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Background: The tumor microenvironment (TME) mainly comprises tumor cells
and tumor-infiltrating immune cells mixed with stromal components. Latestresearch
hasdisplayed that tumor immune cell infiltration (ICI) is associated with the clinical
outcome of patients with osteosarcoma (OS). This work aimed to build a gene signature
according to ICI in OS for predicting patient outcomes.

Methods: The TARGET-OS dataset was used for model training, while the GSE21257
dataset was taken forvalidation. Unsupervised clustering was performed on the training
cohort based on the ICI profiles. The Kaplan–Meier estimator and univariate Cox
proportional hazards models were used to identify the differentially expressed genes
between clusters to preliminarily screen for potential prognostic genes. We incorporated
these potential prognostic genes into a LASSO regression analysis and produced a gene
signature, which was next assessed with the Kaplan–Meier estimator, Cox proportional
hazards models, ROC curves, IAUC, and IBS in the training and validation cohorts.
In addition, we compared our signature to previous models. GSEAswere deployed to
further study the functional mechanism of the signature. We conducted an analysis of
22 TICsfor identifying the role of TICs in the gene signature’s prognosis ability.

Results: Data from the training cohort were used to generate a nine-gene signature.
The Kaplan–Meier estimator, Cox proportional hazards models, ROC curves, IAUC, and
IBS validated the signature’s capacity and independence in predicting the outcomes of
OS patients in the validation cohort.A comparison with previous studies confirmed the
superiority of our signature regarding its prognostic ability. Annotation analysis revealed
the mechanism related to the gene signature specifically.The immune-infiltration analysis
uncoveredkey roles for activated mast cells in the prognosis of OS.

Conclusion: We identified a robust nine-gene signature (ZFP90, UHRF2, SELPLG,
PLD3, PLCB4, IFNGR1, DLEU2, ATP6V1E1, and ANXA5) that can predict OS outcome
precisely and is strongly linked to activated mast cells.
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INTRODUCTION

Osteosarcoma (OS) is a rare malignant tumor that mainly
affects children and adolescents (Yang et al., 2021). Since the
introduction of chemotherapy in 1970, the 5-year survival rate
of patients with non-metastatic OS has reached 70% (Li et al.,
2021). In addition, most patients can receive limb salvage surgery
and obtain proper postoperative limb function (Li et al., 2021).
Despite advances in surgical techniques, multi-agent systemic
chemotherapy, precise radiotherapy, and immunotherapy, the 5-
year survival rate of a localized tumor remains at 60%–70%, while
that of metastasis and recurrence is less than 20% (Zhang H.
et al., 2019). Therefore, studying the molecular mechanism of the
occurrence and development of osteosarcoma, looking for new
possible molecular therapeutic targets and prognostic criteria has
become a key measure to improve the prognosis of patients with
osteosarcoma (Yiqi et al., 2020).

Recently, attention has been paid to the tumor
microenvironment (TME), which plays a vital role in
the occurrence and development of cancer. Tumor
microenvironment comprises tumor cells, fibroblasts, endothelial
cells, immune cells, various signal molecules, and extracellular
matrix (Cortini et al., 2016; Chen Y. et al., 2020; Luo et al.,
2020).Osteosarcomasare inextricably linked to their local TME,
composed of bone, stromal, vascular, and immune cells (Corre
et al., 2020). The OS TME is now considered to be essential and
supportive for growth and dissemination (Corre et al., 2020).One
latest study has shown that tumor immune cell infiltration
(ICI)is associated with the clinical outcomes of OS patients
(Chen Y. et al., 2020). Extensive research on the TME has shown
that infiltrating immune cells play a vital role in tumor spread,
recurrence, metastasis, and the response to immunotherapy
(Ma et al., 2020; Zhang X. et al., 2020).However, the detailed
profile of immune cells infiltrating in OS has not been elucidated
(Zhang X. et al., 2020).

Previous studieshaveprimarily focused on one or two
kinds of immune cells or key genes, which could bias OS
microenvironment exploration.The identification of multiple
genes from tumor-infiltrating immune cell profiles can help
to construct a gene signature with better and more accurate
prognostic potential. To fill in the gaps and find potential
diagnostic approaches targeting OS prognosis, this work
clustered patients based on the ICI content to identify a
prognostic gene signature.More importantly, the signature was
validated in another independent cohort and compared to
previous prognosis models. Also, the functional annotation and
analysis of 22 tumor-infiltrating immune cells (TICs) were
performed to further study the gene signature.

MATERIALS AND METHODS

Mining Public Databases
The Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) is an open childhood cancer database
that aims to use comprehensive genomic methods to identify
molecular changes in the occurrence and development of

difficult-to-treat childhood cancers (Gao et al., 2020; Zhang F.
et al., 2020). One project named TARGET-OS (n = 88) in the
TARGET database was treated as the training cohort, and the
level 3 gene expression data and clinical characteristics of OS
cases were downloadedon the GDC Xena Hub.1 The GSE21257
dataset was downloaded from the Gene Expression Omnibus
(GEO) database (Buddingh et al., 2011) and was taken as the
validation cohort. This dataset includes data from 53 unique
diagnostic biopsy specimens analyzed on the GPL10295 platform
(Illumina human-6 v2.0 expression beadchip).

Consensus Clustering for TICs
CIBERSORT can describe the cell composition of complex tissues
based on the gene expression profile of complex tissues. It uses
linear support vector regression (a machine learning method)
to deconvolute a mixture of gene expressions (Newman et al.,
2015, 2019; Thorsson et al., 2018). The infiltration levels of
distinct immune cells in OS patients in the training cohort were
quantified by using the “CIBERSORT” R package and employing
the 22 TIC signature and 1,000 permutations (Newman et al.,
2015, 2019; Thorsson et al., 2018). The ESTIMATE (Estimation
of STromal and Immune cells in MAlignant Tumor tissues using
Expression data) algorithm provides researchers with a score
of tumor purity, stromal cell presence level, and ICI level in
tumor tissue based on expression data (Yoshihara et al., 2013).
The “ESTIMATE” R package was used to assess the immune
score and stromal score for OSsusing the gene expression data
from the training cohort. The combination of CIBERSORT
and ESTIMATE results from each OS sample was defined as
the tumor ICI pattern.The “ConsensusClusterPlus” R package
was used to cluster the samples according to the ICI pattern
of each sample (repeat time = 1000). Pam and Euclidean
distances were used as the clustering algorithm and distance
measure, respectively.

Differentially Expressed Genes (DEGs)
Between ICI Phenotypes
This section tries to study genes associated with the ICI patterns.
Based on the ICI cluster we have produced, DEGs were identified
between the ICI clusters using the “limma” R package (Ritchie
et al., 2015), with cutoffs of | log2(fold-change)| > 0.2 and p-value
< 0.05.

Gene Signature Construction and
Validation
The Kaplan–Meier estimator and univariate Cox proportional
hazards model were adopted to identify the potential prognostic
DEGs using the data of the training cohort. Genes with
p-values < 0.05 in both tests were considered to be potential
prognostic genes. To minimize the risk of overfitting, the LASSO
Cox regression analysis was used to construct a prognostic
model. The LASSO algorithm was run using the “glmnet” R
package for variable selection and shrinkage of these identified
potential prognostic genes (Tibshirani, 1997;Sauerbrei et al.,

1https://gdc.xenahubs.net
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FIGURE 1 | Flowchart of the study. TARGET: therapeutically applicable research to generate effective treatments; OS, osteosarcoma; DEGs, differentially expressed
genes; LASSO, least absolute shrinkage and selection operator Cox regression model; AUC, area under the ROC curve; IAUC, integrated AUC; ROC, receiver
operating characteristic; IBS, integrated Brier score; GSEA, Gene Set Enrichment Analysis; TICs, tumor-infiltrating immune cells.

2007; Friedman et al., 2010; Goeman, 2010). The “glmnet” R
package outputted genes with coefficients. The risk score of each
patient could be obtained according to the following formula:

Risk score =
n∑
i

Expi ∗ βi

(n: hub genes; Expi: gene expression level; βi: coefficient).
Osteosarcoma (OS) patients were classified into high-risk

or low-risk groups according to the median risk score. The
Kaplan–Meier estimator was used to validate the survival
difference between high- and low-risk groups. Univariate and
multivariate Cox proportional hazards models were applied to
test the prognostic ability of the gene signature we constructed.
Additionally, ROC curve analysis, integrated AUC analysis
(IAUC, also known as time-dependent AUC), and integrated
Brier score analysis (IBS, also known as time-dependent BS) were
performed to confirm the predictive capacity of the signature.

Comparison of the Gene Signature With
Previously Published Models
We searched PubMed2using the keyword “gene signature
prognosis osteosarcoma” and set the following screening criteria:
(1) the impact factor of the journal was greater than 4, and (2)
the online publication date was in the most recent year, from
May 18, 2020, to May 18, 2021. After finding suitable studies,

2https://pubmed.ncbi.nlm.nih.gov/

the gene signatures were extracted. We applied these signatures
to the training cohort to obtain coefficients via the multivariate
Cox proportional hazards model. We adopted the Kaplan–Meier
estimator and Cox proportional hazards models to test these
signatures in the training and validation cohorts to compare the
prognostic ability difference between previous studies and ours.

Gene Set Enrichment Analysis (GSEA)
GSEA is a computational method used to determine whether an
a priori defined gene set shows a statistically significant difference
between two biological states (Subramanian et al., 2005). In our
study, GSEA was run using Hallmark gene set collections (v7.43)
via GSEA software (v4.1.0 for Windows4) to reveal potential
mechanisms of gene signature in OS prognosis. In this analysis,
the significant cutoff should meet all the following indicators: |
NES | > 1, NOM p-value (nominal p-value) < 0.05, and FD R
q-value < 0.25.

Identification of Relationships Between
the Gene Signature and 22 TICs
We used the CIBERSORT algorithm for the calculation of the
relative contents of 22 TICs in the training cohort (Newman
et al., 2015, 2019; Thorsson et al., 2018).For identifying the inner
relationships among the 22 TICs, the Pearson coefficient was
equipped for the analysis. Also, for obtaining the correlations

3https://www.gsea-msigdb.org/gsea/downloads.jsp
4http://www.gsea-msigdb.org/gsea/downloads.jsp
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TABLE 1 | Clinical characteristics of patients involved in the study.

Characteristics Training cohort (TARGET-OS, n = 88) Validation cohort (GSE21257, n = 53)

Age

< 14 39(44.32%) 15 (28.3%)

=14 45(51.14%) 38 (71.7%)

Unknown 4 (4.55%) 0

Gender

Female 37 (42.05%) 19 (35.85%)

Male 47 (53.41%) 34 (64.15%)

Unknown 4 (4.55%) 0

Race

Non-White 13 (14.77%) NA

White 51 (57.95%) NA

Unknown 24 (27.27%) NA

Ethnicity

Not Hispanic or Latino 52 (59.09%) NA

Hispanic or Latino 11 (12.5%) NA

Unknown 25 (28.41%) NA

Tumor location

Femur NA 27 (50.94%)

Fibula NA 2 (3.77%)

Humerus NA 8 (15.09%)

Tibia NA 15 (28.3%)

Unknown NA 1 (1.89%)

Histological subtype

Chondroblastic NA 6 (11.32%)

Fibroblastic NA 5 (9.43%)

Osteoblastic NA 32 (60.38%)

Others NA 10 (18.87%)

Metastatic status

Non-metastatic 63 (71.59%) 39 (73.58%)

Metastatic 21 (23.86%) 14 (26.42%)

Unknown 4 (4.55%) 0

Survival status

Alive 58 (65.91%) 30 (56.6%)

Dead 27 (30.68%) 23 (43.4%)

Unknown 3 (3.41%) 0

between the 22 TICs and the signature, we adopt comprehensive
analyses, including the Spearman coefficient and Wilcoxon
rank-sum test. We used the univariate and multivariate Cox
proportional hazards models and the Kaplan–Meier estimator to
test 22 TICs to know which kind of TICs were impacting the
OS prognosis.In this section, we learned about the relationships
between 22 TICs and the gene signature and the prognostic ability
of 22 TICs. Combining the above evidence, potential candidate
TICs could be inferred, which played a vital role in the prognosis
of the gene signature.

Statistical Analysis
We used the “glmnet” R package for performing the LASSO
regression analysis. A Kaplan–Meier estimator was built
by applying the “survival” and “survminer” R packages.
Additionally, the “survival” R package was used to build Cox

proportional hazards models. The “timeROC” and “survival”
R packages were used to plot the ROC curves and call the
IAUC analysis. Moreover, the “Rcpp,” “ranger,” and “survival” R
packages were used to calculate the IBS. All the processes were
run in R software (version 4.0.4, 2021-02-15). In the present
study, a p-value < 0.05 indicates statistical significance.

RESULTS

Patient Characteristics
Figure 1 shows the flowchart of this study. Eighty-eight OS
patients from the TARGET-OS cohort were used to train
the model. The dataset GSE21257, containing 53 OS cases,
was selected to validate the model. We collected the clinical
characteristics of the OS patients in these two cohorts and showed
them in Table 1 in detail.
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FIGURE 2 | Consensus clustering for tumor-infiltrating immune cells. (A) Two ICI clusters were generated from unsupervised clustering of the ICI profile data of the
training cohort. Rows represent ICI types, and columns represent OS samples. (B) Overall survival-based Kaplan–Meier estimator of two ICI clusters in the training
cohort. The log-rank test showed an overall p = 0.046. ICI, immune cell infiltration; OS, osteosarcoma.

TABLE 2 | Prognostic genes obtained from the LASSO Cox regression model.

Gene symbol Description Risk coefficient

ZFP90 ZFP90 Zinc Finger Protein −1.050029729

UHRF2 Ubiquitin Like With PHD And Ring Finger Domains 2 0.628646168

SELPLG Selectin P Ligand −0.364076723

PLD3 Phospholipase D Family Member 3 −0.108140251

PLCB4 Phospholipase C Beta 4 0.064875459

IFNGR1 Interferon Gamma Receptor 1 −0.067753129

DLEU2 Deleted In Lymphocytic Leukemia 2 0.470586047

ATP6V1E1 ATPase H+ Transporting V1 Subunit E1 −0.137457373

ANXA5 Annexin A5 −0.730741255

Consensus Clustering for TICs
To obtain the ICI profile of each OS sample, we adopted
the CIBERSORT and ESTIMATE algorithms. The CIBERSORT
algorithm could output the relative content of 22 TICs for each
patient, and the ESTIMATE algorithm calculated the immune
score and stromal score. Combining the results above, we got
the ICI profiles for all samples. We found two independent ICI
subtypes (Figure 2A and Supplementary Figure 1) from the
clustering results generated from the “ConsesusClusterPlus” R
package, which runs based on the tumor samples with matched
ICI profiles in the training cohort. More importantly, in the
subsequent Kaplan–Meier analysis, we discovered significant
survival differences (log-rank test, p = 0.046; Figure 2B) between
these two subgroups. In detail, ICI cluster A correlated with
a good prognosis, while ICI cluster B witnessed a shorter
overall survival.

Prognostic Gene Signature Identification
We conducted a differential analysis using the “limma” R
package to determine the transcriptome variation between the
two ICI clusters to reveal the potential biological characteristics of
different immunophenotypes. A total of 4,501 DEGs were found
(Supplementary Table 1).In the subsequent analysis, a Kaplan–
Meier estimator and univariate Cox proportional hazards model
were constructed to test the DEGs’ prognostic capacities. We only
treated the DEGs with a p-value < 0.05 in both tests as potential
prognostic genes. There were 15 genes that passed our tests and
were determined as potential prognostic genes (Supplementary
Table 2). We then put them into an overall survival-based Cox
model with Lasso regression (Figure 3A) for further shrinkage
and selection. The Lasso algorithm outputted the result, showing
that it could achieve the optimal performance when the model
had nine genes (Figure 3B). The regression coefficient of each
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FIGURE 3 | LASSO regression analysis for the construction of a prognostic gene signature. (A) Cross-validation for tuning parameter screening upon LASSO
regression analysis. (B) Screening of the optimal parameter (lambda) at which the vertical lines were drawn.LASSO, the least absolute shrinkage and selection
operator Cox regression model.

FIGURE 4 | The overall distributions of the risk score (upper), survival status (middle), and gene expression profiles (bottom) of the nine-gene signature in the training
(A) and validation (B) cohorts.The top parts show the distributions of the risk score. The center parts show the distributions of the patient survival time and status.
The bottom parts indicate heatmaps of the nine gene expression profiles.

gene was generated by the “glmnet” R package and is shown
inTable 2.

Validation of the Nine-Gene Signature
According to the median risk score, OSs were assigned to
the high-risk group or low-risk group. In Figure 4, we
showed the overall view of the signature in the OS cohorts,
including the risk score distribution, the survival status/time
distribution maps, and the expression heat maps. As exhibited

in Supplementary Figure 2, in the training cohort and the
validation cohort, ANXA5, ZFP90, ATP6V1E1, SELPLG, PLD3,
and IFNGR1 were associated with favorable prognoses for OS
patients, while DLEU2, UHRF2, and PLCB4 were associated with
unfavorable prognoses.

The Kaplan–Meier estimators built in the TARGET-OS
cohort and the GSE21257 cohort witnessed significant survival
differences between the high- and low-risk groups. These analyses
showed that the high-risk groups had poorer survival possibilities
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FIGURE 5 | Kaplan–Meier estimator evaluates the nine-gene signature’s prognostic capacity in the training (A) and validation (B) cohorts. The bottom parts indicate
the number of patients at risk. The two-sided log-rank test measured the differences between the high- and low-risk groups with a p-value < 0.05.

FIGURE 6 | Univariate and multivariate Cox proportional hazards models were built to test the predictive ability of the nine-gene signature in the training and
validation cohorts. HR, hazard ratio; CI, confidence interval; The bold p-value indicates that<0.05, which considers significant. *Hispanic or Latino vs. Non-Hispanic
or Latino; #Femur vs. Non-Femur; $Osteoblastic vs. Non-Osteoblastic.

than those in the low-risk groups (TARGET-OS: Figure 5A,
p-value < 0.0001; GSE21257: Figure 5B, p-value = 0.012). We
constructed univariate and multivariate Cox proportional hazard
models using the available clinical covariables of the training
and validation cohorts to validate the nine-gene signature’s
prognostic and independence ability (Figure 6). The covariables
we included were as follows: risk score, sex, age, race, ethnicity,
metastasis status, tumor location, and histological subtype. The

Cox models built in the training cohort showed that the risk
score is the only factor that significantly affects the prognosis of
OS in both univariate (p-value = 3.84e–09) and multivariate (p-
value = 1.46e–05) analyses. Consistent with the training cohort,
the Cox proportional hazards models construed in the validation
cohort also confirmed the strong predictive ability of the gene
signature (p-value = 1.36e–02). In this analysis, the metastasis
factor also validated having prognosis ability but was weaker than
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FIGURE 7 | ROC curves, integrated AUC analysis, and integrated Brier score analysis performed to examine the predictive ability of the nine-gene signature in the
training (A) and validation (B) cohorts. The ROC curvesdisplay prognostic capacities with the nine-gene signature at 1-, 3-, and 5-year time points. The integrated
AUC and integrated Brier score analysis show the predictive ability comparisons between the nine-gene signature and other clinical factors. ROC, receiver operating
characteristic; AUC, area under the ROC curve.

the risk score after comparing p-values. Based on the evidence
mentioned above, we can reasonably infer that the nine-gene
signature has a strong independent prognostic ability.

The area under the ROC curve, called AUC, is currently
considered the standard method for evaluating the accuracy

of predictive distribution models (Kamarudin et al., 2017).
IAUC is an efficient tool in assessing the performance of a
candidate marker given the true disease status of individuals
at specific time points (Kamarudin et al., 2017). IBS is an
overall measure for the prediction of the model at all times
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(Kronek and Reddy, 2008).This section used ROC curves, IAUC,
and IBS to validate the nine-gene signature’s predictive ability
and compare it with other variables.As displayed in Figure 7A,
for the analyses performed in the training cohort, the gene
signature’s AUCs were 0.874, 0.830, and 0.883 at 1, 3, and
5 years, respectively, and the IAUC results showed that the
risk score stayed at a higher level compared to all other
factors at all time points. Also, the IBS remained at the
lowest level the whole time. Consistently, the risk score’s AUC
in GSE21257 (Figure 7B) was=0.724 at the 1-, 3-, and 5-
year time points and were greater than those of the other
variates at any time. The signature’s IBS also stayed lower than
other clinical characteristics at all time points.The above results
indicated that the gene signature we found was superior to other
clinical factors.

Comparison of the Nine-Gene Signature
With Previous Models
According to the screening criteria, nine studies were selected
as candidates. The details are shown inTable 3. Kaplan–
Meier curves were plotted against our nine-gene signature
and the candidate signatures in the training and validation
cohorts (Figure 8). Kaplan–Meier plots indicated that only the
nine-gene signature and that of Yang et al. signature could
predict prognosis in both the TARGET-OS and GSE21257
cohorts.However, the p-value of our nine-gene signature (p-
value = 1.208e–02) witnessed more strength than that of Yang
et al. (p-value = 3.602e–02).Additionally, univariate Cox models
were built using these gene signatures in the training and
validation cohorts (Figure 9). The univariate Cox regression
results showed that only our nine-gene signature exhibited
prognosis capable in these cohorts (p-value = 7.32e–04). From the
evidence mentioned above, the nine-gene signature is superior to
our predecessors.

Functional Annotation of the Gene
Signature Using GSEA
For understanding the underlying molecular mechanisms of
the signature, we performed GSEA comparing the high-
risk group with the low-risk group in the TARGET-OS
cohort.As displayed in Supplementary Figure 3, enriched
gene sets were all detected in the low-risk group and were
primarily involved in mechanisms related to transplant rejection,
blood coagulation system, IL-6/JAK/STAT3 signaling axis,
drug metabolism, inflammatory response, interferon response,
apical junction complex, apical surface of epithelial cells, and
innate immune system.

The Nine-Gene Signature and 22 TICs
The annotation analysis indicated that the differences between
the two groups were related to immunity, so we carried out
analyses on 22 TICs to further study the interactions between the
gene signature and the immune microenvironment. Firstly, the
CIBERSORT algorithm was adopted to draw the 22 TIC profiles
in preparation for the next analyses. Supplementary Figure 4

TABLE 3 | Candidate research for comparison to our signature.

Studies Published
online date

PMID Gene signature
composition

Fu et al. 2021 Mar 18 33816483 DCN, P4HA1

Yang et al. 2021 May 5 33952718 P4HA1, ABCB6, STC2

Cao et al. 2020 Dec 23 33425993 GJA5, APBB1IP, NPC2,
FKBP11

Xiao et al. 2020 Dec 15 33384961 IFITM3, VAMP8,
ACTA2, GZMA,
CDCA7, EVI2B,
SLC7A7

Chen et al. 2020 Dec 14 33381518 MSR1, TLR7

Wen et al. 2020 Dec 3 33281116 COCH, MYOM2,
PDE1B

Yu et al. 2020 Aug 21 32820615 CXCR3, SSTR3, SAA1,
CCL4, PYY, CCR9,
CXCL9, CXCL11, C3,
CXCL2, S1PR4,
CXCL10, CXCR6

Song et al. 2020 Jul 24 32850346 CD4, CD68, CSF1R

Zhu et al. 2020 Jun 22 32581649 SLC18B1, RBMXL1,
DOK3, HS3ST2,
ATP6V0D1, CCAR1,
C1QTNF1

shows the overall view of the distribution of the 22 TICs and their
inner association.

The Wilcoxon rank-sum test (Figure 10A) found five kinds
of TICs associated with the signature, and the Spearman
coefficient (Figure 10B and Supplementary Table 3)
discovered eight kinds of TICs having correlations with
the risk score. We built a Venn diagram to visualize these
results and found that there were five TICs (Figure 10C)
showing significant relationships with the gene signature
risk score, which included CD4 naïve T cells, CD8 T cells,
activated mast cells, monocytes, and regulatory T cells
(Tregs).Specifically, the risk score was positively correlated
with CD4 T cells and activated mast cells and negatively
correlated with the remaining.

We further tested the prognostic abilities of the 22
TICs by consulting the Kaplan-Meier estimator and
Cox proportional hazards model. As we displayed the
results in Figure 11A, the Cox models pointed that
activated mast cells impacted OS outcomes not only in
the univariate but also in the multivariate Cox regression.
Additionally, the Kaplan–Meier estimator (Figure 11B
and Supplementary Table 4) indicated that activated mast
cells, CD4 T cells, and CD8 naïve T cellswere able to
predict OS prognosis. Activated mast cells have potential
prognostic ability in OS.

Combining all the analysis results shown in this part, we
noticed that activated mast cells not only are significantly
related to the gene signature but also predict OS prognosis.
Accordingly, the significant infiltration of activated mast cells
mayplaykey roles in the prognostic ability of the nine-gene
signature in OS patients.
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FIGURE 8 | Comparisons between the nine-gene signature and previous studies conducted in the training and validation cohorts using the Kaplan–Meier estimator.
The two-sided log-rank test measured the differences between the high- and low-risk groups. The bold p-value indicates<0.05, which is considered significant.

DISCUSSION

In the present research, we found a novel nine-gene
signature for OS prognosis from the comprehensive
characterization of ICI profiles by mining the TARGET
and GEO databases. After ICI clusters of the OS patients
with survival differences in the training cohort were
subtyped, DEGs were found. Kaplan–Meier analysis,
univariate Cox analysis, and LASSO Cox regression
analysis were applied to the DEGs, and a nine-gene

signature was produced that was associatedwith the
prognosis of OS patients.

We specially applied the nine-gene signature to the training
and validation cohorts to the constructed Kaplan–Meier
estimator, Cox proportional-hazards model, ROC curve, IAUC,
and IBS and found significant statistical differences in these
analyses, proving that this gene signature is effective and
applicable for the OS prognosis prediction. In addition,
comparisons with other discovered signatures were performed,
which exhibited the superiority of our nine-gene signature.The
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FIGURE 9 | Comparisons between the nine-gene signature and previous studies conducted in the training and validation cohorts using the univariate Cox
proportionalhazards model. HR, hazard ratio; CI, confidence interval. *: the nine-gene signature identified in this study; the bold p-value indicates that<0.05, which is
considered significant.

immune infiltration results showed vital roles that activated mast
cells may play that allows the nine-gene signature toinfluence
the prognosis of OS.Compared with previous research, we are
the first to adopt ICI profiles and use the LASSO method
for model training and validate the model in an independent
cohort. This work aimed to present future OS research
with more hints.

The nine-gene signature that we found exhibited powerful
prediction abilities not only in the TARGET-OS cohort
but also in the independent validation cohort after being
tested by a wide range of statistical approaches.The signature
consisted of nine genes (Table 2), which were ZFP90,
UHRF2, SELPLG, PLD3, PLCB4, IFNGR1, DLEU2, ATP6V1E1,
and ANXA5.In our research, PLCB4, DLEU2, and UHRF2
unfavorably impacted OS prognosis, while the remaining factors
exhibited protective effects (Supplementary Figure 2). PLCB4
encodes the β4 isoform of PLC isoenzymes, a superfamily
that adjusts the metabolism of inositol lipids (Wu et al.,
2019). Boosted expression of PLCB4 is correlated with a
decrease in survival rates in patients with solid tumors,
including mesothelioma, melanoma, and gastrointestinal tumors
(Wu et al., 2019). However, there is still no research to
reveal the mechanism of PLCB4 in the occurrence and
development of OS.LncRNA DLEU2 is a cancer-related lncRNA
thatregulates tumor progression in a variety of cancers (Liu
W. et al., 2020).Compared with that in normal tissues,
DLEU2 displaysan upregulated expression in pancreatic cancer
tissues (Liu W. et al., 2020). Liu et al. reported that
DLEU2 is highly expressed in OS and revealed that DLEU2
overexpression helps in the migration and proliferation of
OS cells (Liu W. et al., 2020). They found that DLEU2
promotes the expansion of OS cells by sponging miR-337-3p
and couldcontrol the expression of JAK2, thus participating

in the progression of OS (Liu W. et al., 2020). UHRF1 is a
well-known epigenetic regulator.A significant overexpression of
UHRF1has been detected in several kinds of cancers (Liu W.
et al., 2016). Liu et al. reported that UHRF1 promotes the
proliferation of human OS cells and increases the invasiveness
of human OS cells by downregulating the expression of
E-cadherin and increasing EMT in an Rb1-dependent manner
(Liu W. et al., 2016).

Recently, with the widespread application of bioinformatics,
we can mine for possible gene signatures associated with
OS prognosis from the publicly available TARGET and GEO
databases. In addition, more and more studies are involved. For
example, in the nine studies (Cao et al., 2020; Chen Z. et al., 2020;
Song et al., 2020; Wen et al., 2020; Xiao et al., 2020; Yu et al.,
2020; Zhu et al., 2020; Fu et al., 2021; Yang et al., 2021) we
included in the study based on the inclusion criteria, they all
looked for potential survival-related OS gene signatures from
public datasets.However, after we validated them in the training
and validation cohorts, we found that the nine-gene signature
we generated was superior to others in predicting OS prognosis.
Among the nine studies, the one by Yang et al. (2021)revealed
a gene signature that closely resembled ours. Yang et al. first
filtered genes through GSEAand then established a three-gene
signature prognostic model, which they claimed can accurately
predict the prognosis of OS. However, in our validation, although
the three-gene signature’s ability was similar to ours in Kaplan–
Meier analysis, it could not show stable prognostic capacity via
Cox regression analysis (Yang et al., 2021).

Gene Set Enrichment Analysis (GSEA) of the HALLMARK
collection found that the IL-6/JAK/STAT3 signaling axis
plays a key role in gene signature functioning. The IL-
6/JAK/STAT3 pathway is important to the growth and
advancement of many human cancers (Johnson et al.,
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FIGURE 10 | Integrating analysis for identifying the relationship between 22 TICs and the nine-gene signature. (A) Wilcoxon rank-sum was adopted to test the
differences in each TIC distributed in the high- and low-risk groups. (B) The Spearman coefficient examines the correlation between each TIC and the nine-gene
signature. Only correlations with p-value < 0.05 were plotted.The blue line displays the trend of the TIC and risk score. The shading besides the blue line
characterizes the 95% CI. (C) Venn diagram integrating the results from (A) and (B). TIC: tumor-infiltrating immune cell; *: p-value < 0.05; CI: confidence interval;
p-value < 0.05 was considered statistically significant.

2018). IL-6 produced in the TME activates the JAK/STAT3
signaling pathway, favoring tumor growth and metastasis
(Wang et al., 2019). IL-6 has been identified as a primary
mediator of lung tropism in OS and suggests pleiotropic,
redundant mechanisms that might affect metastasis (Gross

et al., 2018). The JAK/STAT3 signaling pathway has been
demonstrated to be a target to inhibit the growth and metastasis
of osteosarcoma (Wang et al., 2019). Upstream kinase signals
trigger the STAT3 signal cascade (Lee et al., 2019). It undergoes
phosphorylation, homodimerization, translocation into the
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FIGURE 11 | Univariateand multivariate Cox proportionalhazards models (A) and Kaplan–Meier estimators (B) evaluate the 22 TICs’prognostic ability. (A) The bold
p-value indicates that<0.05. (B) In the established Kaplan–Meier estimators, we only selected those with a p-value less than 0.05 for display. A p-value < 0.05 was
considered statistically significant; TIC, tumor-infiltrating immune cell.

nucleus, and binding to DNA, leading to the expression of
target genes involved in tumor cell proliferation, angiogenesis,
metastasis, and immune editing (Lee et al., 2019). There is
evidence that dysregulated STAT3 plays a carcinogenic role
in OS by promoting processes including cell transformation,
tumor growth, invasion, metastasis, chemotherapy resistance,
and immune evasion (Liu Y. et al., 2021).STAT3 inhibitors may
directly or indirectly downregulate the expression of target
genes involved in OS (Liu Y. et al., 2021). Liu and colleagues
reported that STAT3 is a potential target for the treatment
of OS and may be effective for the treatment of OS (Liu Y.
et al., 2021).Further study is needed to develop more about
the connections between IL-6/JAK/STAT3 signaling and the
signature we found and the therapeutic approach targeting the
IL-6/JAK/STAT3 pathway.

In addition, based on the CIBERSORT algorithm and
survival analysis, we revealed that activated mast cells
have clear correlations with the gene signature and strong
prognostic abilities as well, indicating that the infiltration
of these cells may play a key role in the predictive ability of

the gene signature.Mast cells can elevate tumor expansion
by inducing angiogenesis and promote tissue remodeling
by inducing changes in the composition of the extracellular
matrix, and they can also promote pro-inflammatory pathways
that can lead to impaired tumor progression (Maciel et al.,
2015).Mast cells have also been shown to influence the
extent of the dendritic cells, tumor-associated macrophages,
and lymphocyte infiltrate through the release of mediators,
enhancing the migration and proliferation of these cells
(Inagaki et al., 2016). Activated mast cells can enhance
the tissue homeostasis of TME disorders and facilitate
the growth and spread of tumors (Oldford and Marshall,
2015).Studies have confirmed that some mechanisms triggered
by mast cells can affect the OS homeostasis, impacting the
occurrence and development of OS (Campillo-Navarro
et al., 2014; Maciel et al., 2015; Inagaki et al., 2016).Our
research shows that activated mast cells can potentially
target the gene signature in OS therapy, which suggests
that we should make more effort to these immune cells
in future study.
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This research has certain limitations. Our nine-gene
signature was produced from retrospective data. Its clinical
adaptability should be further confirmed by more prospective
data. In addition, although we have confirmed that the
nine-gene signature is superior to previous findings,
there is still no wet-lab experiment data backing up
these 9 genes’ prognostic abilities and their roles in the
immune infiltration. Accordingly, further study is needed to
uncover the relationships between the nine-gene signature
and OS progression.

CONCLUSION

The present study defined a novel, robust nine-gene signature
from OS ICI characteristics. The signature was closely
associated with OS prognosis and can acutely determine
the risk score of OS patients. In addition, we determined
the signature’s stability and wide applicability by applying it
to one independent validation cohort and proved that our
signature is superior to previous signatures. We identified the
vital role of activated mast cells in the signature’s prognostic
ability. Our efforts may advance the unearthing of OS
treatment approaches.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study.
This data can be found here: The following publicly
available datasets were used in this study: TARGET-OS:
https://ocg.cancer.gov/programs/target/projects/osteosarcoma;
GSE21257: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE21257.

AUTHOR CONTRIBUTIONS

LF and CM organized and wrote the manuscript. JR produced
the figures and visualized the data. TL revised the manuscript. All
authors reviewed the manuscript and approved the manuscript
for publication.

ACKNOWLEDGMENTS

CM thanks the China Scholarship Council (No. 201708410121).
CM thanks the Zhengzhou University Overseas Virtual Research
Institute. We acknowledge support from the German Research
Foundation (DFG) and the Open Access Publication Fund of
Charité – Universitätsmedizin Berlin.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
718624/full#supplementary-material

Supplementary Figure 1 | Consensus clustering for tumor-infiltrating immune
cells. Consensus matrixes of the samples in the training cohort for each k
(k = 2–5), displaying the clustering stability using 1000 iterations of
hierarchical clustering.

Supplementary Figure 2 | The prognostic prediction ability of each gene in the
nine-gene signature tested using the Kaplan–Meier estimator in the training (A)
and validation (B) cohorts. The two-sided log-rank test measured the differences
between the high and low expression level groups. P-value < 0.05 was
considered as significantly.

Supplementary Figure 3 | GSEA conducted using HALLMARK collection.
GSEA: Gene Set Enrichment Analysis; NES: Normalized Enrichment Score; NOM:
Nominal; FDR: False Discovery Rate; A gene set with | NES | > 1, NOM
p-value < 0.05, and FDR q-value < 0.25 was considered significantly enriched.

Supplementary Figure 4 | Profiles and correlation analysis of the 22 TICs in OS
tumor samples of the training cohort. (A) The distribution of 22 TICs in high- and
low-risk OS patients in the training cohort, which are displayed in the form of bar
plots. (B) The inner correlations between 22 TICs, which are shown in the form of
a heatmap and performed via the Pearson coefficient. P-value < 0.05 was
considered as significantly. TIC: tumor-infiltrating immune cell; OS: osteosarcoma.

Supplementary Table 1 | Differentially expressed genes identified between two
ICI clusters (p-value < 0.05 and log2| fold-change| > 0.2).

Supplementary Table 2 | Potential prognostic genes identified in the training
cohort (p-value < 0.05).

Supplementary Table 3 | Correlations that determined between the nine-gene
signature and the 22 TICs by the Spearman coefficient.

Supplementary Table 4 | The prognostic ability of 22 TICs tested by the
Kaplan-Meier estimator.

REFERENCES
Buddingh, E. P., Kuijjer, M. L., Duim, R. A., Bürger, H., Agelopoulos, K.,

Myklebost, O., et al. (2011). Tumor-infiltrating macrophages are associated with
metastasis suppression in high-grade osteosarcoma: a rationale for treatment
with macrophage activating agents. Clin. Cancer Res.17, 2110–2119. doi: 10.
1158/1078-0432.ccr-10-2047

Campillo-Navarro, M., Chavez-Blanco, A. D., Wong-Baeza, I., Serafín-
López, J., Flores-Mejía, R., Estrada-Parra, S., et al. (2014). Mast
cells in lung homeostasis: beyond type I hypersensitivity. Curr.
Respir. Med. Rev.10, 115–123. doi: 10.2174/1573398x1066614102422
0151

Cao, M., Zhang, J., Xu, H., Lin, Z., Chang, H., Wang, Y., et al. (2020).
Identification and development of a novel 4-gene immune-related

signature to predict osteosarcoma prognosis. Front. Mol. Biosci.7:60
8368.

Chen, Y., Zhao, B., and Wang, X. (2020). Tumor infiltrating immune cells (TIICs)
as a biomarker for prognosis benefits in patients with osteosarcoma. BMC
Cancer20:1022.

Chen, Z., Huang, H., Wang, Y., Zhan, F., and Quan, Z. (2020). Identification of
immune-related genes MSR1 and TLR7 in relation to macrophage and Type-
2 T-helper cells in osteosarcoma tumor micro-environments as anti-metastasis
signatures. Front. Mol. Biosci.7:576298.

Corre, I., Verrecchia, F., Crenn, V., Redini, F., and Trichet, V. (2020). The
osteosarcoma microenvironment: a complex but targetable ecosystem. Cells9,
976. doi: 10.3390/cells9040976

Cortini, M., Massa, A., Avnet, S., Bonuccelli, G., and Baldini, N. (2016). Tumor-
activated mesenchymal stromal cells promote osteosarcoma stemness and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 September 2021 | Volume 9 | Article 718624

https://ocg.cancer.gov/programs/target/projects/osteosarcoma
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.frontiersin.org/articles/10.3389/fcell.2021.718624/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.718624/full#supplementary-material
https://doi.org/10.1158/1078-0432.ccr-10-2047
https://doi.org/10.1158/1078-0432.ccr-10-2047
https://doi.org/10.2174/1573398x10666141024220151
https://doi.org/10.2174/1573398x10666141024220151
https://doi.org/10.3390/cells9040976
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-718624 September 3, 2021 Time: 16:43 # 15

Fan et al. A Gene Signature of Osteosarcoma

migratory potential via IL-6 secretion. PLoS One11:e0166500. doi: 10.1371/
journal.pone.0166500

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw.33, 1–22.

Fu, Y., Bao, Q., Liu, Z., He, G., Wen, J., Liu, Q., et al. (2021). Development and
validation of a hypoxia-associated prognostic signature related to osteosarcoma
metastasis and immune infiltration. Front. Cell Dev. Biol.9:633607.

Gao, L., Lin, P., Chen, P., Gao, R. Z., Yang, H., He, Y., et al. (2020). A novel risk
signature that combines 10 long noncoding RNAs to predict neuroblastoma
prognosis. J. Cell Physiol.235, 3823–3834. doi: 10.1002/jcp.29277

Goeman, J. J. (2010). L1 penalized estimation in the Cox proportional hazards
model. Biomed. J.52, 70–84.

Gross, A. C., Cam, H., Phelps, D. A., Saraf, A. J., Bid, H. K., Cam, M., et al. (2018).
IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis.
JCI Insight3:e99791.

Inagaki, Y., Hookway, E., Williams, K. A., Hassan, A. B., Oppermann, U., Tanaka,
Y., et al. (2016). Dendritic and mast cell involvement in the inflammatory
response to primary malignant bone tumours. Clin. Sarcoma Res.6:13.

Johnson, D. E., O’Keefe, R. A., and Grandis, J. R. (2018). Targeting the IL-
6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol.15, 234–248. doi:
10.1038/nrclinonc.2018.8

Kamarudin, A. N., Cox, T., and Kolamunnage-Dona, R. (2017). Time-dependent
ROC curve analysis in medical research: current methods and applications.
BMCMed. Res. Methodol.17:53.

Kronek, L. P., and Reddy, A. (2008). Logical analysis of survival data: prognostic
survival models by detecting high-degree interactions in right-censored data.
Bioinformatics24, i248–i253.

Lee, H., Jeong, A. J., and Ye, S. K. (2019). Highlighted STAT3 as a potential drug
target for cancer therapy. BMB Rep.52, 415–423. doi: 10.5483/bmbrep.2019.52.
7.152

Li, L. Q., Zhang, L. H., Yuan, Y. B., Lu, X. C., Zhang, Y., Liu, Y. K., et al. (2021).
Signature based on metabolic-related gene pairs can predict overall survival of
osteosarcoma patients. Cancer Med.10, 4493–4509. doi: 10.1002/cam4.3984

Liu, W., Liu, P. C., Ma, K., Wang, Y. Y., Chi, Q. B., and Yan, M. (2020).
LncRNA DLEU2 promotes tumour growth by sponging miR-337-3p in human
osteosarcoma. Cell Biochem. Funct.38, 886–894. doi: 10.1002/cbf.3509

Liu, W., Qiao, R. H., Wang, D. M., Huang, X. W., Li, B., and Wang, D. (2016).
UHRF1 promotes human osteosarcoma cell invasion by downregulating the
expression of Ecadherin in an Rb1dependent manner. Mol. Med. Rep.13,
315–320. doi: 10.3892/mmr.2015.4515

Liu, Y., Liao, S., Bennett, S., Tang, H., Song, D., Wood, D., et al. (2021). STAT3 and
its targeting inhibitors in osteosarcoma. Cell Prolif.54:e12974.

Luo, Z. W., Liu, P. P., Wang, Z. X., Chen, C. Y., and Xie, H. (2020). Macrophages
in osteosarcoma immune microenvironment: implications for immunotherapy.
Front. Oncol.10:586580.

Ma, C., Luo, H., Cao, J., Zheng, X., Zhang, J., Zhang, Y., et al. (2020). Identification
of a novel tumor microenvironment-associated eight-gene signature for
prognosis prediction in lung adenocarcinoma. Front. Mol. Biosci.7:57
1641.

Maciel, T. T., Moura, I. C., and Hermine, O. (2015). The role of mast cells in
cancers. F1000Prime Rep.7:09.

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods12, 453–457. doi: 10.1038/nmeth.3337

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F.,
et al. (2019). Determining cell type abundance and expression from bulk tissues
with digital cytometry. Nat. Biotechnol.37, 773–782. doi: 10.1038/s41587-019-
0114-2

Oldford, S. A., and Marshall, J. S. (2015). Mast cells as targets for immunotherapy
of solid tumors. Mol Immunol.63, 113–124. doi: 10.1016/j.molimm.2014.02.020

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res.43:e47. doi: 10.1093/nar/gkv007

Sauerbrei, W., Royston, P., and Binder, H. (2007). Selection of important
variables and determination of functional form for continuous predictors in
multivariable model building. Stat. Med.26, 5512–5528. doi: 10.1002/sim.3148

Song, Y. J., Xu, Y., Zhu, X., Fu, J., Deng, C., Chen, H., et al. (2020). Immune
landscape of the tumor microenvironment identifies prognostic gene signature
CD4/CD68/CSF1R in osteosarcoma. Front. Oncol.10:1198.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad.
Sci. U.S.A.102, 15545–15550. doi: 10.1073/pnas.0506580102

Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H.,
et al. (2018). The immune landscape of cancer. Immunity48, 812–830 e14.

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Stat. Med.16, 385–395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-
sim380>3.0.co;2-3

Wang, W., Li, J., Ding, Z., Li, Y., Wang, J., Chen, S., et al. (2019). Tanshinone I
inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3
signalling pathway. J. Cell Mol. Med.23, 6454–6465. doi: 10.1111/jcmm.14539

Wen, C., Wang, H., Wang, H., Mo, H., Zhong, W., Tang, J., et al. (2020). A three-
gene signature based on tumour microenvironment predicts overall survival of
osteosarcoma in adolescents and young adults. Aging (Albany NY)13, 619–645.
doi: 10.18632/aging.202170

Wu, S., Zhang, W., Shen, D., Lu, J., and Zhao, L. (2019). PLCB4 upregulation
is associated with unfavorable prognosis in pediatric acute myeloid leukemia.
Oncol. Lett.18, 6057–6065.

Xiao, B., Liu, L., Li, A., Xiang, C., Wang, P., Li, H., et al. (2020). Identification and
verification of immune-related gene prognostic signature based on ssGSEA for
osteosarcoma. Front. Oncol.10:607622.

Yang, M., Ma, X., Wang, Z., Zhang, T., Hua, Y., and Cai, Z. (2021). Identification
of a novel glycolysis-related gene signature for predicting the prognosis of
osteosarcoma patients. Aging (Albany NY)13, 12896–12918. doi: 10.18632/
aging.202958

Yiqi, Z., Ziyun, L., Qin, F., Xingli, W., and Liyu, Y. (2020). Identification of
9-gene epithelial-mesenchymal transition related signature of osteosarcoma
by integrating multi cohorts. Technol. Cancer Res. Treat.19:15330338209
80769.

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun.4:2612.

Yu, Y., Zhang, H., Ren, T., Huang, Y., Liang, X., Wang, W., et al. (2020).
Development of a prognostic gene signature based on an immunogenomic
infiltration analysis of osteosarcoma. J. Cell Mol. Med.24, 11230–11242. doi:
10.1111/jcmm.15687

Zhang, F., Zeng, L., Cai, Q., Xu, Z., Liu, R., Zhong, H., et al. (2020).
Comprehensive analysis of a long noncoding rna-associated competing
endogenous RNA network in wilms tumor. Cancer Control.27:10732748209
36991.

Zhang, H., Guo, L., Zhang, Z., Sun, Y., Kang, H., Song, C., et al. (2019). Co-
expression network analysis identified gene signatures in osteosarcoma as a
predictive tool for lung metastasis and survival. J. Cancer10, 3706–3716. doi:
10.7150/jca.32092

Zhang, X., Shi, M., Chen, T., and Zhang, B. (2020). Characterization of the immune
cell infiltration landscape in head and neck squamous cell carcinoma to aid
immunotherapy. Mol. Ther. Nucleic Acids22, 298–309. doi: 10.1016/j.omtn.
2020.08.030

Zhu, N., Hou, J., Ma, G., Guo, S., Zhao, C., and Chen, B. (2020). Co-expression
network analysis identifies a gene signature as a predictive biomarker for energy
metabolism in osteosarcoma. Cancer Cell Int.20:259.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Fan, Ru, Liu and Ma. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 September 2021 | Volume 9 | Article 718624

https://doi.org/10.1371/journal.pone.0166500
https://doi.org/10.1371/journal.pone.0166500
https://doi.org/10.1002/jcp.29277
https://doi.org/10.1038/nrclinonc.2018.8
https://doi.org/10.1038/nrclinonc.2018.8
https://doi.org/10.5483/bmbrep.2019.52.7.152
https://doi.org/10.5483/bmbrep.2019.52.7.152
https://doi.org/10.1002/cam4.3984
https://doi.org/10.1002/cbf.3509
https://doi.org/10.3892/mmr.2015.4515
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1016/j.molimm.2014.02.020
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1002/sim.3148
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
https://doi.org/10.1111/jcmm.14539
https://doi.org/10.18632/aging.202170
https://doi.org/10.18632/aging.202958
https://doi.org/10.18632/aging.202958
https://doi.org/10.1111/jcmm.15687
https://doi.org/10.1111/jcmm.15687
https://doi.org/10.7150/jca.32092
https://doi.org/10.7150/jca.32092
https://doi.org/10.1016/j.omtn.2020.08.030
https://doi.org/10.1016/j.omtn.2020.08.030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Identification of a Novel Prognostic Gene Signature From the Immune Cell Infiltration Landscape of Osteosarcoma
	Introduction
	Materials and Methods
	Mining Public Databases
	Consensus Clustering for TICs
	Differentially Expressed Genes (DEGs) Between ICI Phenotypes
	Gene Signature Construction and Validation
	Comparison of the Gene Signature With Previously Published Models
	Gene Set Enrichment Analysis (GSEA)
	Identification of Relationships Between the Gene Signature and 22 TICs
	Statistical Analysis

	Results
	Patient Characteristics
	Consensus Clustering for TICs
	Prognostic Gene Signature Identification
	Validation of the Nine-Gene Signature
	Comparison of the Nine-Gene Signature With Previous Models
	Functional Annotation of the Gene Signature Using GSEA
	The Nine-Gene Signature and 22 TICs

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


