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Histopathological images and omics profiles play important roles in prognosis of cancer
patients. Here, we extracted quantitative features from histopathological images to
predict molecular characteristics and prognosis, and integrated image features with
mutations, transcriptomics, and proteomics data for prognosis prediction in lung
adenocarcinoma (LUAD). Patients obtained from The Cancer Genome Atlas (TCGA)
were divided into training set (n = 235) and test set (n = 235). We developed machine
learning models in training set and estimated their predictive performance in test
set. In test set, the machine learning models could predict genetic aberrations: ALK
(AUC = 0.879), BRAF (AUC = 0.847), EGFR (AUC = 0.855), ROS1 (AUC = 0.848), and
transcriptional subtypes: proximal-inflammatory (AUC = 0.897), proximal-proliferative
(AUC = 0.861), and terminal respiratory unit (AUC = 0.894) from histopathological
images. Moreover, we obtained tissue microarrays from 316 LUAD patients, including
four external validation sets. The prognostic model using image features was predictive
of overall survival in test and four validation sets, with 5-year AUCs from 0.717 to 0.825.
High-risk and low-risk groups stratified by the model showed different survival in test
set (HR = 4.94, p < 0.0001) and three validation sets (HR = 1.64–2.20, p < 0.05). The
combination of image features and single omics had greater prognostic power in test
set, such as histopathology + transcriptomics model (5-year AUC = 0.840; HR = 7.34,
p < 0.0001). Finally, the model integrating image features with multi-omics achieved
the best performance (5-year AUC = 0.908; HR = 19.98, p < 0.0001). Our results
indicated that the machine learning models based on histopathological image features
could predict genetic aberrations, transcriptional subtypes, and survival outcomes of
LUAD patients. The integration of histopathological images and multi-omics may provide
better survival prediction for LUAD.

Keywords: lung cancer, histopathology, genomics, transcriptomics, proteomics

INTRODUCTION

Lung cancer is the most common cancer and the main cause of cancer death worldwide,
resulting in an estimated 2.1 million new cases and 1.8 million deaths annually (Bray et al.,
2018). Lung adenocarcinoma (LUAD) is the most major histological subtype, which is different
from lung squamous cell carcinoma (LUSC) in clinical manifestations and therapeutic principles
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(Ettinger et al., 2019). LUAD occurs more frequently in
never-smokers compared to LUSC (Herbst et al., 2018).
Although there were small improvements in 5-year survival
rate of lung cancer patients, the survival rates of patients
with lymph node invasion (29.7%) or distant metastases
(4.7%) were still not optimistic (Schabath and Cote, 2019).
Therefore, identifying high-risk patients with worse prognosis
is critical to the treatment and management of cancer patients.
In recent years, various novel biomarkers are constantly
emerging to better classify LUAD patients by their probable
prognosis, and promote the development of precision medicine
(Vargas and Harris, 2016).

Oncogene addiction refers to the dependence of cancer
cells on specific driver oncogenes that play important roles in
tumorigenesis and progression (Pagliarini et al., 2015). Known
driver oncogene aberrations of LUAD included mutations of
KRAS, EGFR, and BRAF genes, and fusions of ALK, ROS1,
and RET genes (Saito et al., 2016). Based on the concept of
“oncogene addiction,” cancer patients harboring such aberrations
can benefit from molecular targeted therapy. Targeted agents
against lung cancers with EGFR, BRAF, ALK, and ROS1
aberrations (e.g., gefitinib, dabrafenib, and crizotinib) have
achieved good efficacy in clinical trials, which are successful
examples of clinical application of precision therapy (Saito
et al., 2016; Park et al., 2019). The EGFR and BRAF mutations
were found to be correlated with patient prognosis, but
their prognostic implication in LUAD remains controversial
(Calvayrac et al., 2017). In addition, based on unsupervised
analysis of gene expression, the transcriptional subtypes of
LUAD were proposed to provide clinical related classifications,
and offered insights into tumors that lacked specific driver
mutations (Cancer Genome Atlas Research Network, 2014).
The terminal respiratory unit (TRU), proximal-inflammatory
(PI), and proximal-proliferative (PP) subtypes revealed distinct
genomic signatures, and the TRU subtype had a favorable
prognosis (Cancer Genome Atlas Research Network, 2014).
Furthermore, proteomic characterization of LUAD demonstrated
the association of proteomic features with genetic aberrations
and transcriptional subtypes (Gillette et al., 2020). Overall,
multi-omics analysis is crucial for understanding the molecular
landscape of cancer and improving the prognosis prediction and
therapeutic strategies of patients.

Several clinicopathological factors are well-recognized
prognostic factors for LUAD, such as TNM stage, smoking
history, and performance status (Thakur and Gadgeel, 2016).
Histopathological images contain numerous information about
tumor morphology and its correlation with surrounding
microenvironment. However, current histopathological
assessment patterns (such as classification of tumor grade)
are not sufficient to predict prognosis of LUAD patients (Yu
et al., 2016). Computer-aided image analysis is an emerging
field of artificial intelligence that converts digital pathological
images into high-dimensional data, and offers a new approach to
studying tumor heterogeneity and underlying pathophysiological
mechanisms (Zhang et al., 2015). This digital innovation has
potential to promote the modernization of pathology workflow,
improve efficiency and consistency while maintaining diagnostic

and prognostic accuracy, and provide decision support for
clinicians (Niazi et al., 2019). Various types of quantitative image
features have been defined, such as the cell size, shape, spatial
distribution, and texture patterns (Tabesh et al., 2007). Based
on histopathological image features, machine learning models
have shown its utility in predicting tumor classification and
patient outcome, such as lung (Yu et al., 2016), breast (Turkki
et al., 2019), and prostate cancers (Lee et al., 2017). Furthermore,
previous study indicated that the prognostic performance of
histopathological image features was independent of other
clinical factors in LUAD, including age, gender, tumor stage, and
smoking status (Luo et al., 2017). Considering the properties
of tumor and its microenvironment are closely related to
molecular alterations, many researches have been conducted
on the genomics and histopathological features. For example,
promising result for the prediction of commonly mutated genes
in lung cancer from histopathological images was reported
(Coudray et al., 2018). Recent studies suggested that the
integration of histopathological images and genomics data
can enhance the ability to predict survival of cancer patients
compared with using only one type of data (Cheng et al., 2017;
Mobadersany et al., 2018; Zeng et al., 2020).

In this article, we designed an image processing pipeline
to automatically extract image features from digital
histopathological slides, and performed systematic analyses
to correlate the features from histopathological images and
omics profiles. Firstly, besides common mutations, we also
built machine learning classifiers to predict the transcriptional
subtypes of LUAD. In addition, we used histopathological
image features alone or integrated them with genomics,
transcriptomics and proteomics data to establish predictive
models, and evaluated their prognostic roles for patient survival
in independent datasets. We expected that the integrative models
would more reliably predict survival risk and contribute to the
personalized medicine of LUAD patients.

MATERIALS AND METHODS

Patient Cohorts
This study included two independent data sources. Firstly,
hematoxylin and eosin (H&E)-stained histopathological
images of 522 LUAD patients were obtained from The
Cancer Imaging Archive (TCIA),1 whereas the corresponding
genomics, transcriptomics, and proteomics information were
downloaded from The Cancer Genome Atlas (TCGA)2 and The
Cancer Proteome Atlas (TCPA) repositories.3 The inclusion
criteria were surgically resected LUAD patients with available
histopathological images, genomics, and transcriptomics
data, and 470 patients were finally included in this study. In
addition, tissue microarrays (TMAs) of 316 LUAD patients were
acquired from Shanghai Outdo Biotech Company (Shanghai,
China). The TMA-LUAD datasets contained four cohorts of

1http://www.cancerimagingarchive.net/
2https://portal.gdc.cancer.gov/
3http://tcpaportal.org/tcpa/
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patients (HLugA150Su01, n = 69; HLugA150Su02, n = 72;
HLugA180Su04, n = 86; HLugA180Su05, n = 89). All tumor
samples were collected by surgical resection. The pathologists
first labeled the representative areas in formalin-fixed and
paraffin-embedded tissues. The labeled tissues were arranged
on the blank paraffin-embedded blocks by semi-automated
tissue arrayer (TMArrayer), and the blocks were continuously
sliced into TMAs. Digital TMA images were scanned by Aperio
AT2 slide scanner. The utilization of TMAs was approved
by the National Human Genetic Resources Sharing Service
Platform (2005DKA21300), and informed consent was obtained
from all patients.

Image Segmentation and Feature
Extraction
The workflow of image processing and data integration was
outlined in Figure 1. Since the original histopathological
images (40× magnification) had extreme high resolution,
we first cropped whole-slide images into millions of sub-
images of 1,000 × 1,000 pixels through the Openslide-Python
(Goode et al., 2013), and 60 sub-images from each whole-slide
image for further analysis. The cell morphology of randomly
selected sub-images still had good consistency (Supplementary
Figure 1). Because the TMAs had much smaller size than
whole-slide images, we applied the same processing method
with adjusted size constraint to crop TMAs, and used all
sub-images for feature extraction. We next used CellProfiler
(McQuin et al., 2018) to separate the hematoxylin and eosin
stains of sub-images and corrected the illumination. Then,
CellProfiler automatically segmented the nuclei and cells through
“Identify Primary/Secondary Objects” modules, and extracted
specific image features from these cellular regions through
10 measurement modules, such as “Measure Object Size
Shape,” “Measure Correlation,” “Measure Object Neighbors,” and
“Measure Texture” modules. These image features quantified the
cell-level morphological characteristics, texture properties, and
the relationship between neighboring objects. A total of 536
histopathological image features listed in Supplementary Table 2
were included in this study.

Genetic Aberrations and Transcriptional
Subtype Prediction
The TCGA cohort was randomly assigned into training set
and test set in proportion of 1:1. In the training set, we
first used gradient boosting decision tree (GBDT) (Friedman,
2001), least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1997), random forest (RF) (Breiman, 2001), and
extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016)
to select relevant histopathological image features to reduce the
risk of over-fitting. We used GBDT, RF, or XGBoost to select
the top 15 features based on the ranking of importance. LASSO
automatically shrunk the regression coefficients of irrelevant
features to zero, and remained a variable number of features
with non-zero coefficients for building classifier. Next, RF, GBDT,
adaptive boosting (AdaBoost) (Collins et al., 2002), logistic
regression (LR) (Collins et al., 2002), naive Bayes (NB) (Rish,

2001), support vector machine (SVM) (Cortes and Vapnik, 1995),
decision tree (DT) (Safavian and Landgrebe, 1991), and K-nearest
neighbor (KNN) (Weinberger and Saul, 2009) were applied to
build models based on the selected features to predict genetic
aberrations (ALK, BRAF, EGFR, ROS1) and transcriptional
subtypes (PI, PP, TRU). We performed fivefold cross-validation
on the training set to determine optimal feature combination
and ensure the robustness of models. After feature selection and
model construction on the training set, the predictive power
of models was evaluated by the area under curve (AUC) of
receiver operating characteristic (ROC) curve on the test set.
True positive rate (TPR, sensitivity) refers to the proportion
of predicted positive samples in all true positive samples. False
positive rate (FPR, 1-specificity) is the proportion of samples that
are incorrectly predicted as positive in all true negative samples.

Prognostic Model Establishment and
Validation
1. Prognostic analysis of histopathological image features: By
the median value of each feature, patients of training set were
separated into high-value group and low-value group. Then, we
conducted Cox regression analysis to estimate the prognostic
effect of individual features on overall survival (OS), and
calculated the hazard ratio (HR) and 95% confidence interval
(CI). Kaplan-Meier survival curves and log-rank test estimated
the survival outcomes of two groups. Prognostic value was
significant if p < 0.05.

2. Data processing: Before modeling, we screened features of
genomics and transcriptomics to reduce data dimension, while
using all proteomics and histopathological image features. In
the training set, the top 100 somatic mutations were included.
To identity a limited subset of expressed genes from the whole
transcriptomics profile, we selected the 100 most differently
expressed genes (DEGs) between short-term (OS of 1–12 months
at death) and long-term (OS ≥ 60 months) patients of training
set in our models. DEGs between groups were identified by
R package “DESeq2.” Based on DEGs, we also analyzed the
enriched gene function by Gene Ontology (GO) enrichment
analysis on Metascape.4

3. Model development: We designed multiple data
integration to build prognostic models, including one
type of features (histopathological images, genomics,
transcriptomics, proteomics), combinations of two types
of features (histopathology + genomics, histopathology +
transcriptomics, histopathology + proteomics), and all features
(multi-omics). Input features were selected to establish models
for predicting prognosis in the training set through RF (R package
“randomForestSRC”) with fivefold cross-validation. Survival
risk for each patient was assessed by models, then patients were
divided into high-risk and low-risk groups according to the
median risk score. Time-dependent ROC curve, Kaplan-Meier
method, and log-rank test evaluated the predictive capability,
while decision curve analysis compared the clinical net benefit
of each model. We further estimated the performance of these
models in the test set. The model based on histopathological

4http://metascape.org
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FIGURE 1 | The flowchart of histopathological image processing and data integration. (1) Whole-slide images were cropped into sub-images of 1,000 × 1,000
pixels, and 60 sub-images were randomly selected. CellProfiler was used to identify the nuclei and cells, and extract histopathological image features. (2) Image
features and various machine learning algorithms were used to predict genetic aberrations and transcriptional subtypes in training and test sets. (3) Prognostic
models were established using image features alone or integration of image features, genomics, transcriptomics, and proteomics, and the prognostic value was
evaluated in test set or validation sets.

images was externally validated by the TMA-LUAD cohorts.
Statistical analyses were performed using R 3.6.1.

RESULTS

Prediction of Genetic Aberrations and
Transcriptional Subtypes
To assess whether machine learning can be trained to
predict genetic aberrations and transcriptional subtypes using
histopathological image features as input, we downloaded the
related data from TCGA. The TCGA-LUAD cohort was then
randomly divided into training set (n = 235) and test set (n = 235).

The baseline clinical and molecular characteristics were not
significantly different between the two sets (Table 1). To compare
the feasibility of various machine learning methods, we applied
four algorithms (GBDT, LASSO, RF, XGBoost) to select features
and eight algorithms (RF, GBDT, AdaBoost, LR, NB, SVM, DT,
KNN) to build models in the training set, which generated 32
combinations of two algorithms. The predictive performance of
these models was estimated in the test set.

The results showed that the predictive models constructed by
RF had the highest accuracy on the test set, regardless of the
type of feature selection algorithm employed (Figure 2A). The
models built only by RF were capable of predicting common gene
aberrations in LUAD: ALK (AUC = 0.879), BRAF (AUC = 0.847),

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2021 | Volume 9 | Article 720110

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-720110 October 5, 2021 Time: 17:38 # 5

Chen et al. Histopathological Images and Multi-Omics Integration

TABLE 1 | Patient characteristics of the TCGA cohort.

Characteristics TCGA-LUAD p

Training set (n = 235) Test set (n = 235)

Age: mean ± SD 65.1 ± 9.5 65.4 ± 10.5 0.740

Gender (%)

Male 114 (48.5) 106 (45.1)

Female 121 (51.5) 129 (54.9) 0.460

Tumor stage (%)

I 132 (56.2) 122 (51.9)

II 55 (23.4) 60 (25.5)

III 34 (14.5) 42 (17.9)

IV 13 (5.5) 10 (4.3)

NA 1 (0.4) 1 (0.4) 0.605

Smoking status (%)

Non-smoker 29 (12.3) 33 (14.0)

Current smoker 53 (22.6) 56 (23.9)

Former smoker 147 (63.6) 139 (59.1)

NA 6 (2.6) 7 (3.0) 0.755

Survival status (%)

Alive 141 (60.0) 160 (68.1)

Deceased 94 (40.0) 75 (31.9) 0.068

ALK translocation (%)

− 106 (45.1) 91 (38.7)

+ 18 (7.7) 13 (5.5)

NA 111 (47.2) 131 (55.7) 0.658

BRAF mutation (%)

− 219 (93.2) 225 (95.7)

+ 16 (6.8) 10 (4.3) 0.226

EGFR mutation (%)

− 210 (89.4) 200 (85.1)

+ 25 (10.6) 35 (14.9) 0.167

ROS1 translocation (%)

− 228 (97.0) 219 (93.2)

+ 7 (3.0) 16 (6.8) 0.054

Transcriptional subtype (%)

Proximal-inflammatory 32 (13.6) 39 (16.6)

Proximal-proliferative 25 (10.6) 32 (13.6)

Terminal respiratory unit 48 (20.4) 33 (14.0)

NA 130 (55.3) 131 (55.7) 0.115

EGFR (AUC = 0.855), ROS1 (AUC = 0.848), and transcriptional
subtypes: PI (AUC = 0.897), PP (AUC = 0.861), and TRU
(AUC = 0.894) (Supplementary Table 1). The combination
of XGBoost and RF, XGBoost and GBDT, and GBDT and
RF also performed well on the test set (Supplementary
Table 1). Our analyses suggested that the genetic aberrations
and transcriptional subtypes of LUAD could be predicted by
histopathological image features with machine learning.

Evaluation and Validation of Image
Features to Predict Survival
We assigned the training set into two groups by the
median value of each histopathological image feature,
and performed univariate Cox analysis to evaluate their

prognostic value of overall survival (OS) (Supplementary
Table 2). The results demonstrated that nine features
may be able to predict OS (Figure 2B). With most of
these features, the high-value group displayed a longer
survival in Kaplan-Meier survival curve (Supplementary
Figure 2), such as the four features with the lowest p-values:
StDev_Cells_Texture_Correlation_3_0 (HR=0.65, 95% CI:
0.48–0.88, p=0.006), Granularity_16 (HR=0.66, 95% CI: 0.48–
0.89, p=0.007), StDev_Cells_Granularity_16 (HR=0.69, 95% CI:
0.50–0.94, p=0.017), and Median_Cells_AreaShape_Zernike_8_2
(HR=0.70, 95% CI: 0.52–0.96, p=0.024).

To improve survival prediction with histopathological
image features, we adopted random forest algorithm to select
informative features from all image features and build prognostic
model in the training set. We assessed the time-dependent
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FIGURE 2 | Predictive performance of histopathological image features. (A) Four algorithms (GBDT, LASSO, RF, XGBoost) were utilized to select image features, and
eight algorithms (RF, GBDT, AdaBoost, LR, DT, SVM, NB, KNN) were used for modeling in training set. The ability of models to predict genetic aberrations and
transcriptional subtypes was assessed in test set. (B) Histopathological image features (HIF) with significant prognostic value (p < 0.05) in univariate Cox analysis.

ROC curves of the model in the test set (Figure 3B), which
achieved good performance in predicting 1-year (AUC = 0.711),
3-year (AUC = 0.797), and 5-year OS (AUC = 0.825). Survival
risk score calculated from the model divided patients into
high-risk group (greater than median) and low-risk group
(less than median). Compared with the individual features
(Supplementary Figure 2), our model could better distinguish
high-risk group from low-risk group in the test set (Figure 3C).
High-risk patients had significant association with worse survival
(HR = 4.94, 95% CI: 3.26–6.59, p < 0.0001).

In addition, the prognostic model based on image features
was externally validated with the TMA-LUAD cohorts (Table 2).
The AUC of predicting 5-year OS was 0.723 in validation set 1,
0.728 in validation set 2, 0.717 in validation set 3, and 0.743 in
validation set 4 (Figures 4A–D). Although higher risk score was
expected to be related to worse survival, this association was not
strong in validation set 1 (p = 0.077; Figure 4E). However, there
were significant survival differences in validation set 2 (HR = 1.64,
95% CI: 1.01–2.66, p = 0.044), validation set 3 (HR = 1.97,
95% CI: 1.11–3.52, p = 0.021), and validation set 4 (HR = 2.20,
95% CI: 1.17–3.08, p = 0.010; Figures 4F–H). Supplementary
Figure 3 presented several examples of histopathological images
of high-risk and low-risk groups in the TCGA and TMA cohorts.
In the TMA validation sets, patients with the same histological
grade had different survival results. The subtle morphological
differences between tumor cells of the same grade were not
easily distinguished by visual evaluation, but could be quantified
through cell segmentation and feature extraction on images.
These results indicated the feasibility of histopathological image
features for survival prediction in LUAD patients.

Integration of Image Features and
Genomics for Survival Prediction
Genetic aberrations especially driver oncogenes were closely
related to the genesis and development of tumors. Here, we
estimated the prognostic role of genomics data, and attempted
to integrate image features with genomics to enhance survival
prediction. We selected 100 genes with the highest mutation
frequency in the training set for modeling (Supplementary
Table 3 and Figure 3A). The process of data analysis and
random forest method were the same as above. As shown
in Figure 3B, the prognostic model of histopathological
image features (HIF) performed better than the genomics
model (G) on the test set. Integration of image features
and genomics (HIF + G) greatly improved the AUCs of 1-
year (0.795 vs. 0.637), 3-year (0.812 vs. 0.715), and 5-year
OS (0.832 vs. 0.745) compared to genomics alone, indicating
the complementary value of image features in prognostic
models. According to the risk score of each model, we further
stratified the test set into high-risk and low-risk sub-sets, and
found that the integrative model had significant predictive
ability for OS (HR = 6.14, 95% CI: 3.59–7.36, p < 0.0001;
Figure 3C).

Integration of Image Features and
Transcriptomics for Survival Prediction
Besides genomics analysis, the transcriptomics profile has
become increasingly important for understanding the
tumor molecular characteristics. Therefore, we combined
histopathological image features and mRNA transcription
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FIGURE 3 | Prognostic models based on histopathological image features (HIF) and genomics (G). (A) The 15 most common somatic mutations in training set.
(B) Predictive power of HIF model, genomics model, and HIF+G model for 1-, 3-, and 5-year survival in test set. (C) Kaplan-Meier survival curves of high-risk and
low-risk groups of test set predicted by the three models.

data to more accurately predict prognosis of LUAD patients.
We analyzed the differently expressed genes (DEGs) between
short-term (OS of 1–12 months at death, n = 24) and long-term
(OS ≥ 60 months, n = 29) patients of training set. GO enrichment
analysis was next conducted to show the regulatory functions
of DEGs. The GO enrichment terms were most abundant in
cell differentiation, such as the differentiation of epithelial
cells, cardiac progenitors, and neurons. These genes were also
associated with functions of thrombosis, anticoagulation, and
blood circulation (Figure 5A).

Next, the top 100 DEGs were involved in the modeling process
(Supplementary Table 4). In the test set, the transcriptomics
model (RNA) reached higher prognostic accuracy of 1-year OS
(AUC = 0.801), but lower accuracy of 3-year (AUC = 0.792),
and 5-year OS (AUC = 0.786) than the histopathological image
feature (HIF) model (Figure 5B). The integrative model of image
features and transcriptomics (HIF + RNA) achieved superior
prediction results (1-year AUC = 0.819, 3-year AUC = 0.837, 5-
year AUC = 0.840) than the other two models. Based on the HIF
+ RNA model, there was remarkable difference in OS between
high-risk and low-risk patients of the test set (HR = 7.34, 95% CI:
4.34–9.24, p < 0.0001; Figure 5C).

Integration of Image Features and
Proteomics for Survival Prediction
The proteomics characteristics can reflect the properties and
mechanisms of tumor, and offer an opportunity for better
prognosis prediction. Therefore, the expression levels of
218 proteins were used to establish the prognostic models
(Supplementary Table 5). The proteomics model (P) performed
comparably to the histopathological image feature model (HIF)
in predicting survival of test set patients (Figures 6A–C). In
addition, improved predictive performance was observed when
the model was built by combining image features and proteomics
data (HIF+P), which obtained AUC of 0.825, 0.845, and 0.850
for 1-, 3-, and 5-year OS, respectively. In the test set, the high-
risk and low-risk patients predicted by these models displayed
different survival outcomes (Figure 6D), especially the HIF + P
model (HR = 10.99, 95% CI: 7.75–18.57, p < 0.0001).

Integration of Image Features and
Multiple Omics for Survival Prediction
The above results demonstrated that the combination of
histopathological image features and single omics (genomics,
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TABLE 2 | Patient characteristics of the TMA cohorts.

Characteristics TMA-LUAD

Validation set 1 Validation set 2 Validation set 3 Validation set 4

No. of patients 69 72 86 89

Microarray number HLugA150Su01 HLugA150Su02 HLugA180Su04 HLugA180Su05

Surgery time 2004.7–2007.8 2007.9–2009.6 2008.1–2013.7 2004.7–2009.6

Last follow-up 2012.7 2012.7 2016.6 2014.8

Age: mean ± SD 58.6 ± 12.2 59.7 ± 10.7 62.8 ± 10.0 62.5 ± 9.9

Gender (%)

Male 35 (50.7) 39 (54.2) 47 (54.7) 48 (53.9)

Female 34 (49.3) 33 (45.8) 39 (45.3) 41 (46.1)

Tumor stage (%)

I 30 (43.5) 23 (31.9) 23 (26.7) 27 (30.3)

II 10 (14.5) 14 (19.4) 14 (16.3) 16 (18.0)

III 16 (23.2) 18 (25.0) 18 (20.9) 28 (31.5)

IV 3 (4.3) 0 (0.0) 2 (2.3) 1 (1.1)

NA 10 (14.5) 17 (23.6) 29 (33.7) 17 (19.1)

Histological grade (%)

G1 10 (14.5) 6 (8.3) 0 (0.0) 3 (3.4)

G1-2 3 (4.3) 5 (6.9) 9 (10.5) 4 (4.5)

G2 37 (53.6) 45 (62.5) 48 (55.8) 55 (61.8)

G2-3 9 (13.0) 3 (4.2) 23 (26.7) 16 (18.0)

G3 10 (14.5) 13 (18.1) 6 (7.0) 11 (12.4)

Survival status (%)

Alive 34 (49.3) 49 (68.1) 38 (44.2) 21 (23.6)

Deceased 35 (50.7) 23 (31.9) 48 (55.8) 68 (76.4)

transcriptomics, proteomics) provided a greater power to predict
survival of LUAD patients. Accordingly, we investigated whether
incorporating all omics and histopathological image features
would cause further optimization. In the test set, the multi-
omics model further enhanced 1-year AUC to 0.899, 3-year
AUC to 0.938, and 5-year AUC to 0.908 for predicting OS
(Figure 6E). Kaplan-Meier curves and Cox regression analysis
showed that the predicted high-risk group of test set was
remarkably related to worse prognosis (HR = 19.98, 95% CI:
13.96–26.81, p < 0.0001, Figure 6F). We also performed decision
curve analysis of models on the test set, and the multi-omics
model obtained higher net benefit than other models in clinical
decision-making (Figure 6G).

DISCUSSION

Considering the importance of histopathological images in
cancer prognosis, we proposed an image processing and
data analysis workflow to extract quantitative features from
histopathological images, and to develop predictive models
for molecular characteristics and survival outcomes of LUAD
patients using histopathological image features and machine
learning methods. Moreover, we integrated image features
and multiple omics information (i.e., somatic mutation, gene
transcription, and protein expression) for survival prediction.
From test analyses, the results showed that image features
had significant value in predicting the genetic aberrations and

transcriptional subtypes of LUAD. Survival prediction based
on the integrative models became more precise than using
image features or omics data alone, which indicated that image
features and omics data may be complementary in prognosis
prediction. The integrative models might better stratify high-
risk and low-risk patients, which was beneficial for the treatment
of LUAD patients.

The potential differences of molecular expression in tumors
tend to present as the alterations of tissue structure and nuclear
morphology (Madabhushi and Lee, 2016; Ni et al., 2021).
Previously, it has been found that STK11, EGFR, FAT1, SETBP1,
KRAS, and TP53 mutations of LUAD could be predicted from
histopathological images using deep learning (AUCs ranged from
0.733 to 0.856) (Coudray et al., 2018). Afterward, several studies
also suggested that histopathological image analysis could detect
the gene mutation status in liver, colorectal, and ovarian cancers
(Chen et al., 2020; Jang et al., 2020; Zeng et al., 2021). In this
study, although we also focused on the mutation prediction, we
conducted multiple combinations of machine learning methods,
and the random forest models had high prediction accuracy for
ALK (AUC = 0.879), BRAF (AUC = 0.847), EGFR (AUC = 0.855),
and ROS1 (AUC = 0.848) aberrations. In our previous radiomics
study of lung cancer, random forest also had good classification
accuracy for primary and metastatic lung lesions (Zhou et al.,
2021). Meanwhile, the models were trained to predict the
transcriptional subtypes of LUAD for the first time, with AUCs
from 0.861 to 0.897. The PP subtype had more KRAS-mutated
and STK11-inactivated tumors. The PI subtype was enriched
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FIGURE 4 | Validation of histopathological image features for survival prediction. (A–D) The 1-, 3-, and 5-year time-dependent ROC curves of the model built by
histopathological image features in four validation sets. (E–H) Kaplan-Meier survival curves of validation sets analyzed with the image feature model.

for solid histopathology, and co-mutation of NF1 and TP53.
Finally, the TRU subtype was characterized by EGFR mutation,
kinase fusion expression, and better prognosis (Cancer Genome
Atlas Research Network, 2014). Our finding indicated that gene
mutation and expression may affect the patterns of tumor cells
on histopathological images. Histopathological image features
could be applied as a convenient and cost-effective approach to
predict these important genetic aberrations and transcriptional
subtypes in LUAD.

We evaluated the prognostic value of histopathological
image features identified by computational recognition modules,
including anatomical characteristics (e.g., area and shape) and
patterns (e.g., correlation and neighborship) of tumor cells.

The Zernike shape features might predict survival outcomes in
LUAD, which was consistent with previous studies (Yu et al.,
2016; Luo et al., 2017). Texture features may also be related
to prognosis, such as correlation, granularity, and sum entropy.
However, the prognostic power of individual image features was
limited and controversial; thus, we combined image features
by random forest method to provide better survival prediction.
Compared to the previous researches using publicly available
datasets in lung cancer (Yu et al., 2016; Luo et al., 2017;
Wang et al., 2018), we extended the verification of prognostic
model with four TMA validation sets, besides the internal test
set. Our model successfully predicted survival results in three
validation sets, which proved that the random forest model had
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FIGURE 5 | Prognostic models based on histopathological image features (HIF) and transcriptomics (RNA). (A) Gene Ontology enrichment network of differently
expressed genes. The most enriched term was used to describe each cluster (see legends). (B) Area under the time-dependent ROC curves of HIF model,
transcriptomics model, and HIF + RNA model in test set. (C) Kaplan-Meier survival curves of the three models in test set.

certain robustness and generalizability across external cohorts.
The prognostic ability of model was weak in validation set
1, possibly because of the heterogeneity of patients collected
from different institutions. Moreover, some confounding factors
that potentially affect prognosis were unknown in TMA
datasets, such as smoking history, complication, and adjuvant
therapy. It also suggested that our model still needed to be
improved. Further training on large samples was required
to adapt to the heterogeneous histopathological images of
different populations.

Since the tumor progression is the result of complex biological
processes, multiple molecular levels of data can describe more
characteristics of tumors, which may contribute to the prognosis
evaluation and therapeutic intervention (Gallo Cantafio et al.,
2018). Several studies have combined histopathological image
features with gene transcription data to improve survival
prediction in LUAD (Zhu et al., 2016; Yu et al., 2017). The
difference was that our study also involved the analysis of
somatic mutation and protein expression of LUAD. Moreover,
the time-dependent ROC curve was used to calculate dynamic
AUC value of whole survival time (Kamarudin et al., 2017),

rather than simply dividing the patients into short-term or
long-term survivors. We founded that the proteomics model
had higher accuracy than the models based on gene mutation
or transcription, possibly because proteins were the functional
executors of the cells. Proteomic analysis also showed the
prognostic significance of expressed proteins and proteomics
clustering in LUAD (Xu et al., 2020). Afterward, we developed
and verified the prognostic models based on diverse feature
integration of genomics, transcriptomics, proteomics, and
histopathological images. The prognostic performance of the
models using image features and single omics outperformed
than the models using only one type of data. The model
integrating multi-omics with image features achieved the best
performance, which may contribute significantly to personalized
risk stratification for LUAD patients.

There were some limitations in this study. Firstly, for genetic
aberrations and subtype prediction, the small number of positive
cases limited the accuracy; thus, it was necessary to expand the
study sample in the future. Secondly, although we validated the
prognostic model by four TMA validation sets, these validation
sets were less diverse due to the TMAs processed by the same
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FIGURE 6 | Prognostic models based on histopathological image features (HIF), proteomics (P), and multi-omics. (A–C,E) Predictive performance of HIF model,
proteomics model, HIF + P model, and multi-omics model in test set. (D,F) Kaplan-Meier survival curves of high-risk and low-risk patients in test set based on these
models. (G) Decision curve analysis. The horizontal black line was net benefit of treating no patient, and oblique green line was net benefit of treating all patients. The
net benefit of treating patients according to the multi-omics model was highest when threshold probability was greater than 10%.

institution. The cases from TCGA and TMA datasets may
exist potential biases, because representative images were more
likely to be chosen. Therefore, the application of the prognostic
model in actual clinical practice needed further investigation.
In addition, the retrospective TMA datasets lacked genetic data;
thus, the efficacy and generalizability of integrative prognostic
models remained to be validated. Furthermore, the threshold of
risk score was simply based on the median value, and the large-
scale research would more rigorously determine the threshold to
optimize patient stratification.

CONCLUSION

In conclusion, our findings demonstrated that the machine
learning models based on histopathological image features had
great potential to predict genetic aberrations, transcriptional
subtypes, and survival outcomes in patients with LUAD. In
addition, the workflow of integrating histopathological image
features, genomics, transcriptomics, and proteomics to develop
models may improve survival prediction and benefit the precision
medicine of LUAD patients.
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