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The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface
is widespread among eukaryotes. The GPI-anchor is covalently attached to the
C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of
the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting
as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites,
abundantly expressed GPI-anchored proteins are major virulence factors, which support
infection and survival within distinct host environments. While, for example, the variant
surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream
form of African trypanosomes, procyclin is the most abundant protein of the procyclic
form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi,
on the other hand, expresses a variety of GPI-anchored molecules on their cell surface,
such as mucins, that interact with their hosts. The latter is also true for Leishmania,
which use GPI anchors to display, amongst others, lipophosphoglycans on their surface.
Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has
been maintained throughout eukaryote evolution indicates its adaptive value. Here, we
explore and discuss GPI anchors as universal evolutionary building blocks that support
the great variety of surface molecules of trypanosomatids.

Keywords: cell surface proteome, evolution, GPI-anchor, Kinetoplastea, Trypanosoma, Leishmania

INTRODUCTION

Cell membranes are the interface between cells and their environment. Therefore, the architecture
of the cell membrane that is exposed to the environment defines how the cell interacts with external
influences. Membranes are covered with a plethora of different proteins that can be attached to the
lipid bilayer in different ways. While integral proteins are inserted into the membrane via intrinsic
hydrophobic regions and usually, but not always, span the entire membrane, peripheral proteins
are entirely exposed at the cytoplasmic or extracellular face of the plasma membrane, where they
are attached via weak interactions or a covalently bound lipid anchor, which integrates into one
leaflet of the lipid bilayer (Singer and Nicolson, 1972; Stillwell, 2016). Whereas integration into
the cytoplasmic side of the plasma membrane is mediated for instance by myristoyl, palmitoyl,
and prenyl groups, there is only one structure that attaches proteins to the outer leaflet of the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 November 2021 | Volume 9 | Article 720536

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.720536
http://creativecommons.org/licenses/by/4.0/
http://stroupe.net/
https://doi.org/10.3389/fcell.2021.720536
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.720536&domain=pdf&date_stamp=2021-11-01
https://www.frontiersin.org/articles/10.3389/fcell.2021.720536/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-720536 October 26, 2021 Time: 14:47 # 2

Borges et al. GPI-Anchored Molecules in Trypanosomatids

plasma membrane, which is the glycosylphosphatidylinositol
(GPI) anchor (Stillwell, 2016). This anchor is preassembled
and attached post-translationally to several hundred known
proteins and it is considered to be ubiquitous among eukaryotes
(Kinoshita, 2020; Liu and Fujita, 2020). GPI-anchored proteins
have diverse functions, including regulation of the complement
system and acting as receptors, antigens and enzymes (Paulick
and Bertozzi, 2008; Kinoshita, 2020). Hence, defects in the
biosynthesis of GPI-anchored proteins cause severe diseases
known as inherited GPI deficiencies (IGDs) (reviewed in
Bellai-Dussault et al., 2019).

Despite the essential roles of GPI-anchored proteins in both
mammals and yeast, these proteins constitute only a minor
proportion of the proteome of these organisms. In mammalian
cells, the total number of GPI-anchored proteins rarely exceeds
105 molecules (Ferguson et al., 1994). In contrast, the pathogens
Trypanosoma brucei, Trypanosoma cruzi and species of the
Leishmania genus are covered by a dense glycocalyx of GPI-
anchored molecules, which function as key virulence factors
(Ferguson et al., 2015). In the bloodstream of the vertebrate
host, the surface coat of T. brucei consists nearly entirely of
homodimeric variant surface glycoprotein (VSG) made up of an
impressive number of 107 monomers, which constitutes around
10% of the proteome and 90–95% of proteins found on the
cells surface, therefore highlighting the importance of this GPI-
anchored protein to the parasite (Cross, 1975; Jackson et al.,
1985; Bartossek et al., 2017). Furthermore, the great variety of
GPI-anchored molecules in T. cruzi and Leishmania spp. (El-
Sayed et al., 2005) and evidence for prevalence of GPI-anchored
surface molecules in other trypanosomatids suggests that GPIs
might be linked to the success of parasitism in this large family of
unicellular eukaryotes.

Trypanosomes and Leishmania spp. are causative agents of
neglected tropical diseases (WHO, 2020) and are also found
in wildlife, where they infect a vast range of vertebrates and
invertebrates. For the genus Trypanosoma alone at least 500
species have been described that infect all classes of vertebrates
(Spodareva et al., 2018). The close interaction between human
populations and parasite reservoirs (Hamill et al., 2013; Jansen
et al., 2018; Medkour et al., 2019, 2020), along with the disruption
of the ecological equilibrium, can cause the spread of the
previously confined wildlife parasites to humans (Thompson,
2013; Cable et al., 2017). This, for example, is considered
to be the starting point for human trypanosomiasis in the
Americas (reviewed in Jansen et al., 2020). Thus, infections
by trypanosomatids are a prime example of the One Health
concept (Gruetzmacher et al., 2021), which recognizes the impact
of the interaction of all living organisms and the surrounding
environment on human health.

This review aims to highlight the importance of GPI
anchored molecules, which form the interface between the
trypanosomatids and their environment, as an essential factor
for their evolutionary success. For this purpose, we first describe
the biochemistry of GPI synthesis in T. brucei in comparison
to that in mammalian and yeast cells. Then we consider the
relationship/interaction of the GPI-anchored molecules found
in the human pathogens T. brucei, T. cruzi, and Leishmania

spp. with their distinct host microenvironments. Finally, we
summarize the current knowledge of GPI-anchored molecules in
other species of Trypanosoma.

GPI ANCHORS

Glycosylphosphatidylinositol-anchored proteins were discovered
in mammalian cells in the late 1970s, as a result of their
hydrolytic release mediated by phospholipase (PLC) (Ikezawa
et al., 1976; Low and Finean, 1977). The release of proteins
without cell lysis led to the suggestion that these molecules
were covalently attached to the outer leaflet of the lipid bilayer
via a phosphatidylinositol molecule. In 1985, the chemical
compositions of two GPI anchors were published; one, that of
the VSG found in T. brucei, the other, that of Thy-1 found in rat
brains (Ferguson et al., 1985; Tse et al., 1985). The first structural
details of these GPI-anchors followed in 1988, when the complete
structures were determined using a combination of different
methods, including NMR spectroscopy and mass spectrometry
(Ferguson et al., 1988; Homans et al., 1988).

The Composition and Structure of GPI
Anchors
Glycosylphosphatidylinositol anchors consist of a glycan
and a lipid part. With the single exception of Entamoeba
proteophosphoglycan (Moody-Haupt et al., 2000), all known
protein-linked GPI anchors possess the same conserved core
glycan structure composed of mannose(α1-2)mannose(α1-
6)mannose(α1-4)glucosamine(α1-6)myo-inositol (Figure 1A).
The core glycan can be modified by side chains, with the nature
of these modifications varying between species and even within
different life cycle stages of the same organism (Ferguson et al.,
2015). Further, the extent of some of these modifications can also
be protein specific (Ferguson et al., 2015). Typical modifications
are mannose, galactose, and phosphoethanolamine residues
as well as sialic acids. Figure 1B summarizes the GPI anchor
modifications of prominent surface molecules of mammals
and human infective trypanosomatids. For example, T. brucei
adds different amounts of galactose side chains to nearly all
GPI anchors of VSGs (Zamze et al., 1991), whereas branched
poly-N-acetyllactosamine (poly-NAL) repeats capped by sialic
acid residues are added to the anchor of procyclins, which form
the major surface coat in a different life cycle stage (Engstler
et al., 1993; Ferguson et al., 1993; Treumann et al., 1997; Mehlert
et al., 1998). In T. cruzi, the attachment of aminoethylphosphonic
acid to the core glucosamine represents a modification that is
exclusive to this species (Macrae et al., 2005; Paulick and Bertozzi,
2008). Furthermore, a fourth mannose is found in all T. cruzi GPI
anchors (Heise et al., 1996; Ferguson et al., 2015), a feature also
present in the anchors of yeast and some mammalian proteins
(Paulick and Bertozzi, 2008; Ferguson et al., 2015). The purpose
of these modifications remains to be elucidated. In contrast,
Leishmania species entirely lack side chain modifications of the
GPI anchor (Ferguson et al., 2015).

The GPI anchor is generally linked to the protein through a
peptide bond between the amino group of phosphoethanolamine
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FIGURE 1 | General structure of the GPI anchor and their side chain modifications. (A) Structure of the conserved glycan core with the different side chain
modifications. The respective positions of the modifications are indicated by Rx. (B) Comparison of different side chain modifications (Rx) and lipid moieties for
selected GPI anchored proteins in mammals, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The positions of R1-7 and the lipids in the GPI anchor are
indicated in panel (A). The nature and position of linkage of an additional hexose (*) at the first mannose of the GPI anchor of T. cruzi mucins is not yet known
(Serrano et al., 1995). This figure was modified from Figure 1 of a review by Fujita and Kinoshita (2010).

(EtN-P) and the C-terminal carboxyl group of the polypeptide
(Ferguson et al., 1988). However, an alternative attachment
via aminoethyl phosphonate (AEP) instead of EtN-P has been
identified for proteins in T. cruzi (Heise et al., 1996).

At the opposite end of the GPI anchor, a phospholipid
mediates attachment to the cell membrane by insertion of
its tail into the membrane’s outer leaflet. The composition of
this tail depends on the species of origin and varies between
diacylglycerols, lyso-acylglycerols, alkylacylglycerols or ceramides
(McConville and Ferguson, 1993). In addition, the lipids vary in
length, ranging from 14 to 26 carbons, and can be either saturated
or unsaturated (Ferguson et al., 2015). In some cases an additional
fatty acid may be attached to the 2-hydroxyl of the inositol
residue, which is known as inositol acylation (Ferguson et al.,
2015). This modification can be found in several mammalian
GPI anchors and it is also present in some GPI anchors of
trypanosomatids (Figure 1) (Ferguson et al., 2015). Interestingly,
GPI anchors containing an inositol acylation are resistant to PLC
cleavage (Roberts et al., 1988).

Glycosylphosphatidylinositol-anchoring is not restricted
to proteins, underlining the versatility of this mode of
attachment. Non-protein linked GPI molecules include
glycoinositolphospholipids (GIPLs) and lipophosphoglycans
(LPGs), with anchors that are either identical to those of
protein-linked GPIs or contain compositional and structural
modifications. For example, type-1 GIPLs contain the
Manα1-2Manα1-6Manα1-4GlcNα1-6PI sequence common
to the protein-linked GPIs whereas type-2 GIPLs contain a
Manα1-3Manα1-4GlcNα1-6PI motif and others possess hybrid
structures presenting the branched motif (Manα1-6)Manα1-
3Manα1-4GlcNα1-6PI (Figure 2) (McConville and Ferguson,
1993). While GIPLs in mammalian cells likely follow the
same structural remodeling pathway as protein-linked GPIs

(Wang et al., 2019), GIPLs in Leishmania and T. cruzi may share
a common precursor but most likely represent the product of
different biosynthetic pathways (Heise et al., 1996; Ralton and
McConville, 1998; Ilgoutz and McConville, 2001).

GPI Biosynthesis
Current understanding of GPI biosynthesis has been gained
mostly from studies on mammalian and yeast cells. This bias
can be explained by the traditional focus on opisthokont models.
Moreover, the mutations of GPI biosynthetic enzymes, used
to elucidate these biosynthetic pathways, are lethal in other
organisms, such as bloodstream form T. brucei (Nagamune et al.,
2000). Therefore, we first summarize the current knowledge of
GPI biosynthesis in mammals and then compare this mammalian
pathway to that found in trypanosomatids. As GPI assembly
in T. brucei is much better understood than in any other
trypanosomatid species, we will mainly focus on T. brucei and,
whenever possible, provide information available on T. cruzi and
Leishmania.

Glycosylphosphatidylinositol biosynthesis is a sequential
addition of sugars and ethanolamine to phosphatidylinositol (PI).
While the initial steps take place on the outer membrane of
the endoplasmic reticulum (ER), the final assembly is performed
on the luminal side of the ER (Kinoshita and Fujita, 2016;
Liu and Fujita, 2020). Once the GPI precursor has been
synthesized inside the ER, it is attached en bloc to a protein
in exchange for its GPI-signal sequence (Kinoshita and Fujita,
2016; Liu and Fujita, 2020). Following this, maturation of
the GPI anchor includes lipid remodeling reactions and side
chain glycosylation, which can occur at different time points
and either in the ER or the Golgi apparatus, depending on
the organisms (Ferguson, 1999; Fujita and Kinoshita, 2010;
Kinoshita and Fujita, 2016).
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FIGURE 2 | General structures of free GPIs (GIPLs) and LPGs. The dashed lines indicate smaller GIPL species in Leishmania (McConville and Ferguson, 1993). MX

indicates the number of mannoses and iM the unusual α1-3 binding of these mannoses. The number of phosphosaccharide repeats (n) of Leishmania LPGs is stage
and species specific (Forestier et al., 2014). (A) Trypanosoma cruzi Type-1 GIPL, (B) Leishmania Type-1 GIPLs, (C) Leishmania Type-2 GIPLs, (D) Leishmania hybrid
GIPLs, and (E) Leishmania LPGs.

In mammals, GPI biosynthesis starts on the cytoplasmic side
of the ER membrane with the transfer of N-acetylglucosamine
(GlcNAc) from uridine-diphosphate-N-acetylglucosamine to
PI, generating GlcNAc-PI (Figure 3A, step 1). This step is

catalyzed by the multi-subunit enzyme GPI-GlcNAc transferase
(PIG-A, PIG-C, PIG-H, PIG-P, PIG-Q, PIG-Y, and DPM2)
(Fujita and Kinoshita, 2010). Once GlcNAc-PI has been
formed, it is deacylated to glucosaminyl-PI (GlcN-PI) by
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FIGURE 3 | Glycosylphosphatidylinositol biosynthesis pathway up to the point of protein attachment. (A) Mammalian GPI biosynthesis steps at and within the
endoplasmic reticulum (ER). The reaction steps are numbered and are described in detail in the text: (1) transfer of N-acetylglucosamine (GlcNAc) to
phosphatidylinositol (PI), (2) deacylation of GlcNAc-PI, (3) flipping of GlcN-PI into the ER lumen, (4) inositol acylation, (5) lipid remodeling, visualized by the color
change from red to black, (6–7) addition of mannose, (8) addition of ethanolamine phosphate (EtN-P), (9) addition of mannose, (10) addition of EtN-P, (11) addition of
EtN-P, (12) attachment of the GPI anchor to the protein. The occasionally observed addition of a fourth mannose is not depicted. (B) GPI biosynthesis steps at and
within the ER in Trypanosoma brucei. The reaction steps are numbered and are described in detail in the text: (1) transfer of N-acetylglucosamine (GlcNAc) to
phosphatidylinositol (PI), (2) deacylation of GlcNAc-PI, (3) flipping of GlcN-PI into the ER lumen, (4–6) addition of mannose, (7) addition of EtN-P, (8) lipid remodeling,
(9) attachment of the GPI anchor to the protein. The broad solid arrows indicate reactions for which direct evidence exists. The dashed arrows indicate conversions
that may exist. The light solid arrows indicate reactions that are not frequently observed. The curved arrows indicate the flipping reaction into the ER lumen.

an N-deacetylase, PIG-L (Figure 3A, step 2) (Nakamura et al.,
1997; Watanabe et al., 1999). GlcN-PI is then flipped to the
luminal side of the ER, an energetically costly process (Pomorski
and Menon, 2006). Although flipping has been demonstrated
to be bidirectional and independent of ATP (Vishwakarma
and Menon, 2005) no GPI flippase has yet been identified.
The most promising candidate, ARV1, has been described
for Saccharomyces cerevisiae with evidence suggesting that
ARV1-linked human diseases result from defective GPI anchor
synthesis (Okai et al., 2020).

After flipping into the ER lumen (Figure 3A, step 3),
GlcN-PI is acylated by an acyltransferase, PIG-W, at the
2-hydroxyl residue of the inositol ring (Figure 3A, step
4) (Doerrler et al., 1996; Murakami et al., 2003). Subsequent
lipid remodeling reactions occur on GlcN-(acyl)-PI, leading
to the replacement of the diacyl PI moiety (displayed in

red in Figure 3A) with 1-alkyl-2-acyl-PI (visualized in black
in Figure 3A), with the mechanism and enzymes involved
remaining elusive (Figure 3A, step 5) (Kanzawa et al.,
2009). The following steps are the sequential transfer of
two mannose molecules from dolichol-phosphate-mannose to
GPI intermediates via different glycosidic linkages (DeGasperi
et al., 1990). The first mannose is transferred by GPI
mannosyltransferase I, PIG-M and PIG-X, to the 4-hydroxyl
residue of GlcN (Figure 3A, step 6) (Maeda et al., 2001; Ashida
et al., 2005), and the second mannose is transferred by GPI
mannosyltransferase II, PIG-V, to the 6-hydroxyl residue of
the first mannose (Figure 3A, step 7) (Kang et al., 2005).
Following the transfer of the second mannose, the first mannose
receives an EtN-P side chain modification, at the 2-hydroxyl
residue (Figure 3A, step 8). This step is catalyzed by GPI-EtN-
P transferase I, PIG-N (Hong et al., 1999). Following this, a
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third mannose is transferred by mannosyltransferase III, PIG-B,
to the 2-hydroxyl residue of the second mannose (Figure 3A,
step 9) (Takahashi et al., 1996). The third mannose is then
modified by GPI-EtN-P transferase III (PIG-O and PIG-F) which
transfers the “bridging” EtN-P that later connects the GPI anchor
to the protein (Figure 3A, step 10) (Inoue et al., 1993; Hong
et al., 2000). The resulting EtN-P-Man-Man-(EtN-P)Man-GlcN-
(acyl)PI, also known as H7, is now ready for protein attachment
(Hirose et al., 1992), though usually another EtN-P is attached
to the second mannose to generate EtN-P-Man-(EtN-P)Man-
(EtN-P)Man-GlcN-(acyl)PI, known as H8 (Hirose et al., 1992).
This reaction is mediated by GPI-EtN-P transferase II, PIG-G
and PIG-F (Figure 3A, step 11) (Shishioh et al., 2005). A fourth
mannose may be attached to the 2-hydroxyl residue of the third
mannose by mannosyltransferase IV, PIG-Z (not shown in Figure
3A) (Taron et al., 2004).

Attachment of the GPI anchor to a protein is mediated by
an enzyme complex termed GPI transamidase, which consists
of PIG-K, GPAA1, PIG-S, PIG-T and PIG-U (Figure 3A, step
12) (Hamburger et al., 1995; Yu et al., 1997; Ohishi et al.,
2000, 2001; Hong et al., 2003). The complex can recognize
and cleave the C-terminal GPI signal sequence of the protein
and replace it with the preassembled GPI anchor. Once the
GPI anchor has been attached to a protein, further lipid
and glycan remodeling reactions take place. Most of these
occur within the Golgi apparatus (reviewed in Kinoshita, 2020;
Liu and Fujita, 2020), but inositol deacylation (Liu et al.,
2018) and EtN-P removal (Fujita et al., 2009) are performed
in the ER lumen.

This completes the summary of events that lead to GPI-
anchoring of a protein in mammals. How does this process differ
in trypanosomatids?

In T. brucei, the first two steps (Figure 3B, steps 1–2) of
GPI biosynthesis are comparable with those in mammals. Several
homologs of the GPI-GlcNAc transferase subunits have been
reported, including TbGPI1, TbGPI2, TbGPI3, and TbGPI19
(Fujita and Kinoshita, 2010). The GlcNAc-PI de-N-acetylase
homolog in T. brucei is TbGPI12 (Chang et al., 2002). After
the precursor has been flipped to the luminal side of the ER
(Figure 3B, step 3), the pathways diverge. Inositol acylation
occurs only after the first mannosylation, indicating a different
substrate specificity for the mannosyltransferase I, TbGPI14, in
this parasite (Figure 3B, step 4) (Güther and Ferguson, 1995).
In addition, it has been shown that the inositol acyltransferase
requires a hydroxyl group at the fourth position on the first
mannose and a free amine on the glucosamine residue (Urbaniak
et al., 2008). The same requirement for mannosylation was also
reported for Leishmania (Smith et al., 1997).

The transfer of the second mannose is mediated by the
homolog of mannosyltransferase II, TbGPI18 (Figure 3B, step
5) (Fujita and Kinoshita, 2010), and TbGPI10, the homolog of
mannosyltransferase III, transfers the third mannose (Figure 3B,
step 6) (Nagamune et al., 2000). Among trypanosomatids,
the addition of a fourth mannose seems to be unique
to T. cruzi, but no homologs for a mannosyltransferase
IV have been identified so far. In T. brucei, several GPI
intermediates bearing one to three mannoses are in a dynamic

equilibrium between inositol acylated and non-acylated states
(Menon et al., 1990; Güther and Ferguson, 1995) (Figure 3B,
equilibrium arrows). The equilibrium is maintained by a
diisopropylfluorophosphate (DFP)-sensitive inositol deacylase
together with a phenylmethylsulfonyl fluoride (PMSF)-sensitive
inositol acyltransferase (Güther and Ferguson, 1995). Whether
such an equilibrium exists in Leishmania and T. cruzi is still
controversial (Heise et al., 1996; Ralton and McConville, 1998;
Hilley et al., 2000; Bertello et al., 2004).

Following the assembly of the mannoses, an EtN-P bridge is
added to the third mannose (Figure 3B, step 7). This reaction
might be mediated by TbGPI13, which has been suggested to be
an EtN-P transferase III homolog (Fujita and Kinoshita, 2010).
Inositol acylation of the Man3GlcN-PI intermediate has been
reported to enhance the efficiency of EtN-P addition (Güther and
Ferguson, 1995). Subsequently, fatty acid remodeling reactions
occur (Figure 3B, step 8) that can be described as sequential
deacylations and reacylations. In addition, inositol deacylation is
thought to be a prerequisite for complete fatty acid remodeling
(Güther and Ferguson, 1995). In the bloodstream form of
T. brucei the remodeling of the GPI anchor was studied for
its major surface protein, the VSG. It is initiated by removal
of the sn-2 fatty acid followed by acylation of myristate using
myristoyl-CoA as the donor (Masterson et al., 1990; Hong
and Kinoshita, 2009). The following steps of sn-1 deacylation
and a second myristate incorporation lead to the formation
of the mature GPI precursor (Masterson et al., 1990; Hong
and Kinoshita, 2009). So far, this exclusive use of myristate
has only been found in T. brucei (Ferguson et al., 1988).
TbGup1, was shown to mediate the myristate transfer steps
during the remodeling reactions (Jaquenoud et al., 2008).
The GPI anchor of procyclin, the abundant surface molecule
of T. brucei procyclic forms, retains the inositol acylation
throughout synthesis and in the mature form (Treumann et al.,
1997; Hong et al., 2006). Lipid remodeling has also been
reported for T. cruzi (Heise et al., 1996) and Leishmania (Ralton
and McConville, 1998). In T. cruzi, two different remodeling
reactions occur: conversion of glycerolipid to ceramide and fatty
acid remodeling (Heise et al., 1996; Bertello et al., 2004; De
Lederkremer et al., 2011). The metacyclic forms of T. cruzi
contain inositolphosphoceramide in the lipid part of their
GPI anchored glycoproteins, which represents a stage specific
modification (Serrano et al., 1995). Another organism that
utilizes inositolphosphoceramide rather than glycerolipids in
their GPI anchors is S. cerevisiae (Conzelmann et al., 1992). In
this organism, the ceramide conversion most likely takes place
after the GPI anchor is transferred to the protein (Sipos et al.,
1997). Both chronology and location of ceramide conversion in
T. cruzi remain unclear.

As in mammals, the preassembled GPI anchor is attached to
the protein by a GPI transamidase complex (Figure 3B, step
9). In T. brucei, this complex is formed by two trypanosome-
specific components, TAA1 and TAA2, plus three subunits
that have homologs in mammals and yeast, TbGAA1, TbGPI8,
and TbGPI16 (Nagamune et al., 2003). A direct comparison
of homologous key enzymes in selected organisms is provided
in Table 1.
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TABLE 1 | List of proteins involved in the GPI biosynthesis pathway.

Enzyme type Homo sapiens Saccharomyces cerevisiae Trypanosoma brucei Leishmania mexicana Trypanosoma cruzi

Name UniProtKB Name UniProtKB TriTrypDB e-value TriTrypDB e-value TriTrypDB e-value

GPI-GlcNAc
transferase

PIG-A P37287 GPI3 P32363 Tb927.2.1780 1E-150 LmxM.32.1670 2E-146 TcCLB.510259.18 3E-151

PIG-C Q92535 GPI2 P46961 Tb927.10.6140 1E-30 LmxM.36.1710 9E-30 TcCLB.507639.100 5E-38

PIG-H Q14442 GPI15 P53961

PIG-P P57054 GPI19 Q04082 Tb927.10.10110 4E-12 LmxM.36.4750 6E-11 TcCLB.508307.100 4E-12

PIG-Q Q9BRB3 GPI1 P53306 Tb927.3.4570 8E-13 LmxM.08_29.2030 3E-14 present in non-reference strains

PIG-Y Q3MUY2 ERI1 P62651

DPM2 O94777 Tb927.9.6440 1E-3 LmxM.15.0815 3E-6 TcCLB.506579.119 6E-4

TcCLB.510043.29 6E-4

GlcNAc-PI
de-N-acetylase

PIG-L Q9Y2B2 GPI12 P23797 Tb927.11.12080 3E-36 LmxM.09.0040 7E-37 TcCLB.504005.20 8E-33

Inositol
acyltransferase

PIG-W Q7Z7B1 GWT1 P47026

Mannosyl-
transferase I

PIG-M Q9H3S5 GPI14 P47088 Tb927.6.3300 3E-64 LmxM.29.2030 9E-62 TcCLB.503909.100 1E-64

PIG-X Q8TBF5 PBN1 P25580

Mannosyl-
transferase II

PIG-V Q9NUD9 GPI18 P38211 Tb927.10.13160 1E-9 LmxM.18.0960 3E-8 TcCLB.506359.30 2E-11

EtN-P transferase I PIG-N O95427 MCD4 P36051 Tb927.11.5070 1E-4 LmxM.24.0340 2.5E-2 TcCLB.507667.11 9.9E-2

Mannosyl-
transferase III

PIG-B Q92521 GPI10 P30777 Tb927.10.5560 5E-47 LmxM.36.1200 9E-25 TcCLB.503527.40 3E-43

EtN-P transferase III PIG-O Q8TEQ8 GPI13 Q07830 Tb927.11.5070 1E-44 LmxM.24.0340 4E-41 TcCLB.507667.11 6E-37

PIG-F Q07326 GPI11 Q06636

EtN-P transferase II PIG-G Q5H8A4 GPI7 P40367 Tb927.11.5070 4E-28 LmxM.24.0340 4E-33 TcCLB.507667.11 3E-28

PIG-F Q07326 GPI11 Q06636

Mannosyl-
transferase
IV

PIG-Z Q86VD9 SMP3 Q04174

Lyso-GPI
acyltransferase

PGAP2 Q9UHJ9 CWH43 P25618 LmxM.27.1770 1.7E-2 TcCLB.504153.120 2E-11

GUP1 P53154 Tb927.10.15910 2E-42 LmxM.19.1347 5E-50 TcCLB.511355.40 1E-51

GPI transamidase PIG-K Q92643 GPI8 P49018 Tb927.10.13860 8E-63 LmxM.18.0360 3E-57 present in non-reference strains

GAA1 O43292 GAA1 P39012 Tb927.10.210 7.4E-2

PIG-S Q96S52 GPI17 Q04080

PIG-T Q969N2 GPI16 P38875 *

PIG-U Q9H490 GAB1 P41733

Tb927.11.15760 LmxM.31.2560 TcCLB.511545.190

Tb927.10.5080 LmxM.36.0650 TcCLB.510293.79

All known proteins involved in the biosynthesis of mammalian (e.g., Homo sapiens) and yeast (Saccharomyces cerevisiae) GPIs were BLASTed for homology in
Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana. The BLAST was performed with the annotated protein sequences of H. sapiens acquired from
UniProtKB against all trypanosomatid protein sequences currently annotated in TriTrypDB. In the case of GUP1, which is not present in the mammalian biosynthesis
pathway, the protein sequence from Saccharomyces cerevisiae was used. All Gene-IDs and respective e-values given refer to the current reference strains. *Our BLAST
did not find a homolog for the GPI transamidase subunit PIG-T. However, a previous study found an ortholog of mammalian PIG-T and yeast GPI16 in T. brucei
(Nagamune et al., 2003).

Clearly, several steps involved in GPI biosynthesis are
common to mammals, yeast and trypanosomatids, though there
are also marked differences. These include the chronological
order of inositol acylation and lipid remodeling as well as
the details of further modifications in the Golgi apparatus.
In mammals and yeast, lipid remodeling occurs after inositol
acylation in the ER as well as in later steps in the Golgi
apparatus (reviewed in Kinoshita, 2020; Liu and Fujita, 2020). In
contrast, lipid remodeling in trypanosomatids has been reported
to take place on GPI precursors within the ER and, except

for ceramide remodeling in T. cruzi, occurs directly before
protein attachment (Masterson et al., 1990; Hong and Kinoshita,
2009; De Lederkremer et al., 2011). Interestingly, an alternative
myristoylation pathway, called lipid exchange, has been identified
exclusively in the bloodstream form of T. brucei (Buxbaum et al.,
1994, 1996). This pathway was reported to be mechanistically
similar to lipid remodeling but involves a distinct set of enzymes
and appears to operate in a post-ER secretory compartment,
possibly the Golgi (Paul et al., 2001). The authors suggested that
lipid exchange might be a proofreading mechanism to ensure
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that all lipids on the VSG anchor consist of myristate. This may
highlight once again the importance of this fatty acid for the
VSG GPI anchor. Although the GPI biosynthesis steps are well
studied, we pinpointed some questions that remain unanswered,
especially for trypanosomatids.

The Influence of the Biophysical
Properties of GPI Anchors on Their
Respective Proteins
The function of GPI anchors does not solely lie in connecting
proteins to the membrane. In fact, this anchor has been
implicated in increasing lateral mobility of proteins and in
targeting of proteins to special microdomains, named lipid rafts,
as well as being subject to cleavage mediated by activation of
specific GPI cleaving enzymes (GPIases), which leads to the
release of the surface protein.

Early studies using fluorescence recovery after photobleaching
(FRAP) on GPI-anchored proteins, such as Thy-1, placental
alkaline phosphatase and Ly6E, reported diffusion coefficients
comparable to those of membrane lipids and 2- to 5-times faster
than those of transmembrane proteins (Ishihara et al., 1987;
Zhang et al., 1991). In T. brucei, the lateral mobility of the VSG
was found to be comparable to the mobility of other membrane-
bound glycoproteins, but slower than that of phospholipids
(Bülow et al., 1988). However, FRAP measurements are limited
by poor spatial resolution, inherent averaging of the dynamics
of multiple individual molecules, and a possible convolution of
diffusion and protein interactions (Saha et al., 2016). To resolve
these inherent limitations of the FRAP technique, studies of
the dynamics of single molecules or small groups thereof have
been employed to gain a more accurate picture of the diffusion
process. Pioneering single particle tracking (SPT) studies on
GPI-anchored proteins, such as Thy-1 and NCAM-125, revealed
different diffusion modes for these molecules, as evidenced by
their individual trajectories (Sheets et al., 1995; Sheets et al., 1997).
In T. brucei, the trajectories revealed that single VSG molecules
diffused freely in artificial membranes, as well as on living cells
(Hartel et al., 2016). In addition, the authors were able to detect
a specific molecular crowding threshold that limits diffusion and
affects protein function. To the best of our knowledge, no data on
surface molecule mobility has been reported to date for T. cruzi
or Leishmania spp.

Although several different experiments have suggested that
GPI-anchored proteins diffuse freely as individual molecules
over large length scales, a dynamic partitioning into lipid rafts
has also been proposed (Simons and Ikonen, 1997; Kenworthy
et al., 2004; Komura et al., 2016; Kinoshita et al., 2017).
Lipid rafts are microdomains enriched with sphingolipids and
cholesterol (Simons and Ikonen, 1997; reviewed in Levental
et al., 2020). Saturated lipid chains are critical for the lipid-lipid
interactions between sphingolipids and GPI anchors (Schroeder
et al., 1994, 1998). As the GPI anchor does not extend through
the lipid bilayer, lipid rafts might function as binding hubs for
GPI-anchored proteins and receptors involved in intracellular
signaling pathways (Stefanova et al., 1991). Other postulated

functions include apical and basolateral sorting as well as export
mechanisms of GPI-anchored proteins from the trans-Golgi
network in polarized cells (Lisanti et al., 1988; Muniz and
Riezman, 2016; Lebreton et al., 2019). It has been suggested that,
during Golgi transit, where the sterol content increases, proteins
with shorter anchors are retained and ultimately targeted for
ER-associated degradation, while the ones with longer anchors
progress toward the plasma membrane (Bagnat et al., 2000;
Simons and Sampaio, 2011; Spira et al., 2012). Studies on lipid
rafts in protozoan parasites indicate that they may be possible
factors involved in parasite–host interactions, including host cell
signaling, cell adhesion and invasion as well as vesicle trafficking,
release and motility (Goldston et al., 2012). In T. cruzi, an
increasingly popular hypothesis describes the surface coat as a
rather highly organized “patchwork quilt”-like structure, instead
of a continuum of glycoconjugates (Mucci et al., 2017). The
proposed structure is composed of multiple nanoscale membrane
domains (10–150 nm) bearing different compositions of proteins
and probably also of lipids (Lantos et al., 2016; Mucci et al.,
2017). However, the size, function, lifespan, and even existence
of such domains, in general, remains controversial (reviewed in
Levental et al., 2020).

Another important characteristic of GPI-anchored proteins
is their controlled shedding from the cell surface through the
action of specific GPIases (Kinoshita, 2020). The shedding
of GPI-anchored proteins triggers diverse responses and is
implicated in essential cellular functions, such as neuronal
differentiation (Sabharwal et al., 2011; Park et al., 2013),
promotion of endothelial cell migration (Watanabe et al., 2007),
and fertilization competence of spermatozoa (Fujihara et al.,
2013; Fujihara et al., 2014).

In T. brucei, soluble VSG (sVSG) is shed from the cell surface
by GPI-PLC mediated hydrolysis of the GPI-anchor (Bülow
et al., 1989; Garrison et al., 2021). In addition, membrane form
VSG (mfVSG) containing the intact GPI-anchor is released
via direct shedding (Garrison et al., 2021). Although GPI-
PLC is involved in VSG turnover, its exact function and even
localization is still unclear. While the locations reported in
the literature include the cytoplasmic leaflet of the plasma
membrane (Cardoso De Almeida et al., 1999), the flagellar
membrane (Grab et al., 1987; Hanrahan et al., 2009; Sunter et al.,
2013), and the cell surface of short-stumpy forms (Gruszynski
et al., 2003), the proposed functions include the stimulation
of endocytosis of the transferrin receptor (TfR) (Subramanya
et al., 2009), cleavage of misfolded GPI-anchored proteins
prior to ER-associated degradation (Tiengwe et al., 2018), and
VSG release during differentiation (Gruszynski et al., 2003).
In contrast, the shedding of mfVSG containing an intact GPI
anchor might be a direct consequence of the unusual lipid
composition of the VSG GPI anchor, which exclusively contains
dimyristoyl glycerol (Ferguson et al., 1988). This lipid shows
a high off rate from biological membranes at 37◦C (Silvius
and Leventis, 1993; Silvius and Zuckermann, 1993; Garrison
et al., 2021), which might explain why VSG molecules have been
found to integrate into the plasma membrane of erythrocytes
(Rifkin and Landsberger, 1990).
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While the evolutionary advantage of enzymatic shedding
of trypanosomatid surface molecules is still not clear, the
release of virulence factors in extracellular vesicles has been
shown to influence parasite–host-interactions (reviewed in
Szempruch et al., 2016). Therefore, it is tempting to speculate
that VSG shedding from doomed cells is a final attempt
to modulate host defenses, with the released antigens acting
as a decoy to bind antibodies, thus rendering the latter
refractory to interacting with VSGs in living cells. Such altruistic
behavior has recently been demonstrated for Escherichia coli
populations, in which mass cell suicide was detected as a
defense strategy in bacterial warfare (Granato and Foster,
2020). It has already been speculated that an altruistic form
of programmed cell death has a function in life cycle
progression of African trypanosomes (Duszenko et al., 2006;
Welburn et al., 2006). However, it remains to be determined
whether a unicellular organism can undergo a process that is
considered altruistic.

SURFACE MOLECULES OF THE HUMAN
PATHOGENIC TRYPANOSOMATIDS

While the majority of trypanosomatids are monoxenic parasites
of insects, Trypanosoma and Leishmania species have largely
adopted a dixenic lifestyle by successfully infecting and
proliferating in vertebrate hosts (Lukeš et al., 2014, 2018; Adl
et al., 2019). The dixenic lifestyle can be seen as beneficial
to the parasites, which started exploiting an additional host
that provides different nutrient resources and, potentially, less
competition (Ricklefs, 2010; Lukeš et al., 2014). However, living
in such distinct microenvironments represents a challenge that
requires constant adaptation from the parasites for their survival.

Within the vertebrate host, pathogens are exposed to a
complex and orchestrated immune response. As a result,
trypanosomatids have developed a range of strategies to
overcome the attack by humoral and cellular components of both
the innate and adaptive immune systems of their hosts and to
maximize the probability of being transmitted to another host
(Cardoso et al., 2015; Geiger et al., 2016). Inside the invertebrate
host, trypanosomatids are confronted with harsh physiological
conditions (acidic pH as well as proteolytic and hydrolytic
activities), have to handle innate immune responses and must
cross physical barriers to ensure infection of a specific tissue
(e.g., gut, salivary glands) that enhances the chance of further
transmission (Caljon et al., 2016). The microbiome of the vector
and symbiotic associations are likely to play an additional role
in infection resistance (Cirimotich et al., 2011; Weiss and Aksoy,
2011). Thus, parasites must overcome several bottlenecks to
successfully complete their life cycle.

In all life cycle stages, with their vastly varying
microenvironments, it is the cell surface of the parasite that
represents the interface for interactions with the host or insect
vector. Therefore, one hallmark of trypanosome developmental
progression is the changing of the molecular composition of their
glycocalyx (Acosta-Serrano et al., 2007; de Souza et al., 2010).
In the following subsections we give an overview of the life

cycles of different human infective trypanosomatids, after which
we indicate how the parasites employ GPI-anchored surface
molecules to adapt to their diverse microenvironments in order
to facilitate endurance in such contrasting surroundings. Since
the repertoire of expressed surface molecules varies greatly, we
will focus on highly abundant GPI-anchored molecules.

Trypanosoma brucei
The Life Cycle
Inside the vertebrate host, T. brucei is found exclusively in
extracellular fluids and in two morphologically distinct forms:
the proliferative slender and the cell cycle arrested stumpy
trypomastigotes. Infection of the tsetse starts when the fly
takes a bloodmeal from an infected mammalian host and
ingests these bloodstream forms. Classically, the stumpy form
has been described as ‘preadapted’ to survive in the fly and,
hence, was long considered to be the only fly infective form
(Robertson and Bradford, 1912; Rico et al., 2013; Smith et al.,
2017; Szöőr et al., 2020). However, recent findings have shown
slender forms to be equally competent for tsetse passage
(Schuster et al., 2021). Once inside the fly, trypanosomes pass
through the crop to the tsetse midgut. Here, they elongate and
differentiate into the proliferative procyclic forms (Vickerman,
1969; Turner et al., 1988). After having established themselves in
the midgut as procyclics, the trypanosomes must then cross the
peritrophic matrix, a protective, chitinous barrier that separates
the bloodmeal from the midgut tissue (Lehane et al., 1996;
Rose et al., 2014; Rogerson et al., 2018). In order to cross
this barrier, procyclic trypanosomes must swim back in the
direction they came from, to reach the site of peritrophic matrix
synthesis, the proventriculus. Here, they can swim through the
peritrophic matrix in its immature state (Rose et al., 2020).
After entering the endotrophic space, procyclic trypanosomes
can either continue to colonize the ectotrophic midgut or
elongate in the anterior midgut to become cell-cycle arrested
mesocyclic trypanosomes, which then invade the proventriculus
(Vickerman, 1985; Van Den Abbeele et al., 1999). In the
proventriculus, trypanosomes develop into the long, proliferative
epimastigote forms (Vickerman, 1985; Van Den Abbeele et al.,
1999; Sharma et al., 2008; Rose et al., 2020). While undergoing an
asymmetric division to create a long and a short daughter cell, the
epimastigote forms migrate to the salivary glands. Though very
difficult to confirm experimentally, it is thought that upon entry
into the salivary gland, the long daughter cell dies while the short
daughter cell attaches to the gland epithelium via its flagellum
(Vickerman, 1969). Once attached, the trypanosomes either
divide symmetrically to generate more attached epimastigotes,
or they undergo an asymmetric division. This asymmetric
division results in the formation of the cell cycle arrested,
free-swimming metacyclic form. With the next bite of the
tsetse fly, the metacyclic trypomastigotes infect the mammalian
host and subsequently differentiate to the proliferative slender
bloodstream stage (Vickerman, 1985; Schuster et al., 2017; Szöőr
et al., 2020). An overview of the life cycle showing the parasite
stages in their mammalian hosts and respective insect vectors can
be found in Figure 4A.
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FIGURE 4 | Schematic overview of the life cycles of human-infective trypanosomatids together with their most abundant GPI-anchored molecules. (A) Trypanosoma
brucei, (B) Trypanosoma cruzi, and (C) Leishmania. The replicative stages are indicated by a circular arrow (orange). GPI-anchored surface molecules: variant
surface glycoprotein (VSG), transferrin receptor (TfR), GP63, procyclin, trans-sialidase (TS), brucei alanine rich protein (BARP), mucin, glycoinositolphospholipid
(GIPL), mucin-associated surface protein (MASP), lipophosphoglycan (LPG), proteophosphoglycan (PPG).
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GPI-Anchored Molecules in Mammalian Host Stages
The mammalian host reacts to infections by African
trypanosomes with the full spectrum of immune responses,
activating both cellular and humoral components (reviewed in
Onyilagha and Uzonna, 2019). However, due to the extracellular
lifestyle of these trypanosomes, humoral responses constitute
the most prominent line of defense against the parasite. To
outwit the host defenses, the parasite employs a sophisticated
mechanism of antigenic variation and antibody clearance
revolving around its GPI-anchored major surface glycoprotein,
the VSG (Table 2), which forms a dense monolayer on the
cell surface. VSG monomers in T. brucei have a molecular
mass of approximately 55 kDa (Cross, 1975). Based on studies
on the VSG N-terminal domain from the 1990s, VSGs were
long thought to invariably form homodimers of very similar
structure (Freymann et al., 1990; Blum et al., 1993) with a
more recently solved VSG structure also showing very similar
structural traits (Bartossek et al., 2017). Other recent findings,
however, suggest that the members of the large VSG family
are structurally more diverse than previously thought, with
some believed to form trimers on the cell surface (Pinger et al.,
2018; Umaer et al., 2021; Zeelen et al., 2021). VSG homodimers
are attached to the plasma membrane via two GPI anchors,
with each one covalently linked to the C-terminus of one
monomer (Ferguson et al., 1988). Usually, each monomer
carries at least one N-linked oligosaccharide (Zamze, 1991;
Mehlert et al., 1998).

The cell surface of the bloodstream form of T. brucei is
covered by a glycocalyx composed of about 107 VSG monomers,
creating a dense monolayer (Cross, 1975). The amino-terminal
domains of the VSGs, which constitute about 75% of the mature
protein, show high sequence diversity. This diversity is ensured
by a large repertoire (>1000) of VSG coding genes, of which
approximately 80% are pseudogenes or incomplete genes that
are used to expand the variability through recombination events
(Cross et al., 2014). Out of this variety, the parasites express just
one VSG at a time, and sporadic switches in VSG expression
form the basis for antigenic variation (Mugnier et al., 2016).
The process of VSG switching is thought to represent the only
occasion when more than one VSG isoform is displayed on the
cell surface (Horn, 2014). Furthermore, the VSG molecules are
randomized on the cell surface by lateral diffusion (Hartel et al.,
2016) and conformational changes in VSG molecules have been
suggested to contribute to an adaptive packing (Bartossek et al.,
2017). The latter mechanism ensures that the covering of the
plasma membrane is not compromised by slight fluctuations
of the amount of proteins in the VSG surface coat, as might
occur during antigenic variation and during the course of the cell
cycle (Bartossek et al., 2017). In this way, the flexible and dense
VSG coat always shields the plasma membrane and invariant
molecules efficiently from immune recognition.

The high VSG mobility conferred by the GPI-anchor is also
essential for antibody clearance. The incessant and directional
movement of trypomastigotes generates hydrodynamic flow
forces on the cell surface that drag VSG-antibody complexes to
the posterior region of the cell (Engstler et al., 2007), where they
are internalized through the flagellar pocket by a very efficient

endocytosis machinery (reviewed in Overath and Engstler, 2004;
Link et al., 2021). Another important skill for any parasite is
nutrient scavenging from the host. For example, the transferrin
receptor (TfR) (Table 2) is responsible for iron uptake in T. brucei.
TfR is a heterodimer consisting of ESAG6 and ESAG7 and is
attached to the plasma membrane by a single GPI anchor on
ESAG6 (Trevor et al., 2019). The localization of TfR is usually
restricted to the flagellar pocket (FP), but under iron starvation
TfR expression has been shown to be upregulated and the
receptors escape from the FP and cover the entire cell surface
(Mussmann et al., 2003, 2004). In this scenario, it is likely that
T. brucei employs the same principle of GPI-anchor mobility
for iron endocytosis. Interestingly, a study that analyzed TfR
trafficking was able to highlight the importance of the GPI anchor
as an intracellular sorting signal in trypanosomes (Tiengwe et al.,
2017). The authors showed that ESAG7 homodimers, which
contain no GPI anchor, are transported to the lysosome while
ESAG6 homodimers, which display two GPI anchors, are carried
to the cell surface. In addition, they created a modified TfR
heterodimer with two GPI anchors, which was found to localize
to the cell surface. These results indicate that the attachment
of two GPI anchors might be a requirement for proteins to be
translocated to the cell surface in T. brucei.

Although other stage-specific surface proteins exist, their
detection is hampered by the high abundance of VSG molecules
(Shimogawa et al., 2015). Due to the lethality of VSG deletion to
the parasite, the biological role of most of these other molecules
is still not understood.

GPI-Anchored Molecules in Invertebrate Host Stages
In the tsetse fly midgut, the ingested bloodstream forms of
T. brucei are exposed to proteases that promote the differentiation
to procyclic forms (Sbicego et al., 1999). During differentiation,
it is assumed that the GPI anchored GP63 (or major surface
protease - MSP) and GPI-PLC synergistically cleave VSG from
the surface (Table 2) (Bülow et al., 1989; Gruszynski et al.,
2003, 2006; LaCount et al., 2003; Grandgenett et al., 2007).
Simultaneously, a new, stage-specific coat consisting of GPI-
anchored procyclins (Table 2) is established (Bülow et al., 1989;
Gruszynski et al., 2003, 2006; Grandgenett et al., 2007). Distinct
classes and isoforms of procyclins are differentially expressed
by the trypanosomes. The EP procyclins contain repeats of a
dipeptide composed of glutamic acid (E) and proline (P), while
the GPEET procyclins consist of pentapeptide repeats of glycine
(G), proline (P), two glutamic acids (EE), and threonine (T)
(Roditi et al., 1998). While the polypeptide backbone of the
procyclins may be modified with phosphate groups (Bütikofer
et al., 1999; Mehlert et al., 1999), the C-terminal GPI anchor is
furnished with large and branched poly-NAL glycans (Ferguson
et al., 1993) and its inositol acylation makes it resistant to
cleavage by GPI-PLC (Field et al., 1991). The poly-NAL chains
on the GPI anchor are further capped with sialic acid by a
GPI anchored trans-sialidase (TS; Table 2), conferring additional
negative charges to the procyclin coat (Engstler et al., 1993;
Pontes de Carvalho et al., 1993). However, it has not yet
been demonstrated whether sialic acid capping is important for
parasite survival.
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TABLE 2 | Glycosylphosphatidylinositol-anchored surface molecules of trypanosomatids.

Organism Molecule Stage Function References

Trypanosoma brucei VSG BSF Immune evasion Cross, 1975; Cross et al., 2014; Mugnier et al., 2016

TfR BSF Transferrin uptake Steverding et al., 1994; Mussmann et al., 2003, 2004

GPI-PLC BSF Phospholipase, implicated in VSG
shedding

Bülow et al., 1989; Gruszynski et al., 2003; Garrison et al., 2021

GP63 BSF Metalloprotease, implicated in
VSG shedding

LaCount et al., 2003; Grandgenett et al., 2007

Procyclin PCF Implicated in proteases resistance Roditi et al., 1998; Acosta-Serrano et al., 2001b

TS PCF Sialyation of procyclin Engstler et al., 1993; Pontes de Carvalho et al., 1993

BARP E Urwyler et al., 2007

Trypanosoma cruzi Mucin All Immune evasion and cell
attachment

Almeida et al., 2000; Pereira-Chioccola et al., 2000; Buscaglia et al., 2006

TS All Cell attachment and complement
resistance

Schenkman et al., 1991a; Frevert et al., 1992; Lantos et al., 2016

GP63 All, highest in A Implicated in cell adhesion Grandgenett et al., 2000; Cuevas et al., 2003; Rebello et al., 2019

MASP All, highest in
BSF

Implicated in immune evasion De Pablos et al., 2011, 2016; De Pablos and Osuna, 2012

GIPL All, highest in E Implicated in cell attachment and
host cell recruitment

Golgher et al., 1993; Previato et al., 2004; Nogueira et al., 2007

Leishmania spp. LPG P Cell attachment and complement
resistance

Turco and Descoteaux, 1992; Forestier et al., 2014

PPG P Protease’s resistance Ilg et al., 1999a; Secundino et al., 2010

GP63 All, highest in P Metalloprotease, implicated in
complement resistance and cell
attachment

Bouvier et al., 1985; Brittingham et al., 1995; Olivier et al., 2012

GIPL All, highest in A Implicated in modulation of host
cell signalling

McConville et al., 1990; Suzuki et al., 2002; Chawla and Vishwakarma,
2003

Trypanosoma congolense VSG BSF Immune evasion Jackson et al., 2013

GARP PCF, E, M Eyford et al., 2011; Jackson et al., 2013

CESP E Sakurai et al., 2008; Jackson et al., 2013

GP63 ? Metalloprotease Jackson et al., 2013; Jackson, 2015

TS ? Sialyation Jackson et al., 2013; Jackson, 2015

Procyclin ? Jackson et al., 2013; Jackson, 2015

Trypanosoma vivax VSG BSF Immune evasion Jackson et al., 2013; Jackson, 2015; Silva Pereira et al., 2020

BARP/
GARP-like

? Jackson et al., 2013; Jackson, 2015

MASP-like ? Jackson et al., 2013; Jackson, 2015

GP63 ? Metalloprotease Jackson et al., 2013; Jackson, 2015

TS ? Sialyation Jackson et al., 2013; Jackson, 2015

Trypanosoma rangeli GP63 ? Metalloprotease Wagner et al., 2013; Bradwell et al., 2018

TS ? Sialyation Wagner et al., 2013; Bradwell et al., 2018

Mucin ? Implicated in immune evasion Wagner et al., 2013; Bradwell et al., 2018

GIPL ? Implicated in modulation of host
cell signalling

Gazos-Lopes et al., 2012

Trypanosoma conorhini GP63 ? Metalloprotease Wagner et al., 2013; Bradwell et al., 2018

TS ? Sialyation Wagner et al., 2013; Bradwell et al., 2018

Mucin ? Implicated in immune evasion Wagner et al., 2013; Bradwell et al., 2018

Trypanosoma theileri GP63 ? Metalloprotease Kelly et al., 2017

TS ? Sialyation Kelly et al., 2017

TTPSP ? Kelly et al., 2017

Trypanosoma grayi TS ? Sialyation Coding genes are annotated in the reference strain ANR4 in TriTrypDB

Trypanosoma carassii Mucin-like ? Lischke et al., 2000; Aguero et al., 2002

TS ? Sialyation Aguero et al., 2002

Paratrypanosoma GP63 ? Metalloprotease Jackson et al., 2016

Crithidia GP63 ? Metalloprotease Jackson et al., 2016

Bodo saltans GP63 ? Metalloprotease Jackson et al., 2016

Summary of the GPI-anchored surface molecules discussed in this paper. For each molecule, the life cycle stages in which they are expressed, and the proposed functions
are provided. Question marks are used when no information regarding the corresponding life cycle stage is available. GPI-anchored surface molecules: variant surface
glycoprotein (VSG), transferrin receptor (TfR), glycosylphosphatidylinositol-phospholipase C (GPI-PLC), GP63, procyclin, trans-sialidase (TS), brucei alanine rich protein
(BARP), mucin, mucin-associated surface protein (MASP), glycoinositolphospholipid (GIPL), lipophosphoglycan (LPG), proteophosphoglycan (PPG), glutamine alanine
rich protein (GARP), congolense epimastigote specific protein (CESP), Trypanosoma theileri putative surface protein (TTPSP), promastigote surface antigen (PSA). Life
cycle stages: bloodstream form (BSF), procyclic form (PCF), metacyclic (M), epimastigote (M), amastigote (A), promastigote (P).
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All procyclin isoforms are resistant to cleavage by GP63 and
tsetse midgut proteases (Acosta-Serrano et al., 2001b; Liniger
et al., 2003) and their expression is temporally regulated. Directly
after differentiation is induced, all three EP isoforms (EP1, EP2,
EP3) and GPEET are expressed (Vassella et al., 2001). In the first
days, GPEET synthesis is increased, making it the predominant
component of the early procyclic surface coat (Acosta-Serrano
et al., 2001b; Vassella et al., 2001). After a few days, GPEET
is repressed, indicating the transition to late procyclic forms
(Vassella et al., 2001). These findings led to the postulation that
GPEET might be important for survival in the midgut, while
EP represents a better coat for parasite survival on the way to
the salivary glands. However, experiments with EP/GPEET null
mutants indicated that procyclins are not essential for procyclic
forms in vitro (Vassella et al., 2003) and cyclical transmission
by the tsetse fly was also not negatively affected (Haenni et al.,
2006; Vassella et al., 2009). Interestingly, analysis of the null
mutant revealed that in the absence of procyclin polypeptide
precursors, free GPI anchors formed a glycocalyx on the surface
(Vassella et al., 2003). Thus, the concrete functions of procyclins
remain elusive, but it might be possible that they are required
for infections in the wild, where infection levels are very low. In
addition, they might be important for migration to the salivary
glands, as EP procyclins are also expressed by the mesocyclic
forms in the anterior midgut, and by trypomastigotes in the
proventriculus (Sharma et al., 2008).

Another stage-specific molecule anchored by GPI is known
as the T. brucei alanine-rich protein (BARP) (Table 2). BARPs
are expressed by epimastigotes attached to the epithelium of
the salivary glands, but their biological role is still unknown
(Urwyler et al., 2007).

Trypanosoma cruzi
The Life Cycle
Trypanosoma cruzi infects the mammalian host when the
metacyclic trypomastigotes, which are present in the feces
of the triatomine vector, enter the body through wounds or
mucosa. In contrast to African trypanosomes, the metacyclic
forms of T. cruzi attach to and invade a variety of host cells
(Chagas, 1909; Schenkman et al., 1991b; Yoshida, 2006).
The strategies used by T. cruzi for cell entry are diverse
(reviewed in Walker et al., 2014). Once inside the cells, they are
initially confined within a membrane-bound compartment, the
parasitophorous vacuole, which later fuses with the lysosome,
facilitating the escape of the parasites to the cell cytoplasm
and triggering the differentiation into amastigotes (Andrews,
1993). In the cytoplasm, amastigotes proliferate and differentiate
into the intracellular trypomastigotes (Chagas, 1909). During
differentiation, an intracellular epimastigote-like stage is
observed, which represents an intermediate stage preceding
the maturation into trypomastigotes (Almeida-de-Faria et al.,
1999). The intracellular amastigotes and trypomastigotes
can escape to the extracellular environment where they
can infect neighboring host cells (Dvorak and Hyde, 1973;
Ferreira et al., 2012; Arias-Del-Angel et al., 2020). In addition,
trypomastigotes can invade the bloodstream, where they are

accessible for uptake by the hematophagous triatomine vectors
(Salassa and Romano, 2019). After ingestion, most of the
trypomastigotes are broken down in the stomach of the insect
while the surviving parasites differentiate into epimastigotes
(Ferreira et al., 2016). Epimastigotes move to the intestine where
they proliferate, attach to the perimicrovillar membranes, and
pass through metacyclogenesis, which is the transformation of
non-infective epimastigotes into highly infective metacyclic
trypomastigotes (Schaub, 1989; Goncalves et al., 2018).
There is evidence suggesting that a microenvironmental
shift in the concentration of oxidants and antioxidants
may influence both the proliferation of epimastigotes and
the differentiation into metacyclics (Nogueira et al., 2015).
A schematic overview of the T. cruzi life cycle is provided in
Figure 4B.

GPI-Anchored Molecules in Mammalian Host Stages
In contrast to T. brucei, T. cruzi also invades cells of their
vertebrate host next to being found in the bloodstream. Cell
invasion is a well-known strategy to avoid humoral immune
responses. Nevertheless, hiding inside a cell triggers other
components of host immunity: effectors of the cellular response,
such as CD8+ cells (reviewed in Cardoso et al., 2015).

The major surface glycoprotein of all life-cycle stages of
T. cruzi is the mucin (also known as mucin-like glycoprotein).
Mucins (Table 2) are GPI anchored, distributed over the entire
plasma membrane and play a key role in parasite protection,
infectivity and immune modulation during all T. cruzi life cycle
stages (Mortara et al., 1992; Moreno et al., 1994; Ruiz et al.,
1998; Acosta-Serrano et al., 2001a; Almeida and Gazzinelli, 2001;
Buscaglia et al., 2006). These molecules contain a polypeptide
backbone with Thr-rich domains that are extensively modified
with short O-linked glycans (Schenkman et al., 1993; Almeida
et al., 1994; Pereira-Chioccola et al., 2000). Two major gene
families, called TcSMUG and TcMUC encode for mucins
(Di Noia et al., 1995; Buscaglia et al., 2006). When in the
mammalian host, genes of the TcMUC family are expressed
(Campo et al., 2004; Buscaglia et al., 2006; Urban et al., 2011;
Pech-Canul et al., 2017).

Mucin molecules of mammalian stages range from 60 to
200 kDa in molecular weight, share the sialic acid containing
epitope Ssp-3, and present terminal Gal(α1,3)Gal epitopes
(Schenkman et al., 1991a; Almeida et al., 1994; Tomlinson et al.,
1994; Buscaglia et al., 2006). The Ssp-3 epitope is implicated
in mammalian cell attachment and invasion and has been
suggested to be involved in diverting the complement cascade
(Schenkman et al., 1991a; Tomlinson et al., 1994; Buscaglia
et al., 2006). The terminal Gal(α1,3)Gal epitopes are a main
target of antibody responses. To evade the vertebrate immune
response, these saccharides are masked by sialic acid molecules
scavenged from the host (Previato et al., 1985; Pereira-Chioccola
et al., 2000). In addition, the sialylation of mucins inside
the parasitophorous vacuole transfers sialic acid from LAMP
proteins to the parasite, which contributes to the rupture of
the vacuole and invasion of the cytoplasm by the parasite
(Hall et al., 1992; Albertti et al., 2010; Cardoso et al., 2015).
The GPI anchor of most mammal-derived mucins contains
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alkylacylglycerol with predominantly unsaturated fatty acids at
the sn-2 position (Serrano et al., 1995). This feature most
likely correlates with an induced production of proinflammatory
cytokine interleukin-12 (IL-12) and tumor-necrosis factor α

(TNFα) (Almeida et al., 2000; Almeida and Gazzinelli, 2001;
Previato et al., 2004). In contrast, approximately 70% of the GPI
anchor of metacyclic mucins contain inositolphosphoceramide in
their phospholipid tail, which is thought to increase the mucin
shedding rate (Schenkman et al., 1993; Serrano et al., 1995).
Mucin shedding was hypothesized to play a role in the clearance
of surface immunocomplexes (Buscaglia et al., 2006). In the
metacyclic trypomastigote, mucins have also been proposed to
have a function in cell attachment and invasion of mammalian
host cells, including induction of intracellular Ca2+ signaling
(Moreno et al., 1994; Ruiz et al., 1998).

Another important component of the T. cruzi surface is TS
(Table 2). Like mucins, these GPI anchored glycoproteins are
distributed over the entire plasma membrane of T. cruzi (Frevert
et al., 1992; Lantos et al., 2016). Although all life cycle stages
show TS at the cell surface, the functions vary immensely (Pech-
Canul et al., 2017). The bloodstream trypomastigotes possess
proteins with TS and/or neuraminidase activities (Schenkman
et al., 1991a, 1992). The TS activity is responsible for the transfer
of sialic acid from host glycoconjugates to mainly mucin O-linked
glycans, enabling epitopes to be camouflaged (Schenkman et al.,
1993; Pereira-Chioccola et al., 2000), as explained above in
the context of mucins. The neuraminidase activity is used to
remove sialic acids from the parasite surface and/or from the
host cells, thereby facilitating the internalization of the parasite
(Velge et al., 1988; Schenkman et al., 1992). Interestingly, the
inhibition of TS activity in metacyclic trypomastigotes reduced
the activation of Ca2+ signaling pathways (Ruiz et al., 1998).
Considering that mucins have been linked to Ca2+ activity
during cell invasion, it is likely that the orchestrated work of TS
and mucins contributes to cell invasion through this pathway.
This mechanism is activated by protein tyrosine phosphorylation
(Favoreto et al., 1998). The TS of mammalian host stages are GPI
anchored while the TS presented by insect stage epimastigotes
are predicted to have a transmembrane domain (Briones et al.,
1995b). Although the GPI anchoring of this molecule may be
an adaptation of the mammalian host stages (Briones et al.,
1995a; Rubin-de-Celis et al., 2006), the biological implications
of this are still not clear. In amastigotes, SA85 is one of
the few characterized TS molecules. This molecule is a ligand
for the mannose receptor of macrophages, which has been
suggested to increase the amastigote’s potential for cell invasion
(Kahn et al., 1995).

As is the case for mucins and TS, the GPI-anchored surface
metalloprotease, also termed GP63 (or major surface protease;
Table 2), is present in all life cycle stages of T. cruzi (Cuevas
et al., 2003). However, it is more abundant in amastigotes than
in epimastigotes or trypomastigotes (Grandgenett et al., 2000;
Cuevas et al., 2003). Although this suggests different functional
importance, the major role of GP63 is still elusive (Grandgenett
et al., 2000; Cuevas et al., 2003; Kulkarni et al., 2009).

The fourth group of surface molecules belongs to the MASP
multigenic family (Table 2) which is specific to T. cruzi and

contains more than 1300 genes characterized by conserved N-
and C-termini and a highly variable central region (El-Sayed
et al., 2005). Although preferentially expressed in the bloodstream
trypomastigotes, all life cycle stages express members of the
MASP family (Atwood et al., 2005; De Pablos et al., 2011;
De Pablos and Osuna, 2012). The well characterized MASP52
is upregulated in metacyclic and bloodstream trypomastigotes.
Assays using antibodies raised against the ATP/GTP binding
motif decreased cell invasion by T. cruzi in vitro (De Pablos et al.,
2011). The predicted GPI anchoring of MASP was confirmed
by its release following PLC treatment (Bartholomeu et al.,
2009). Although little is known about MASPs, their release into
the extracellular environment can trigger a humoral immune
response (De Pablos et al., 2016), which suggests it could have
a similar role in host evasion to that of TS.

The last group of surface molecules of T. cruzi are the GIPLs.
Initially called lipopeptidophosphoglycans (LPPGs; Table 2) (De
Lederkremer et al., 1976), these molecules were originally not
considered to be GIPLs due to co-extraction with NETNES
glycoprotein (Macrae et al., 2005) giving the impression that
these molecules were not “naked.” Interestingly, all GIPLs,
characterized in T. cruzi, contain a type 1 conserved glycan
core (Figure 2), like that found in GPI-anchored glycoproteins
(Previato et al., 1990; de Lederkremer et al., 1991). Immunoassays
with anti-GIPL serum demonstrated that the expression of
this molecule is significantly decreased and heterogeneously
distributed in the trypomastigote population when compared to
the epimastigote stage (Golgher et al., 1993). This suggests a
developmental regulation of its expression. The concrete function
of mammalian-stage derived GIPLs is not completely understood
but they may act in TNF-α induced neutrophil recruitment
(Oliveira et al., 2004; Medeiros et al., 2007).

GPI-Anchored Molecules in Invertebrate Host Stages
Whereas the mammalian stages of T. cruzi express mucins of
the TcMUC family, the insect stages express mucins from the
TcSMUG family (Campo et al., 2004; Buscaglia et al., 2006;
Urban et al., 2011; Gonzalez et al., 2013; Pech-Canul et al.,
2017). These mucins are smaller, ranging between 35 and 50 kDa
in molecular weight, and have a significant similarity in their
amino-acid and carbohydrate composition (Yoshida et al., 1989;
Mortara et al., 1992; Schenkman et al., 1993; Previato et al., 1994;
Acosta-Serrano et al., 2001a). Epimastigote mucins do not act as
sialic acid acceptors (Urban et al., 2011; De Pablos and Osuna,
2012). This correlates with different TS activities (Frasch, 2000)
and might indicate that sialic acids are required for immune
evasion within the mammalian host and play a less important role
within the insect vector. Epimastigote mucins primarily have a
protective role against proteases that are present in the intestinal
tract of the insect vector (Mortara et al., 1992).

The role of GP63 in the invertebrate host has been studied less
than in the mammalian host (d’Avila-Levy et al., 2014). A recent
study investigated the effect of metal chelators as well as the
effect of antibodies raised against GP63 on the interaction of
T. cruzi with its principal triatomine vector Rhodnius prolixus.
Both treatments reduced the interaction of the parasite with the
explanted guts of the insect, indicating a possible function of
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GP63 in adhesion (Rebello et al., 2019). However, the precise
molecular mechanism of the vector interaction remains elusive.

Glycoinositolphospholipids molecules are abundant on the
cell surface of T. cruzi epimastigotes (Golgher et al., 1993).
Immunoelectron microscopy has shown that GIPLs form a
homogeneous surface coat with an estimated number of 1.5× 107

molecules/cell (de Lederkremer et al., 1991; Golgher et al., 1993).
GIPLs are likely to be one of the components involved in the
adhesion of T. cruzi to the luminal insect midgut surface and
possibly one of the determinants of parasite infection in the insect
vector (Nogueira et al., 2007).

Surprisingly, purified GIPLs from T. cruzi were reported
specifically to suppress nitric oxide (NO) production within the
salivary glands of the triatomine vector (Gazos-Lopes et al., 2012).
Since salivary glands play no part in the life cycle of T. cruzi, the
actual biological role remains unclear.

Leishmania spp.
The Life Cycle
The major transmission route for Leishmania is mediated by
sand flies of the genera Lutzomyia and Phlebotomus (Marinkelle,
1980; Killick-Kendrick, 1999). Flies become infected by the
ingestion of macrophages harboring amastigotes (Alexander
and Russell, 1992; Bates, 2018). The environmental changes
experienced by these parasite stages in the fly midgut, such
as shifts in temperature and pH, stimulate their differentiation
into promastigotes. Due to morphological differences found in
the promastigote population, the insect forms are subdivided
into procyclic, nectomonad, leptomonad, haptomonad, and
metacyclic promastigotes. The first form found in the midgut is
the procyclic form, a proliferative stage with a short flagellum
and weak motility. After 48–72 h of proliferation, these forms
differentiate into nectomonad promastigotes, a life cycle stage
with a longer flagellum and higher motility (Rogers et al., 2002).
The nectomonad forms migrate to the anterior portion of the
midgut, where they differentiate into leptomonad promastigotes
(Walters, 1993). These forms can either initiate further cycles
of proliferation or differentiate into haptomonad promastigotes,
which attach to the surface of the anterior midgut, or metacyclic
promastigotes, the infective forms for vertebrates (Sacks, 1989;
Dostalova and Volf, 2012; Bates, 2018). Interestingly, in all
sand flies examined to date a gel-like plug, the parasite-
derived promastigote secretory gel, blocks the anterior midgut,
which forces infected insects to regurgitate parasites into the
skin before they can take a blood meal (Rogers et al., 2004).
Recently, it has been suggested for Leishmania infantum and
Leishmania major that metacyclic promastigotes, which were
not transmitted into the mammalian host de-differentiate into
retroleptomonads, which starts a new cycle of proliferation
and differentiation, which enhances the parasitic load and the
potential for transmission (Bates, 2018; Serafim et al., 2018).
This boost is likely to be important for infections in the wild,
where flies will initially become infected with very small numbers
of parasites by feeding on an infected vertebrate host (Doehl
et al., 2017). Finally, inside the vertebrate hosts, the metacyclic
promastigotes will be phagocytosed by macrophages where they

differentiate into the proliferative and fly infective amastigotes
(Barak et al., 2005; Rogers et al., 2009; Mollinedo et al., 2010).
The life cycle is shown in Figure 4C.

GPI-Anchored Molecules in Mammalian Host Stages
In Leishmania, LPG (Table 2) is one of the major surface
glycoconjugates of promastigotes (5 × 106 copies/cell) (Turco
and Descoteaux, 1992; Forestier et al., 2014). Structurally, LPG
is a highly complex macromolecule with four domains: a type-
2 GIPL anchor, a glycan core, a linear phosphoglycan chain
and a terminal oligosaccharide cap (Figure 2E) (Turco and
Descoteaux, 1992; McConville et al., 1993; McConville and
Ferguson, 1993; Forestier et al., 2014). The anchor possesses
only one saturated C24-26 aliphatic chain (Forestier et al., 2014).
The attached glycan core comprises two galactopyranosides,
one galactofuranoside and one mannose. The phosphoglycan
chain contains 15–40 phosphodisaccharide (Galβ1-4Manα1-
PO4) units (Forestier et al., 2014) with species-specific side
chain modifications (Turco et al., 2001; de Assis et al., 2012).
Lastly, a species-specific di-, tri-, or tetrasaccharide cap structure
assembled as Manα1-2Manα1 or Galβ1-4(Manα1-2)Manα1 is
attached (Forestier et al., 2014). Inside the vertebrate host, the
long LPG of metacyclic promastigotes gives them an advantage
in avoiding lysis by the complement system (Puentes et al., 1988,
1989). In promastigotes, LPG also delays phagosome maturation
and acidification by impairing recruitment of lysosomal markers.
This prevents the parasite from being killed inside macrophages,
which allows their differentiation into the resistant amastigotes
(Desjardins and Descoteaux, 1997; Holm et al., 2001; Vinet et al.,
2009). In amastigotes, the expression of LPG is downregulated
(Moody et al., 1993; Ilg, 2000).

Another important GPI-anchored surface molecule belongs to
the proteophosphoglycans (PPGs; Table 2). PPGs contain a large
polypeptide backbone, which is modified with a range of complex
phosphoglycan chains (Ilg et al., 1999a,b). While some PPGs
contain a GPI anchor and are present at the cell surface (mPPG),
others lack a GPI attachment signal (Lovelace and Gottlieb,
1986; Stierhof et al., 1994; Ilg et al., 1995) and are secreted
(sPPG), sometimes as large filamentous complexes (fPPG) that
are assembled in the flagellar pocket (Stierhof et al., 1994).
These different forms of PPGs have an important role in the
establishment of Leishmania infections, including macrophage
recruitment and modulation of host arginase activity to inhibit
the production of harmful NO (Rogers et al., 2009). In addition,
sPPG was found to increase interferon-γ (INF-γ) stimulated NO
production (Piani et al., 1999). This suggests that PPG, on the
one hand, may contribute to binding of Leishmania to host cells
and, on the other hand, may play a role in downregulation of
macrophage pro-inflammatory responses.

The zinc-dependent and GPI-anchored metalloprotease GP63
(also called leishmanolysin, MSP, or PSP; Table 2) represents
another major surface antigen of Leishmania species (Bouvier
et al., 1985; Bianchini et al., 2006). GP63 is a 60 kDa
enzyme modified with N-glycosylated high mannose glycans
(Ilgoutz and McConville, 2001). The structure predominantly
contains β-sheets (Schlagenhauf et al., 1998). The N-terminal
domain of GP63 displays the catalytic domain of a zinc
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proteinase while the C-terminal domain is connected to the GPI
anchor (Schlagenhauf et al., 1998). While GP63 is abundant
in promastigotes (approximately 5 × 105 copies/cell), it is
downregulated in amastigotes (Bouvier et al., 1985; Schneider
et al., 1992; Bianchini et al., 2006). However, due to the
simultaneous absence of LPG on the amastigote surface,
the GP63 enzymes might have better access to their target
molecules and therefore may be sufficient for modulation of
host responses (Pimenta et al., 1991). Given its presence on
both parasite forms combined with different expression levels,
it is likely that GP63 fulfills a number of different functions,
depending on the parasite stage. For example, the presence of
GP63 on the metacyclic promastigote surface is connected to
resistance to complement lysis by conversion of C3b into C3bi
(Brittingham et al., 1995). C3bi is a ligand to CR3 complement
receptors on the surface of macrophages, which is important
for facilitating the parasite’s entry into these cells as well as for
inhibiting the interleukin-12 production leading to a deficiency in
intracellular pathogen responses (Blackwell et al., 1985; Kimura
and Griffin, 1992; Carter et al., 2009). In addition, GP63
can interact with the fibronectin receptor of mammalian cells,
indicating that the receptors for complement and fibronectin
may cooperate to mediate the efficient adhesion of parasites to
macrophages (Brittingham et al., 1999). In amastigotes, GP63
plays a role in protection from phagolysosomal degradation
(Chaudhuri et al., 1989; Seay et al., 1996; Chen et al., 2000)
as well as alteration of macrophage signaling thereby favoring
Leishmania survival and persistence within the host (Olivier
et al., 2005, 2012). Consequently, this molecule not only actively
protects the parasites in the extracellular environment, but
also has a role in invasion and survival of Leishmania inside
macrophages, which is essential for life cycle progression and a
successful infection.

Glycoinositolphospholipids (Table 2) are also present on
the Leishmania cell surface. These molecules have a similar
abundance as LPGs (McConville and Bacic, 1990). These
glycolipids may form a densely packed glycocalyx on the
plasma membrane. The amount and type of GIPL displayed
by Leishmania can vary according to the species of the
parasite (McConville et al., 1990; McConville and Blackwell,
1991; McConville and Ferguson, 1993; Schneider et al., 1993,
1994; Winter et al., 1994). Their anchors can have the same
structure as the GPI protein anchor (type 1), the LPG
anchor (type 2) or contain motifs in common with both
anchors (hybrid type) (Figure 2). In contrast to LPG or
GPI-anchored glycoproteins, GIPL expression remains high in
amastigotes indicating a possible function in intracellular survival
(McConville and Blackwell, 1991; Bahr et al., 1993). GIPLs
effectively deactivate the protein kinase C (PKC) cascade, which
impairs the production of reactive oxygen species that could
kill the parasites inside macrophages (Chawla and Vishwakarma,
2003). In addition, 85% of Leishmania braziliensis GIPLs are
present in membrane microdomains and disruption of these
domains leads to a significantly decreased macrophage infectivity
(Yoneyama et al., 2006). Another report also indicated that
glycosylation of GIPLs in L. major might be important for
invasion of macrophages (Suzuki et al., 2002).

GPI-Anchored Molecules in Invertebrate Host Stages
Studies on surface molecules that might play a role in defending
the parasite against the hostile conditions within the sand fly
have mainly focused on glycoconjugates, including LPG and
PPG. The LPG of Leishmania promastigotes can show stage
specific adaptations. For example, in L. major and L. donovani
the average length of the LPG phosphoglycan chain is more
than doubled when proliferative procyclics differentiate to non-
dividing metacyclics (McConville et al., 1992). The stage and
species dependent changes in LPG structure are thought to be
important for the attachment of haptomonad promastigotes to
epithelial cells in the sand fly midgut, which is essential for
avoiding elimination by peristaltic forces during colonization of
non-permissive vectors (Pimenta et al., 1992; Butcher et al., 1996;
Secundino et al., 2010; Dostalova and Volf, 2012; Volf et al.,
2014). Subsequently, metacyclic LPGs were shown to be subject
to conformational changes that impair efficient binding to the
sand fly midgut, a key step in the release of mammalian infective
forms (Sacks et al., 1995). It is tempting to speculate that the
detachment of parasites from the midgut during development
might also be explained by enzyme driven shedding of the LPG
that is involved in binding.

In the insect stages of Leishmania, the PPGs have also been
reported to be important factors for life cycle progression. The
fPPGs were described as mucin-like glycoproteins which are one
component of the gel-like matrix that blocks the passage to the
midgut of the flies forcing them to regurgitate between blood
meals, thus increasing the efficiency of transmission (Ilg, 2000;
Rogers et al., 2004). In contrast, mPPG was reported to be a key
molecule, protecting the fully developed procyclic promastigotes
by conferring resistance to the activity of digestive enzymes
present in the sand fly midgut (Secundino et al., 2010).

Despite the considerable amount of GP63 molecules present
in promastigotes the deletion of this molecule in L. major did
not alter the growth and development of the parasite within the
insect vector (Joshi et al., 1998). Thus, GP63 does not appear to
be needed to confer resistance to proteolytic enzymes in the gut.

EVOLUTION AND CELL SURFACE
COMPOSITION OF TRYPANOSOMA

As discussed in the previous section, the medically relevant
trypanosomatids exploit their surface molecules to interact with
both vertebrate and invertebrate hosts. It is clear that these
parasites rely on their diverse repertoires of GPI-anchored
molecules to survive and thrive while residing in very different
microenvironments during the course of their respective life
cycles. Interestingly, their glycocalyces seem to be composed
of a mixture of very specific molecules, such as VSGs, mucins
and LPGs, as well as ubiquitous molecules, such as TS and
GP63 (Figure 4). To increase our understanding of host-parasite
interactions and gain insight into the essential features that
were positively selected for over time, it is necessary to analyze
the glycocalyx composition of species that are usually not in
the spotlight. Thus, by broadening our perspective we can
begin to comprehend the factors leading to the success of
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parasitism of trypanosomatids. In the following, we aim to give
an overview of the glycocalyx composition of other Trypanosoma
species, focusing on their GPI-anchored molecules (Table 2)
and correlating their surface composition with the evolutionary
story of the group.

Trypanosoma is a monophyletic genus that can be divided into
17 subgenera of two lineages: aquatic and terrestrial (Kostygov
et al., 2021). The human parasites T. brucei and T. cruzi are both
of terrestrial lineage and have independent evolutionary stories
(Hamilton and Stevens, 2017; Borges et al., 2021; Kostygov et al.,
2021). This independence can be observed to a certain extent in
their specific repertoires of surface molecules, which are related
to their distinct lifestyles, survival strategies, and interactions
with their hosts.

Closely related to T. brucei, other African trypanosomes are
of socio-economic importance, such as Trypanosoma congolense,
Trypanosoma vivax, Trypanosoma evansi, and Trypanosoma
equiperdum (Hoare, 1972; Stevens and Gibson, 1999; Borges
et al., 2021; Kostygov et al., 2021). Due to phylogenetic
similarities, T. evansi and T. equiperdum were suggested to be
subspecies of T. brucei (Lai et al., 2008; Carnes et al., 2015;
Kamidi et al., 2017; Borges et al., 2021). However, such a
taxonomical change is not allowed by the International Code of
Zoological Nomenclature (ICZN, 1999; Molinari and Moreno,
2018). Thus, in this review, we will adhere to the conventionally
used species names.

A common, and specific, characteristic of the African
trypanosomes is the VSG coat that covers the cell surface of their
bloodstream forms (Uzcanga et al., 2004; Jackson et al., 2013,
2015; Carnes et al., 2015; Carrasquel et al., 2017). Due to the close
relationship between T. brucei, T. evansi, and T. equiperdum,
a high degree of similarity in their surface molecules is not
unexpected. For example, while VSGs of T. congolense and
T. vivax lack a C-terminal domain (Rausch et al., 1994; Gardiner
et al., 1996), T. evansi and T. brucei possess a conserved
C-terminal domain through which the VSG is connected to
the GPI anchor (Carrington et al., 1991; Chattopadhyay et al.,
2005; Jones et al., 2008; Jia et al., 2011). In addition, the VSG
repertoire as well as all VSG N-terminal subtypes are conserved
between T. evansi and T. brucei (Carnes et al., 2015). However, the
C-terminal structure of T. evansi VSGs can differ from T. brucei
VSGs by the absence of cysteine residues (Jia et al., 2011). Larger
differences in this coat can be found in T. vivax, an African
trypanosome with earlier divergence and the highest evolutionary
rates (Stevens and Rambaut, 2001).

In T. vivax, for instance, VSG transcript abundance, though
high, has been reported to be lower than in T. brucei (Greif
et al., 2013; Jackson et al., 2013, 2015). In addition, the VSG-
coat of T. vivax is probably less dense than that of other African
trypanosomes as suggested by the successful immunization of
mice using an invariant surface protein of T. vivax (Autheman
et al., 2021). Furthermore, the reduced recombination of T. vivax
VSG genes (Silva Pereira et al., 2020) and the presence of T. vivax-
specific putative membrane protein families in its bloodstream
forms (Jackson et al., 2013, 2015) indicate other means of
interaction between this parasite and the vertebrate host. The
positive selection of VSGs and the expansion of VSG genes

in T. congolense and T. brucei/T. evansi (Silva Pereira et al.,
2020) advocates the importance of this GPI-anchored molecule
for survival in the vertebrate host. Interestingly, T. evansi and
T. equiperdum lost their capacity to infect and reproduce inside
an invertebrate host, becoming the only known examples of
monoxenic trypanosomes (Borst et al., 1987; Lai et al., 2008;
Desquesnes et al., 2013). This specialization to the vertebrate
host is linked to partial or total loss of maxicircles of kinetoplast
DNA (kDNA), which carry information on the respiratory chain
components that are required for mitochondrial metabolism
and ATP production in the insect forms (Vickerman, 1965;
Flynn and Bowman, 1973; Borst et al., 1987; Lai et al., 2008;
Dewar et al., 2018).

Despite reports of mechanical transmission through distinct
vectors, T. congolense and T. vivax are mainly transmitted
by the tsetse fly, i.e., by the same invertebrate host as
T. brucei (Peacock et al., 2012; Ooi et al., 2016). The insect
stages of T. congolense produce the species-specific molecules
T. congolense epimastigote-specific protein (CESP) and glutamic
acid and alanine-rich protein (GARP), which is analogous to T.
brucei’s BARP. CESP is exclusively expressed in epimastigotes
and has been suggested to contribute to the adhesion of these
stages to the proboscis, where the differentiation into metacyclics
occurs (Sakurai et al., 2008; Peacock et al., 2012; Jackson
et al., 2013). GARP is found in epimastigotes, procyclics, and
metacyclics and has been proposed to protect the parasites
against digestion in the midgut as well as to influence the
migration of the parasites to different organs, but no concrete
evidence for these biological function exists so far (Beecroft
et al., 1993; Hehl et al., 1995; Sakurai et al., 2008; Eyford et al.,
2011; Jackson et al., 2013). Procyclin homologs were found in
T. congolense but not in T. vivax (Jackson et al., 2013, 2015),
suggesting that procyclins appeared later in the evolution of
African trypanosomes. Considering that T. vivax development in
the tsetse fly is restricted to the mouth parts (Ooi et al., 2016)
while T. congolense and T. brucei pass through the midgut and
other organs (Peacock et al., 2012; Schuster et al., 2017, 2021; Rose
et al., 2020), it is likely that procyclin is related to the development
of a complex life cycle inside the fly. Because T. vivax possesses
BARP/GARP-like genes (Jackson et al., 2013, 2015) these proteins
may have an important biological role, at least, for the passage
through the mouth parts of the fly. The presence of GP63 and
TS has also been detected in the genome of both T. vivax and
T. congolense (Jackson et al., 2013, 2015), and genes for both are
annotated in the genome of T. evansi in TriTrypDB1, pointing
at a wide distribution in trypanosomatids beyond the medically
relevant species. The presence of MASP-like proteins, similar to
the abundantly expressed MASP of metacyclic stages of T. cruzi,
was also detected in T. vivax (Jackson et al., 2013, 2015). However,
their biological role is still unknown.

The other important human pathogen, T. cruzi, is closely
related to other parasites of mammals, such as Trypanosoma
rangeli and Trypanosoma conorhini (Hoare, 1972; Stevens and
Gibson, 1999; Borges et al., 2021; Kostygov et al., 2021). Genomic
analyses of T. rangeli and T. conorhini strains revealed a similar

1http://tritrypdb.org
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number of GPI-anchored proteins and the presence of multigene
families. As in T. cruzi, the surface molecules with the highest
gene expansion in both species were TS and GP63 (Wagner et al.,
2013; Bradwell et al., 2018). However, the presence of mucin
genes was less frequent and no homology to other multigenic
families present in T. cruzi was detected (Wagner et al., 2013;
Bradwell et al., 2018). The proposed biological roles of mucins
in T. cruzi vary from cell invasion in the vertebrate host to
protection against lysis in the invertebrate host (see section
“Trypanosoma cruzi”). Considering the extracellular lifestyle of
T. rangeli and T. conorhini in the vertebrate host, it is tempting to
suggest that the protective role of mucins represents an ancestral
characteristic linked to survival inside the triatomine host. In
this scenario, the role in cell invasion would be the result of a
change of function promoted by the genetic expansion of mucins
in T. cruzi. The presence of GIPLs on the cell surface of T. rangeli
was also detected and it has been shown to downregulate NO
synthesis (Gazos-Lopes et al., 2012), which is one of the key
mechanisms of invertebrate immune response.

Trypanosoma theileri is a ubiquitous parasite of cattle and
is closely related to crocodilian trypanosomes and ancestral
to T. cruzi, T. rangeli, and T. conorhini (Hamilton et al.,
2009; Kelly et al., 2017). The genome of T. theileri contains
homologs of GP63-like surface protease and TS, but no mucin
orthologs were detected (Kelly et al., 2017), suggesting the
appearance of mucin in a later differentiation event and
highlighting, once more, TS and GP63 as common GPI-anchored
proteins among trypanosomes. In addition, four large groups of
proteins, putatively containing conserved N-terminal signals and
C-terminal GPI-addition sequences, were found. These proteins
are considered to be exclusive to T. theileri and were provisionally
named T. theileri putative surface protein (TTPSP) (Kelly et al.,
2017). Together, these TTPSP and GP63-like proteins account for
approximately 10% of the genome (Kelly et al., 2017).

Trypanosoma grayi is an extracellular parasite found in
the bloodstream of crocodiles and is transmitted by the feces
of tsetse flies (Hoare, 1931; Kelly et al., 2014). It occurs in
Africa but is closely related to other crocodilian trypanosomes
from South America, such as Trypanosoma kaiowa (Fermino
et al., 2019). Phylogenomic and phylogenetic analyses show
that this species is more closely related to T. cruzi than to
African trypanosomes (Kelly et al., 2014). BLAST and OrthoMCL
analyses of the genome sequence and predicted gene models
did not reveal the presence of VSG surface antigens or mucin
(Kelly et al., 2014). The hypothesis of independent evolution of
African trypanosomes suggests separate events of colonization
of the tsetse fly during the evolution of Trypanosoma (Hamilton
and Stevens, 2017). The lack of VSG in a tsetse transmitted
trypanosome corroborates this hypothesis. While the position
of T. grayi in Trypanosoma is still under debate, the lack of
mucins suggests that it may have diverged earlier than T. cruzi,
T. rangeli, and T. conorhini. Genes coding for TS and GP63 are
annotated in the T. grayi reference strain ANR4 in TriTrypDB
(see footnote 1).

So far, we have focused on trypanosomes of the terrestrial
lineage. Compared to these, even less is known of species of the
aquatic lineage. An electron microscopy study of Trypanosoma

fallisi, an anuran trypanosome, suggested that surface coat
components were secreted inside vesicles detected around
and within the flagellar pocket (Martin and Desser, 1990).
However, these components were not characterized further. The
presence of polysaccharides on the surface of epimastigotes
of Trypanosoma rotatorium, another anuran trypanosome, was
observed using Thiery’s silver proteinate method (Desser, 1976),
but no other information on the nature of these molecules is
available. Trypanosoma carassii is a fish parasite with a glycocalyx
composed of GPI-anchored mucin-like proteins similar to
T. cruzi (Lischke et al., 2000; Overath et al., 2001; Aguero et al.,
2002). The mucin-like molecules of T. carassii are sialylated
(Lischke et al., 2000) with reported activity of TS, which transfers
sialic acids from sialyllactose to a lactose acceptor in cell fraction
extracts (Aguero et al., 2002). However, detailed analyses on
the functional groups of T. carassii TS are lacking. Due to
the extracellular lifestyle of T. carassii (Dóró et al., 2019), it is
possible to suggest that the mucin-like coat of T. carassii acts
only in parasite protection. Although still under debate, it is likely
that the aquatic lineage has diverged later in the evolution of
Trypanosoma as a split from a terrestrial species (Hamilton and
Stevens, 2017; Borges et al., 2021). The presence of mucin-like
proteins in T. carassii could be explained by this hypothesis, but
this can only be confirmed by ancestral character reconstruction.

Ancestral reconstruction studies are still at an early stage
for trypanosomatids. However, by reviewing the GPI-anchored
molecules displayed by trypanosomes we could highlight parallels
with the evolutionary story of the group. In addition, it is
evident that a set of surface molecules has been maintained
during evolution and is shared among different species, namely
the GP63 proteases and TS (Bouvier et al., 1985; Schenkman
et al., 1991a; Cuevas et al., 2003; Engstler et al., 1993; LaCount
et al., 2003; Jackson et al., 2013; Wagner et al., 2013; Bradwell
et al., 2018). From the above, it is clear that a broader
focus on understanding the molecular composition of the cell
surface of different trypanosome species could help to fill in
the gaps in the evolutionary story of this group, which has a
direct impact on developmental cell biology research and could
also influence evolution-based drug discovery. However, studies
connecting the biochemical composition of the cell surface with
the evolutionary story of the group are ongoing. An expansion of
such a perspective, including Leishmania and other genera, could
contribute even more to the knowledge of this important group
of parasites and we encourage the scientific community to adopt
such an approach.

CONCLUSION

Since the discovery of the GPI anchor (Ferguson et al., 1985;
Tse et al., 1985), a plethora of reviews have summarized
information on biosynthesis, trafficking, structure, and
functions of this anchor. However, the majority of these
have emphasized the relationship between GPI deficiency and
disease development in mammals.

Compared to mammalian cells, the cell surface of
trypanosomatids contains exceptionally high numbers of
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GPI-anchored molecules making it reasonable to suggest that
this anchor has brought advantages to the parasites. One of these
advantages is the rapid transport of these molecules to the cell
surface promoted by the en bloc transfer of the GPI anchor to the
C-terminal residue of the polypeptide, enabling high production
rates of the wide range of surface molecules. In addition, the
biophysical properties of the anchor can be extended to the
anchored molecules and can be exploited by the parasites in
different ways, such as antibody clearance through endocytosis
(facilitated by mobility of the anchor) or overstimulation of
the immune system (connected to the shedding of anchored
molecules). Hence, by relying on GPIs, trypanosomatids have
ensured a fast, stable, and efficient way to assemble a range of
different molecules on their cell surfaces.

The GPI-anchored proteins of trypanosomatids are diverse
and the genetic expansion of such molecules is usually
linked to multigenic families providing variability inside the
population. Despite the very little information available for
wildlife trypanosomatids, it is evident that GPI-anchored
molecules expressed by the human pathogens, such as GP63
and TS, are shared by many other species. The importance
of these molecules becomes evident when we consider their
positive selection and their presence in a range of different
trypanosomatid species. Homologs of GP63 (Table 2) are
found in the monoxenic trypanosomatids Paratrypanosoma and
Crithidia (Inverso et al., 1993; Cuevas et al., 2003; El-Sayed
et al., 2005; Venkatesh et al., 2018) as well as in the free-
living kinetoplastid Bodo saltans (Jackson et al., 2016). The
presence of GP63 is less enriched in B. saltans (Table 2) than
in trypanosomes, suggesting a possible change of function of
this ancestral protease in parasites, which could be related
to their survival inside the invertebrate host (Jackson et al.,
2016). The biological role of TS in the transfer of sialic acid
to mucin molecules is well-exploited by T. cruzi, as discussed
above (see section “Trypanosoma cruzi”). However, other species
only have a few or no mucin-like genes. This apparent lack
of mucins can indicate either a different function for TS
in these organisms or low conservation of mucin-like genes
in these species. Another biological role of TS is in cell-to-
cell interaction, facilitating the invasion of macrophages by
T. cruzi (see section “Trypanosoma cruzi”). In this sense, the
attachment of T. carassii to blood vessels and other cells
(Dóró et al., 2019) could be related to TS, but suggests
that this molecule alone is not enough to guarantee cell
invasion. Thus, the genetic expansion of both GP63 and TS
in some species could mirror their functional diversity and is
likely linked to the trypanosomatids’ adaptation to different
microenvironments.

The macroevolution of trypanosomatids is likely to be
accompanied by host-switching and geographical dispersion
(Hoberg and Brooks, 2008; Lukeš et al., 2014). Notably, host
switches are considered to be one of the major processes in
the emergence of zoonotic diseases (Webster et al., 2016).
Thus, it is intriguing that these parasites are still being
overlooked by the research community. Although infections
caused by protozoans represent only around 10% of the
emerging infectious disease cases, once the infection barrier is

crossed, diseases caused by these organisms tend to become
established in the population due to difficulties in developing
vaccination strategies or lack of efficient drug treatment to
completely eliminate the parasite (Robertson et al., 2014).
Last, but not least, molecular evidence indicating cattle
infections by T. grayi on the African continent could be
indicative of an imminent host switch (Ngomtcho et al., 2017;
Paguem et al., 2019).

Overall, the widespread distribution of trypanosomatids and
their adaptation to diverse vertebrate host species are the
result of an unprecedented evolutionary success story. These
parasites have found opportunities to pass to new hosts by
acquiring means to survive and proliferate inside these and
ultimately adapting to allow the coexistence of host and
parasite (Araujo et al., 2015). This review has summarized
how trypanosomatids synthesize and utilize one biochemical
feature, namely the GPI anchor, to mediate the attachment of a
staggering variety of proteins that form the respective cell surface
coats. This fascinating example of evolutionary click-chemistry
might have contributed to the astonishing adaptive radiation
of trypanosomatids. The vast repertoire of surface molecules
combined with the biophysical properties of the GPI anchors
might have maximized their chance of success inside different
hosts. Unraveling their complete biological roles is necessary
for a complete understanding of parasite–host interactions,
which might impact the development of drugs by turning “their
weapons against them.”
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