and is defined by the
asymmetric localization of the cilia cluster at the anterior apical
surface, rPCP refers to the unidirectional orientation of the
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motile cilia within the cell (Mirzadeh et al., 2010). PCP is
established by asymmetric localization of PCP-core regulatory
proteins complexes at opposite sides of the apical membrane
(Boutin et al., 2014; Ohata et al., 2014) and it is driven by multiple
global cues that guide the subcellular enrichment of PCP-core
proteins such as Frizzled, Vangl, Celsr, Disheveled and Prickle
(Butler and Wallingford, 2017). PCP-core components then self-
assemble into mutually exclusive complexes at opposite sides of
a cell to communicate polarity between neighboring cells and
direct polarized cell behaviors. Trp73 is necessary for the efficient
establishment of both types of PCP (Gonzalez-Cano et al., 2016;
Fujitani et al., 2017; Fuertes-Alvarez et al., 2018). In the absence
of p73, or even TAp73, PCP-core complexes fail to assembly at
opposite intercellular junctions of EpCs, and therefore, polarity
is not established, suggesting that p73 might regulate early up-
stream events of PCP establishment (Gonzalez-Cano et al., 2016;
Fujitani et al., 2017; Fuertes-Alvarez et al., 2018).

But how do the cells, and for that matter TAp73, establish
this asymmetry? Several processes have been involved in PCP-
core complex’s asymmetry, from cilia-driven fluid flow to cellular
rearrangements dependent on cytoskeletal polarity (Takagishi
et al., 2017). It is important to bear in mind that asymmetry
can be established independently of cilia, through the intrinsic
chirality of the actomyosin cytoskeleton (Juan et al., 2018).
Polarity in epithelial tissues is known to be influenced by cell-
cell junctions, cytoskeletal elements, and by cell-cell signaling.
Our group has demonstrated that p73 regulates PCP, at least
in part, through TAp73-modulation of actin and microtubule
dynamics (Fuertes-Alvarez et al., 2018). The actin cytoskeleton of
multiciliated ependymal cells is organized into a cortical network,
implicated in cell shape changes, and two interconnected apical
and subapical networks that enclose the basal bodies contributing
to their spacing and to the synchronization of cilia beating
(Werner et al., 2011). p73 is required for the localization and
organization of these actin networks, as p73-deficiency results in
the complete lack of polarized apical and sub-apical lattices, in the
formation of a thick actin cortex and the disposition stress fibers,
all with a concurrent change in cell morphology (Fuertes-Alvarez
et al., 2018; Figure 2D).

In recent years it has become apparent that actin-microtubule
crosstalk is particularly important for the establishment of
neuronal and epithelial cell shape and function (Dogterom and
Koenderink, 2019). Microtubules crosstalk with PCP at two
stages (Vladar et al., 2012; Werner and Mitchell, 2012; Takagishi
et al., 2017). First, at the initial polarization establishment,
when the microtubule-network grows asymmetrically from
the center of the cell toward the anterior region of the
apical cell cortex, contacting the plasma membrane at the
intercellular microtubule-anchoring points which are polarized
at tissue level. Second, when these polarized microtubules
asymmetrically transport the PCP-core proteins to the correct
anterior/posterior cell boundary (Shimada et al., 2006; Harumoto
et al., 2010). Lack of p73 blunts the formation of polarized
microtubule-anchoring points at cell junctions, suggesting that
impairment of microtubule-dynamics is at the root of the defect
in p73-deficient cells (Boutin et al., 2014; Takagishi et al.,
2017).

As we will discuss below, the role of p73 as a regulator
of cellular cytoskeleton dynamics has been shown in several
systems. Thus, we should ask whether p73 regulation of PCP
is a general function operating in various tissues and organs,
or, on the contrary, it is limited to ependymal cells. Emerging
data assign new roles for PCP in postnatal contexts, including
formation of functional organs such as lungs and kidneys
(Henderson et al., 2018), all highlighting the need of polarized
cellular behaviors for proper development and function of
diverse organs. In particular, asymmetric distribution of PCP-
core complexes at intercellular junctions is required for the
correct cilia orientation in other epithelia, like the trachea,
oviduct and the organ of Corti. TAp73-deficiency results in ciliary
defects in trachea and the oviduct in Trp73−/− and TAp73KO
mice (Marshall et al., 2016; Nemajerova et al., 2016). However,
the planar organization of these epithelia has not been addressed.
Furthermore, defects in PCP have been implicated in human
pathologies, leading to the obvious and interesting question of
whether alterations in p73 expression or mutations could be
implicated in these diseases.

TAp73 AS A CENTRAL HUB THAT
MODULATES TRANSCRIPTIONAL
PROGRAMS INVOLVED IN
CYTOSKELETON DYNAMICS AND
CELLULAR ADHESION

The main question that arises is: how does TAp73 modulate all
this variety of biological processes? The mechanism of TAp73 role
in NSC stemness and neural differentiation is complex and relies
on p73 regulation of different transcriptional profiles. In recent
years, several genes involved in proliferation, differentiation
and/or self-renewal of NSC, like Sox-2, Hey-2, Trim32, and
Notch, have been postulated as TAp73 transcriptional targets
(Hooper et al., 2006; Agostini et al., 2010; Fujitani et al., 2010;
Gonzalez-Cano et al., 2010, 2016; Talos et al., 2010). TAp73 is
also implicated in the regulation of post-mitotic neuron function
by modulating the expression of p75NTR or GLS2, which are
associated to axonal growth and dendritic arborization and
neuronal metabolism, respectively (Niklison-Chirou et al., 2017).
However, the profound structural alterations observed in the
SVZ architecture of the Trp73−/− mice cannot exclusively be
explained by defects in cellular proliferation, differentiation, self-
renewal or even metabolic defects. Regarding the regulation of
multiciliogenesis, the compiled data identified over 100 putative
p73 target genes that regulate multiciliated cell differentiation
and homeostasis and revealed Foxj1 as a direct TAp73 target,
supporting a model in which p73 acts as a regulator of
multiciliogenesis through direct and indirect regulation of key
genes (Marshall et al., 2016; Nemajerova et al., 2016). TAp73
undoubtedly acts as a master regulator of ciliogenesis and Trp73
total loss results in dramatic ciliary defects in EpCs, oviduct,
middle ear and respiratory tract (Gonzalez-Cano et al., 2016;
Marshall et al., 2016; Nemajerova et al., 2016; Fujitani et al.,
2017). Still, the elimination of this ciliary function alone could not
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explain the abovementioned structural alterations. Interestingly,
lack of TAp73 in EpCs results in defective actin and microtubule
networks with a concomitant loss of PCP even though the
ciliary axonemal growth remains unaffected, suggesting that
TAp73 uncouples ciliogenesis from PCP establishment and
regulates multiple independent, but interrelated, transcriptional
programs to orchestrate these processes. In this regard, our
group has demonstrated that mechanistically, TAp73 modulates
actomyosin dynamics, at least in part by the transcriptional
regulation of the myosin light chain kinase (MLCK), the
activator of non-muscle myosin II (NMII) (Fuertes-Alvarez et al.,
2018), which functions as a cortical organizer to concentrate
E-cadherin to the zonula adherens (Smutny and Yap, 2010).
TAp73 also activates transcriptional programs involved in the
regulation of microtubule-dynamics and Golgi organization
signaling pathways, both necessary for PCP establishment
(Fuertes-Alvarez et al., 2018). Along the same lines, some of the
genes significantly bound and regulated by p73 in multiciliated
trachea cells, like Traf3ip1 and Tubb4b (Marshall et al., 2016),
are known to regulate the acetylation, polymerization and
stabilization of microtubules (Berbari et al., 2011; Bizet et al.,
2015; Sobierajska et al., 2019) or to be involved in vesicle
trafficking, like Sec24b, that selectively sorts Vangl2 to regulate
PCP (Merte et al., 2010).

A growing body of work indicates that the functional
interaction between cell junctions and actin and microtubule
cytoskeleton is critical for epithelial morphogenesis (Robinson,
2015; Adil et al., 2021). As discussed before, a possible common
denominator to many of the p73-deficient phenotypes is the
cell junctional defect and cytoskeleton dynamics alterations,
suggesting a general function of TAp73 as a central hub that
modulates transcriptional programs involved in these processes.
To address whether this is the case, we revisited some of
the transcriptomic studies that have been used to identify
TAp73 target genes. We selected the genome-wide studies from
Koeppel et al. (2011), Santos Guasch et al. (2018), and López-
Ferreras et al. (2021). In their work, Koeppel et al. used the
p53-deficient, TAp73β-inducible, osteosarcoma cell line Saos2-
Tet-On to characterize the molecular basis for the different
physiological functions of p73. In the second study, the authors
measured global gene expression changes by RNA-seq after
ectopic expression of TAp73β in mouse granulosa cells (MGCs)
isolated from Trp73−/− female mice. They express TAp73β

basing their decision on previously published data showing
that TAp73β exhibits the highest level of transcriptional activity
among p73 isoforms (Lee and La Thangue, 1999; Ueda et al.,
1999). Lastly, López-Ferreras et al. (2021) characterized the
transcriptomic profile of E14TG2α mouse embryonic stem cells
(mESCs) in which they specifically inactivated the TAp73-
isoform (E14-TAp73KO) using the CRISPR/Cas9 system. In
particular, we selected the analysis performed by the authors
under differentiation conditions, since this approach offers the
advantage of investigating p73 regulation in a physiological
context that recapitulates early developmental stages where p53
family members are known to be upregulated (Medawar et al.,
2008; Wang et al., 2017). Using the published RNA-seq data,
we focus on the differentially expressed genes (DEGs) that were

upregulated upon TAp73-expression in MGCs and Saos-2-Tet-
On, or downregulated in E14-TAp73KO. To limit our analysis
to genes that are potentially direct TAp73 targets, we compared
those DEGs lists with a compilation of candidate genes with
p73 genomic binding sites identified through ChIP-seq-studies
(Koeppel et al., 2011; Marshall et al., 2016; Santos Guasch et al.,
2018) and analyzed them with DAVID Bioinformatics Resources
6.8 (Huang et al., 2008, 2009) to identify enriched biological GO
terms and obtain a functional annotation clustering.

Highlighting the significance of p73 non-canonical functions,
one of the clusters with the highest enrichment score for
the three analyzed models was related to “Development”
(GO:0048731∼system development, GO:0048513∼animal organ
development, GO:0048869∼cellular developmental process,
etc.), even ahead of p73 role in controlling cell death/cell
proliferation (Figures 3A–C). Also consistent with the expected
behavior for a tissular architect, functions related to “Cell-
cell adhesion” and “Actin cytoskeleton” were significantly
enriched in all the selected gene lists. The preservation of
tissue function not only relies on biophysical cues, but also
on the correct biochemical communication between cells and
with the ECM to relay positional information. Accordingly,
clusters like “Cell communication” and “Vesicular transport”
(GO:1903561∼extracellular vesicle; GO:0070062∼extracellular
exosome) showed a highly significant enrichment score. This
coupling at molecular level between different aspects of tissue
architecture reinforces p73 role as a key regulator of the
organization and homeostasis of complex microenvironments.
On a similar note, other annotation clusters like “Cell migration,”
“Neuron projection,” or “Blood vessel development” were also
highly significant. These findings are consistent with previous
reports of p73 regulation of cell migration (Landré et al., 2016),
and with the essential p73 function in neural and vascular
development previously discussed in this review, altogether
indicating that the cellular systems analyzed here are excellent
models to identify and study putative TAp73 target genes.

To gain insight into p73 regulation of cell adhesion and
actin cytoskeleton dynamics we explored, for each cell type,
the overlapping genes within the main GO terms included in
these clusters (Figures 3A‘–C’ and Supplementary Table 1).
Regarding cell adhesion, we focused on p73 putative targets
that were common to the terms “GO:0005912∼adherens
junction,” “GO:0050839∼cell adhesion molecule binding” and
“GO:0098631∼protein binding involved in cell adhesion.”
Within these, we found: (i) genes encoding integrins such as Itga2
and Itga6, or the Zonula occludens protein ZO2, a scaffold protein
that physically links transmembrane tight junction proteins to
the apical cytoskeleton of actomyosin (Raya-Sandino et al., 2017),
in Saos2 cells; (ii) the LIM domain and actin binding 1 protein
LIMA1, a demonstrated direct transcriptional target of TAp73
whose activity is counteracted by DNp73 (Steder et al., 2013),
or the cytoskeleton-related protein PDLIM5, also known as ENH
(Enigma homolog) (Huang et al., 2020), in MGCs; and (iii) genes
encoding E-cadherin or plectin-one of the major cytoskeletal
linker proteins- (Wiche et al., 2015), in E14TG2α cells. Some
of these DEGs were shared between cell models, although it
should be noted that there was only one DEG associated to the
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FIGURE 3 | p73 is a central hub of cellular adhesion and cellular cytoskeleton dynamics. For the indicated cell models, putative TAp73 target genes (DEGs*) were
obtained by comparison of differentially expressed genes (DEGs) derived from RNA-seq studies with candidate genes containing p73 binding peaks (*) according to
ChIP-seq studies by Koeppel et al. (2011), Marshall et al. (2016), and Santos Guasch et al. (2018). A total number of 736 genes for Saos-2-Tet-On cells, 679 genes
for MGCs, and 709 genes for E14-TAp73KO were analyzed with DAVID Bioinformatics Resources 6.8. Functional annotation clustering was performed and enriched
biological GO terms for Saos2-Tet-On cells (A), MGCs (B) and E14-TAp73KO (C) are represented. Overlapping genes within GO terms related to “Cell-cell adhesion”
and “Actin cytoskeleton” were furthered identified and represented for the three cell models (A’–C’). Comparison of the whole list of DEGs assigned to these clusters
between the three cell models is shown (D,E). Publicly available datasets were analyzed in this study and can be found here: GSE15780, PRJNA310161;
PRJNA437755. The pictures were created with BioRender.com.
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analyzed GO terms that was common to the three cell types. This
gene encoded the myosin phosphatase Rho-interacting protein
MPRIP, a scaffold protein that associates with the actomyosin
cytoskeleton, regulating myosin light chain phosphatase (MLCP),
and that has been involved in the regulation of stress fibers (Koga
and Ikebe, 2005). Whether this gene is a true p73 transcriptional
target remains to be validated.

A similar situation occurred for genes related to actin
cytoskeleton regulation. In this case, we draw our attention to
the functional annotation terms “GO:0030029∼actin filament-
based process,” “GO:0032970∼regulation of actin filament-
based process” and “GO:0007015∼actin filament organization.”
Among the DEGs shared within cell models, we could find some
genes playing relevant roles for cytoskeleton dynamics, like Fscn1
(DEG in Saos-TetOn and MGCs) or Scd4 (DEG in Saos-TetOn
and E14TG2α). FSCN1 is an actin binding-protein involved in
the formation of essential cell structures for migration, cell-to-
cell interactions and cell-matrix adhesion (Lamb and Tootle,
2020); therefore, different studies have highlighted its importance
for tissue architecture, particularly when it is disrupted in
tumor microenvironments (Liu et al., 2021). Syndecans are
transmembrane proteins which act as communicators between
intracellular, cell surface and ECM components (Elfenbein and
Simons, 2013). Loss of Syn-4 alters the actin network and
affects focal adhesions, decoupling vinculin from the actin
filaments (Cavalheiro et al., 2017). Finding several genes related
to cell-ECM interactions when collectively analyzing these
transcriptomic studies may imply that the role of p73 as a tissue
architect goes far beyond than anticipated and points to p73
involvement in integrin associated-signaling, as already suggested
by Xie et al. (2018) or López-Ferreras et al. (2021).

The DEG analysis of cell adhesion and cytoskeleton dynamics
clusters for the individual models led as to ask whether we could
define a more global transcriptional profile by comparing the
whole list of DEGs assigned to these clusters in Saos2-TetOn,
MGCs, and mESCs (Figures 3D,E). For both biological functions,
the cell models with a stronger epithelial component (MGCs
and E14TG2α) shared a core set of genes regulated by p73
(36 genes for “Cell-cell adhesion” and 22 genes in the case of
“Actin cytoskeleton”), supporting the existence of a “p73 gene
signature” associated to tissue architecture. Interestingly, Koeppel
et al. (2011) proposed that TAp73β seems to induce target genes
that fall into KEGG functional categories linked to metastasis,
such as focal adhesion, ECM–receptor interaction and actin
cytoskeleton regulation. On the other hand, the p53-signaling
pathway is the first functional category that appears in the KEGG
pathway analysis for TAp73β, although biological process such
as “cell adhesion” and “biological adhesion” were included in
their GO functional analysis. In agreement, other GO studies
demonstrate that overexpression of TAp73β can also regulate
these functions in diverse cellular contexts (Fuertes-Alvarez et al.,
2018; Santos Guasch et al., 2018; López-Ferreras et al., 2021). It
is worth noting that the molecular networks involved in cell-to-
cell adhesion revealed by Santos Guasch et al. (2018) in a total
Trp73 knockout scenario are further supported by the recent
study of López-Ferreras et al. (2021), with specific inactivation
of TAp73 in mESCs, emphasizing the interest of this fine-tuned

cellular model to decipher the role of the Trp73 gene isoforms.
Altogether, the analyzed studies indicate that the integration of
-omics data could be a very valuable strategy to provide a more
comprehensive dissection of p73 regulated molecular networks
and, overall, they place p73 as a central hub in the regulation of
cell adhesion and cytoskeleton dynamics, two cornerstones for
tissue architecture.

CONCLUSION

TP73 belongs to one of the most intensively studied gene families
in molecular oncology. The considerable interest stems from
the fact that most human tumors have subverted the function
of the founding member of this family, the p53 protein. Thus,
since its serendipitous discovery (Kaghad et al., 1997), p73 tumor
suppression function was expected by virtue of its homology with
p53 and its localization to chromosome 1p36, a region that is
frequently deleted in a variety of tumors (Ichimiya et al., 1999).
However, this function has been a matter of controversy, fueled
by the fact that inactivation of the TP73 gene is a very rare event
in cancers involving chromosome 1p (Han et al., 1999; Inoue
and Fry, 2014). Moreover, the observation that viral oncoproteins
discriminate between p53 and p73 suggests that the functions
of these two proteins may differ under physiological conditions
(Marin et al., 1998).

The discovery of the TA- and DN-p73 isoforms with
antagonist anti- and pro-oncogenic functions, and the TAp73KO
mice predisposition to spontaneous tumorigenesis, demonstrated
TAp73 role as a tumor suppressor gene (Tomasini et al., 2008).
However, there is growing evidence indicating that while TAp73
has a role in tumor suppression, it is likely to be secondary
(reviewed in Wang et al., 2020). The complex phenotype of
the Trp73 deficient mice have revealed that p73 function is
essential for the organization and homeostasis of different
complex microenvironments governing various aspects of
tissue physiology. Altogether, this has raised the idea that
TAp73 was not evolved for tumor suppression, but rather
to perform unique functions in regulating developmental
processes through p53-independent mechanisms (Wang
et al., 2020). We propose that some of the, apparently
unrelated, phenotypes observed in Trp73−/− mice are the
reflection of the p73 requirement for the establishment
and/or maintenance of tissue organization (Figure 4). This
function as a tissular architect might represent one of the
original roles of the p53/p63/p73-ancestor. Furthermore,
it is important to bear in mind that this function might
reconnect with TAp73 tumor suppressor function, since
a recent report proposes that the metastatic programs
arise from the reactivation, outside of its homeostatic
context, of normal embryonic developmental transcriptional
modules (Logotheti et al., 2020). Thus, in a similar way,
deregulation of p73 expression during tumor progression
could result in alterations of the transcriptional nodes that p73
regulates as a tissue architect, playing a pivotal role during
metastasis establishment.
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FIGURE 4 | Overview of the proposed p73 novel role as a tissue architect. We present a model in which p73 would act as a tissue architect by regulating
transcriptional hubs involved in cellular adhesion and cytoskeleton dynamics. In determined spatio-temporal contexts, TAp73 will interplay with other transcriptional
programs to orchestrate morphogenic processes like ciliogenesis and/or PCP, ensuring the correct overall tissular architecture in complex microenvironments such
as neurogenic niche, the respiratory and reproductive epithelium and, maybe, the vascular network. The pictures were created with BioRender.com.

In this model, p73 regulates distinct transcriptional nodes
in a hierarchical manner that would functionally interact with
each other in a cell context and time dependent manner.
Cell adhesion mechanisms are responsible for assembling cells
together and, along with their connections to the internal
cytoskeleton, determine the overall architecture of the tissue
(Gumbiner, 1996). In this way, TAp73-regulated transcriptional
hubs, involved in cytoskeleton dynamics and cellular adhesion,
will constitute the basement of p73 function as a tissue
architect. In a context dependent manner, TAp73 will combine
the regulation of this basic transcriptional model with other

tissue specific transcriptional profiles to orchestrate complex
morphogenic processes like ciliogenesis and/or PCP (Figure 4).
In turn, the coordinated orchestration of these processes (cell
adhesion, cytoskeleton dynamic ciliogenesis and PCP) by p73
impinges on the cellular activities, leading to tissue and organ
scale functionality of complex microenvironments such as
neurogenic niche, the respiratory and reproductive epithelium
and, maybe, the vascular network. Thus, based in the compiled
data available on p73 physiological function, we propose that
p73 might function as a tissue architect, and not just as another
p53-Doppelgänger (Kaelin, 1998).
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