
SPECIALTY GRAND CHALLENGE
published: 13 October 2021

doi: 10.3389/fcell.2021.720494

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2021 | Volume 9 | Article 720494

Approved by:

Shamik Sen,

Indian Institute of Technology

Bombay, India

*Correspondence:

Claudia Tanja Mierke

claudia.mierke@uni-leipzig.de

Specialty section:

This article was submitted to

Cell Adhesion and Migration,

a section of the journal

Frontiers in Cell and Developmental

Biology

Received: 04 June 2021

Accepted: 20 September 2021

Published: 13 October 2021

Citation:

Mierke CT (2021) The Pertinent Role

of Cell and Matrix Mechanics in Cell

Adhesion and Migration.

Front. Cell Dev. Biol. 9:720494.

doi: 10.3389/fcell.2021.720494

The Pertinent Role of Cell and Matrix
Mechanics in Cell Adhesion and
Migration
Claudia Tanja Mierke*

Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of

Leipzig, Leipzig, Germany

Keywords: cell and matrix mechanics, constraints, extracellular matrix, alignment, viscoelasticity, stiffness,

endothelium, immune cells

INTRODUCTION

The processes of cell adhesion and migration fulfill crucial tasks during physiological
developmental processes, immune responses, angiogenesis, or tissue injury and pathological
diseased states including the cancer, cancer angiogenesis and its malignant progression, referred
to as metastasis. Thereby, the cells undergo tremendous alterations that obviously lead to
pronounced morphological alterations that are closely coupled to intracellular structural changes
and mechanical perturbations (Humphrey et al., 2002; Guck et al., 2005; Mierke et al., 2008a,
2011; Kumar and Weaver, 2009; Menon and Beningo, 2011; Lekka et al., 2012; Humphries et al.,
2019; Mierke, 2019a). These alterations occur on different cellular length scales, such as bulk
alterations, compartmental alterations, structural compositional changes, molecular alterations
down to gene expression regulatory events. All of these types of changes cannot be treated as
purely separate events that can be fully deciphered in an independent manner. Hence, the specific
microenvironmental constraints play a prominent role in unraveling the impact of the intricate
interplay. Due to the vastly high number of molecules that function in cell adhesion under
physiological and pathological processes, the agglomeration of proteins within focal adhesion
has been termed cancer cellular adhesome to discriminate them from randomly distributed
surrounding proteins (Maziveyi and Alahari, 2017). The contributing proteins of the adhesome
can be divided into four different branches of the basic adhesion system which includes the Talin-
Vinculin (Mierke et al., 2008a, 2010; Golji et al., 2011; Wang et al., 2019; Boujemaa-Paterski
et al., 2020), FAK-Paxillin (Hu et al., 2015; Mierke et al., 2017; Ripamonti et al., 2021), α-Actinin-
Zyxin-VASP (Oldenburg et al., 2015), and ILK-PINCH-Kindlin biochemical signal transduction
pathways (Honda et al., 2013; Horton et al., 2015; Kunschmann et al., 2017). All of them represent
critical pathways or mechanosensory systems to respond to changes in the mechanical homoestatic
stage of cells. There are also additional organizational structures such as protrusions, podosomes,
invadosomes, and similar structures for the motile function or migratory capacity of cells. When
these structures, such as invadopodia are altered, the process of cancer metastasis can be impaired,
such as for melanoma cells (Karamanou et al., 2021). Cancer cells act in various types of directional
cell migration compromising chemotaxis (chemoattractant gradient), haptotaxis (environmental
gradient), electrotaxis (ionic flux), galvanotaxis (electrical attractant), pilotaxis, and durotaxis
(rigidity attractant) (Roussos et al., 2011; Allen et al., 2013; Mierke, 2021). Recognition of the
microenvironment by cancer cells allows them to translate diverse signaling conveyed through focal
adhesions. The stiffness produced by the extracellular matrix initiates and synergizes with the cell-
matrix forces imposed by the cells (Krieg et al., 2008). Cells are able to capture multiple properties
of the extracellular matrix in terms of stiffness and analysis of anisotropy (Geiger et al., 2009).
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NEW FRONTIERS IN THE FIELD OF CELL
ADHESION AND MIGRATION

In the field of cell adhesion and migration, the impact of
the extracellular matrix structure on the motility of single or
grouped cells has been investigated quite well-during the last
decade. However, the mechanical cues of the microenvironment
on the adhesive, migratory, and functional tasks of cells or
tissues has not yet been addressed on a broad scale (Mierke,
2020). Instead, it has been largely explored how alterations
in cellular metabolism influence cell adhesion and migration.
Recently, it has been stated that cellular metabolism and matrix
mechanics are coupled (Levental et al., 2009; Tilghman et al.,
2012; Chaudhuri et al., 2014; Ge et al., 2021). Moreover, it needs
to be revealed whether there exist even similarities between
the migration and invasion of individual or grouped cells in
terms of the impact of mechanical characteristics. It has turned
out that the cell mechanical characteristics can either foster
or impair the adhesion and migration processes, what can be
considered as one of the biggest grand challenges in this field
(Bergert et al., 2012; Mierke, 2013; De Pascalis and Etienne-
Manneville, 2017). The same holds true for the matrix mechanics
or confinement on cell migration and invasion (Mierke et al.,
2011; Mierke, 2014; Winkler et al., 2020; Kiran et al., 2021).
In specific detail, the viscoelasticity has emerged as a key
characteristic feature of cellular behavior, overall cellular shape,
morphology and function of whole tissues (Clément et al.,
2017; Tan et al., 2018; Barriga and Mayor, 2019; Chaudhuri
et al., 2020). Thus, the field of cell adhesion and migration
needs to cover also cell mechanical aspects as well as matrix
mechanical aspects.

Besides the migration and invasion of individual cells,
the collective cell migration plays a prominent role in a
number of physiological processes, including wound healing and
embryogenesis, and in several pathological processes, such as
cancer metastasis. Although there is abundant experimental and
theoretical evidence (Haeger et al., 2014; Pajic-Lijakovic and
Milivojevic, 2019; Lohmann et al., 2020; Mitchel et al., 2020), the
unifying mechanism governing collective cell migration is not
best identified. However, there may also remain differences in
the collective motion of cells, such as the tricellular junctions,
which appear and mature at vertexes where three cells come
together. Moreover, they are an ideal place to guide and govern
the shape of cells and coordination of the multicellular migration
(Lohmann et al., 2020). However, their function in epithelial
tissue dynamic remains poorly defined. Most investigations have
examined engineered model wounds to analyze collective cell
migration in an epithelial solitary layer. These synthetic model
wounds have a high-density of cells relative to physiological
scenes such as a wound healing setting, where cell damage
occurred from applied incision, and cancer metastasis settings,
where smaller cell clusters are commonly involved. Based on
these findings, the two systems may not be fully related, and
further studies are necessary to better comprehend collective cell
migration patterns in physiological scenes, which turns out to be
a new frontier in cell migratory research. In specific, even the
expansion of tissues can be restricted by strong confinements

(Kiran et al., 2021). In addition, the migration of a collection
of cells needs to be subdivided in areas of high, intermediate
or low migration can be related to mechanical cues. Despite
confinement, collective cell migration is more efficacious than
individual cell migration by virtue of its intercellular forces (De
Pascalis and Etienne-Manneville, 2017).

Apart from the pure cell mechanics, the environment is a
prominent regulator of cell and tissue mechanics that needs to
be regarded as well (Pokki et al., 2021). Thereby the interaction
between cells can take place on different levels, such as the
macroscopic level, including the bulk cell and tissue mechanical
level, the mesoscopic level, encompassing structural alterations
of extracellular matrices through degradation (Kessenbrock
et al., 2010; Slattery et al., 2013; Grolman et al., 2020;
Winkler et al., 2020; Curtis et al., 2021) or cross-linking
processes (Levental et al., 2009) and the storage of growth
factors, cytokines, chemokines, cell adhesion receptor ligands
or enzyme-inhibiting molecules and the microscopic level,
including fiber mechanics and cross-linker protein mechanics.
On the microscopic scale, the organelles of cells, such as
the nucleus, nucleolus, mitochondria, endoplasmic reticulum,
Golgi apparatus and lysosomes have an additional effect on
cell adhesion and migration, since these compartments may
represent major steric obstacles for cell migration (Friedl et al.,
2011; Janel et al., 2019; Krause et al., 2019; Efremov et al., 2020;
Fischer et al., 2020; Zuela-Sopilniak et al., 2020), which can be
broken down by rupture or elevated by fusion among organelles,
such as mitochondria. The connection between cell, matrix and
tissue mechanics on different length scales and dynamically on
different time scales seems to be an additional new frontier in cell
adhesion and cell migratory research (Figure 1).

Besides cell mechanical cues, the release of exosomes,
microvesicles and apoptotic bodies from cancer cells can impact
their migratory and invasive capacity and phenotype, as they have
been shown to regulate cell adhesion and migration (Antonyak
et al., 2011; Yoon et al., 2014; Sedgwick et al., 2015; Ståhl
et al., 2019). Consequently, their effect on matrix mechanics,
and in turn on their own regulation by matrix mechanical cues,
appears to be evolving and forming a potential new frontier for
cell adhesion and migration. Delivery of specific substances to
recipient cells, such as matrix embedded cells or neighboring
cancer cell subpopulations, generally occurs through the uptake
of exosomes or microvesicles and may alter the mechanical and
structural phenotype of the target cell. Finally, the intercellular
communication has been altered as a result.

Apart from the mechanics of these extracellular elements,
matrix embedded living cells, such as stroma fibroblasts or vessel-
lining endothelial cells with or without pericytes can modify the
whole scene of cell adhesion and migration on all length scales
in terms of mechanical cues. In specific, these cells can alter their
own mechanical characteristics and functions to either indirectly
affect the adhesion and migration properties of targeted cells
through changes of the local microenvironment or directedly
release substances that then stimulate a structural or mechanical
response of these cells. The connection to other embedded cells
and their impact on cell mechanical properties represents another
new frontier in this field.
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FIGURE 1 | Existing interactions between cells or a collection of cells and the microenvironment during the adhesion and migration of cells. The current gaps

represent new frontiers for cell adhesion and migration research. There is a mutual interplay between cells and their surroundings that takes place at vastly different

length scales and depends dynamically on time (different time scales).

It can be asserted that the interaction of various cell types
or the interference of cells with their close microenvironment
depends on the mechanical phenotype of each associated
element. Thus, the focus demands to be shifted toward the
mechanics of cells, nearby cells and extracellular matrix.
The investigation of the mechanical cues will encourage the
sharpening of the focus spot and provide a clear character.

INCLUSION OF IMMUNE CELLS AS
POTENTIALLY OCCASIONAL ADHERENT
CELLS

Apart from stroma cells, such as tissue fibroblasts, immune
cells can affect the mechanical properties of the extracellular
matrix microenvironment (Hynes and Naba, 2012; Cox et al.,
2013; Gonzalez et al., 2018; Pakshir et al., 2019; D’Urso and
Kurniawan, 2020) and other nearby cells, such as cancer cells
(Fiegl et al., 2006; Zhan et al., 2017; Zheng and Li, 2020).
Thus, these immune cell types, encompassing γδT-cells, B-
lymphocytes, tumor-associated macrophages, CD8+ and CD4+
lymphocytes, natural killer cells, dendritic cells, T-helper-1 (Th1)
cells, Th9 cells and M1 macrophages, T-regulatory (Treg) cells,
N1 and N2 neutrophils and cancer associated eosinophiles need
to be included in this scenario of cell adhesion and migration
(Stankovic et al., 2019; Grisaru-Tal et al., 2020). Thereby it
requires the discrimination between the various types of immune
cells and their individual impact on matrix and neighboring cell
mechanics. The interplay of these different subsets of immune
cells are crucial in challenging the overall mechanical phenotypes

of cells and tissues. Theremay also be raised the question whether
specific mechanical cues can induce an adherent state of distinct
immune cells on their way through tissue microenvironment.

NEW GOALS FOR CELL ADHESION AND
MIGRATION

Since the impact of embedded cells on 3D migration and
invasion, the role of the mechanical characteristics of cells and
their microenvironment including its bi-directional interplay
have been recognized, they all can be determined as new frontiers
that have been identified on individual and collective migration.
Consequently, the goals for future cell adhesion and migration
efforts are the knowledge of the role of embedded cells, such
as stroma cells and immune cells, the effect of mechanics on
cell adhesion and motility and its mutual interplay including
the release of exosomes and microvesicles. However, it is not
yet entirely obvious how viscoelasticity alters the functional
phenotype of cells, but it is definitely an encouraging new
frontier. In particular, the biophysical technologies are yet
to be improved and advanced. Hence, this specialty grand
challenge article focusses in the following section on some
crucial technologies employed to analyze the viscoelasticity
of cells and extracellular matrices. It also illustrates how the
cellular mechanophenotype is essential to identify, characterize,
and therapeutically treat a variety of diseases such as cancer,
tissue injury, acute or chronic inflammation, or fibrotic diseases.
Finally, a future perspective on the importance of viscoelasticity
of cells and matrices is presented.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 October 2021 | Volume 9 | Article 720494

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Mierke Role of Cell and Matrix Mechanics

DEVELOPMENT, ESTABLISHMENT, AND
ADVANCEMENT OF BIOPHYSICAL
TECHNIQUES

Firstly, there is still an urgent need for the development
of novel biophysical techniques and analytical procedures
to measure the mechanical properties of individual cells,
collection of cells and tissues. Thereby, statistical analyses
need to be involved due to the broad heterogeneity of cell
populations. Secondly, the further development of existing
biophysical techniques, such as super-resolution microscopy or
microrheological techniques or microfluidic approaches seems to
be highly promising in addressing the mechanical feature of cell
migration. Thirdly, the assessment of the microenvironmental
physical deformation of cells or collections of cells seems to be
key for revealing the interplay between specific cell types and
their extracellular matrix environment. Thereby, the dynamically
evolving matrix displacement, referred to as flow displacements
are highly required.

Super-resolution microscopy, a technique that relies on
single-molecule spatial information localization, comprises
photoactivation localization microscopy (PALM), stochastic
optical reconstruction microscopy (STORM), ground state
depletion microscopy followed by individual molecular return
(GSDIM) and universal point accumulation imaging in the
nanoscale topography (uPAINT) (Godin et al., 2014; Paszek et al.,
2014). iPALM represents a truly singular type of super-resolution
microscopy that couples PALM with concurrent multiphase
photon interferometry of single fluorescent molecules (Betzig
et al., 2006). This type of imaging technology can be applied
to visualize fluorescently labeled focal adhesion proteins with
three-dimensional nanoscale spatial resolution (Kanchanawong
et al., 2010). The improvement of these techniques can help to
address the intracellular organelle level including the fission and
fusion of organelles that can alter cell mechanical properties and
subsequently cell adhesion and migration behavior.

Microrheological approaches, such as Magnetic tweezers
(Kollmannsberger and Fabry, 2007; Sarkar and Rybenkov,
2016), Magnetic twisting cytometry, and Single article
tracking approaches are both still state-of-the-art biophysical
techniques that can be refined by including temperature issues
(Aermes et al., 2021), cytoskeletal coupling or membrane
receptor strengths to characterize the mechanophenotype
of cells.

When addressing the mechanical properties of cells without
the impact of cell adhesion, improved cell deformation/stretching

biophysical techniques can be used, compromising an optical cell
stretcher (Guck et al., 2005; Mierke et al., 2017, 2020; Mierke,
2019b) and microfluidics-based cell stretcher that represents a
channel confinement for directional flowing or migrating cells
(Huang et al., 2020; Yao et al., 2020).

Other even more famous biophysical techniques are atomic
force microscopy (AFM) (Fischer et al., 2020), Micropipettes or
Dual Micropipettes (González-Bermúdez et al., 2019), which the
latter to be employed for intercellular adhesion force analyses.
Last, but not least, the analysis of matrix displacement by cellular
forces, such as Flow displacement technique in 3D, and traction
force techniques in 2D, 2.5 D and 3D require to be further
developed and combined with biological techniques (Mierke
et al., 2008b; Legant et al., 2013; Cóndor et al., 2017; Hazlett
et al., 2020). These dimensions can be expanded to 4D by adding
time as fourth dimension. These forces may help to enlighten the
impact of internal mechanotransduction events on cell adhesion
and migration and vice versa the external mechanotransduction
through other neighboring cells.

FUTURE DIRECTIONS AND
CONCLUSIONS

There is no other way in the future then that of combined
cell biological and biophysical research in the broad field of
cell adhesion and migration. The coupling of cell adhesion
and migration to specific diseased states and non-equilibrium
states seems to be required and promising. The transition
of cellular states, such as individual cells from epithelial to
mesenchymal or intermediate states, or such of a collection of
cells from jamming to unjamming including intermediate states,
are crucial feature for understanding under which structural
or mechanical constraints cells or collections of cells start to
move. Thereby the formation of adhesomes compromising all
four branches plays a critical role and requires the connection
of cellular and developmental biophysics to systems biological
or genetic approaches. All the gained knowledge on the
impact of the 3D cellular microenvironment and in specific
the extracellular matrix scaffold can be employed to develop
beyond state-of-the art theranostic approaches and propose new
smart biomaterials.
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