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Objective: Costunolide (Cos) is a sesquiterpene lactone extracted from chicory.
Although it possesses anti-tumor effects, the underlying molecular mechanism against
gastric cancer cells remains unclear. This study aimed to explore the effect and potential
mechanism of Cos on gastric cancer.

Methods: The effect of Cos on HGC-27 and SNU-1 proliferation was detected by CCK-
8 and clone formation assay. The changes in cell apoptosis were determined using
Hoechst 33258 and tunel staining. The morphology of autophagy was analyzed by
autophagosomes with the electron microscope and LC3-immunofluorescence with the
confocal microscope. The related protein levels of the cell cycle, apoptosis, autophagy
and AKT/GSK3B pathway were determined by Western blot. The anti-tumor activity
of Cos was evaluated by subcutaneously xenotransplanting HGC-27 into Balb/c nude
mice. The Ki67 and P-AKT levels were examined by immunohistochemistry.

Results: Cos significantly inhibited HGC-27 and SNU-1 growth and induced cell
cycle arrest in the G2/M phase. Cos activated intrinsic apoptosis and autophagy
through promoting cellular reactive oxygen species (ROS) levels and inhibiting the ROS-
AKT/GSK3B signaling pathway. Moreover, preincubating gastric carcinoma cells with
3-methyladenine (3-MA), a cell-autophagy inhibitor, significantly alleviated the effects of
Cos in inducing cell apoptosis.

Conclusion: Cos induced apoptosis of gastric carcinoma cells via promoting ROS and
inhibiting AKT/GSK3B pathway and activating pro-death cell autophagy, which may be
an effective strategy to treat gastric cancer.
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INTRODUCTION

Gastric cancer (GC), one of the most common malignancies
worldwide, is the third leading cause of cancer deaths worldwide
(Bray et al., 2018), with more than half of the cases occurring in
East Asia especially in China, Japan, and South Korea (Rahman
etal., 2014). In China, gastric cancer is among the most common
malignancies, and its number of new cases accounts for 46%
of the global incidence (Hamashima, 2014; Zong et al., 2016;
Wang K. et al.,, 2020). Gastric cancer is often diagnosed late
and is composed of several subtypes with distinct biological and
molecular properties. Therefore, 25-50% of gastric cancer cases
metastasized during disease progression (Johnston and Beckman,
2019). Currently, surgery is the preferred treatment for patients
against gastric cancer, and chemotherapy remains the primary
option for patients with advanced gastric cancer (Cunningham
et al, 2006). However, more than half of the gastric cancer
patients undergoing radical resection developed local recurrence
or distant metastasis, and the prognosis is generally poor (Efferth
et al., 2008). In addition, another important problem in tumor
chemotherapy is the development of drug resistance and side
effects (Turner et al., 2012), so that most patients with gastric
cancer share a poor quality of life, with a survival time of less than
5 years in a majority of cases (Suzuki et al., 2016). Therefore, novel
drugs against gastric cancer with low toxicity and high potency
need to be developed urgently in the clinic.

Plants have long been regarded as a rich source of
natural products with a broad range of bioactivities, and
numerous studies have identified natural products with anti-
cancer activities (Zhang J. Y. et al, 2016; Lin et al, 2017;
Kang et al, 2019; Liu et al, 2019). Costunolide (Cos)
is a natural sesquiterpene lactone extracted from various
medicinal plants (Cao et al., 2016), including Saussurea, costus,
and chicory (Garayev et al, 2017). Accumulating evidence
has demonstrated multiple pharmacological activities of Cos,
including anti-inflammatory, anti-allergic, and anti-microbial
effects (Duraipandiyan et al., 2012; Park et al., 2016; Lee et al,,
2018). Recent studies have found that Cos possesses anti-
cancer effects against human gastric adenocarcinoma, prostate
cancer, liver cancer, bladder cancer, and esophageal cancer,
and promotes apoptosis of a variety of cancer cells (Rasul
et al, 2013; Hua et al, 2016a; Chen et al, 2017; Mao et al,
2019; Yan et al, 2019). However, the molecular mechanism
underlying the effects of Cos against gastric cancer cells has yet
to be elucidated.

Programmed cell death (PCD) plays an important role
in cancer pathogenesis and treatment, including apoptosis,
autophagy, and programmed necrosis and other mechanisms.
The form of type I PCD is called apoptosis, with characteristics
of cell membrane blebbing, cell shrinkage, and chromatin
condensation (Burgess, 2013), which occurs in two main classical
pathways: (1) the external pathway, stimulated by the activation
of the death receptor ligand system; and (2) the internal pathway,
caused by the change of mitochondrial membrane permeability,
the formation of the apoptosome, and the release of apoptosis-
related proteins. The form of type II PCD is termed autophagy,
with characteristics of autophagosomes and autophagolysosomes

appearing in the cytoplasm, digested eventually and degraded by
their own lysosomes, causing cell death (Al-Bari and Xu, 2020).

Reactive oxygen species (ROS) plays a vital role as a “second
messenger” in the intracellular signal cascade, controlling the
growth, proliferation, migration, and apoptosis or PCD of
cancer cells. An excessive amount of ROS caused oxidative
damage in the mitochondria of cancer cells to interfere with
cell signaling pathways, such as AKT (protein kinase B,
PKB)/glycogen synthase kinase-3p (GSK3p) signaling pathway.
AKT phosphorylation and the regulation of downstream effector
molecules GSK3a/p play a key role in regulating cell survival,
growth, and metabolism (Al-Bari and Xu, 2020).

In this study, we investigated the effect of Cos on the
proliferation, cell cycle, apoptosis, and autophagy of gastric
cancer GC cell lines both in vitro and vivo. The results showed
that Cos inhibited HGC-27 and SNU-1 cell growth and induced
apoptosis and autophagy via the ROS-AKT/GSK3p pathway
and induced apoptosis through activating pro-death autophagy,
which provides experimental support and a theoretical basis for
further research on the role of Cos in gastric cancer treatment.

MATERIALS AND METHODS

Experimental Reagents

Gastric carcinoma cell lines (HGC-27) (cat. No. CL-0107) and
(SNU-1) (cat. No. CL-0474), normal human gastric epithelial
cells (GES-1) (cat. No. CL-0563), and fetal bovine serum (FBS)
were purchased from Wuhan Procell Life Technology, Wuhan,
China. RPMI-1640 medium was purchased from Gibco (Thermo
Fisher Scientific, Carlsbad, CA, United States). The Hoechst
33258 staining solution (C1017), TUNEL Apoptosis Assay Kit
(C1088), and BCA Protein Assay Kit (P0012) were procured from
Beyotime Institute of Biotechnology, Shanghai, China. Rabbit
anti-human Cyclin B1 (1:1,000, cat. No. 12231S), Rabbit anti-
human cell division cyclin 25 homolog C (Cdc25¢) (1:1,000,
cat. No. 4866S), Rabbit anti-human Cdk1(1: 1,000, cat. No.
77055S), Rabbit anti-human Caspase 3 (1: 1,000, cat. No. 9662S),
Rabbit anti-human Bcl-2(1:1,000, cat. No. 4223S), Rabbit anti-
human Bax (1: 1,000, cat. No. 2774S), Rabbit anti-human Bak
(1:1,000, cat. No. 12105S), Rabbit anti-human PARP (1:1,000,
cat. No. 9532S), Rabbit anti-human Caspase 8 (1:1,000, cat.
No. 4790S), Rabbit anti-human death receptor-4 (DR4) (1:1,000,
cat. No. 42533S), Rabbit anti-human death receptor-5 (DR5)
(1:1,000, cat. No. 69400S), Rabbit anti-human Fas ligand (FasL)
(1:1,000, cat. No. 68405S), Rabbit anti-human Fas (1: 1,000, cat.
No. 4233S), Rabbit anti-human microtubule-associated proteinl
light chain3B (LC3B) (1:1,000, cat. No. 3868S), Rabbit anti-
human IREla (1:1000, cat. No. 3294S), Rabbit anti-human p62
(1:1,000, cat. No. 5114S), Rabbit anti-human Beclin (1:1,000,
cat. No. 3495S), Rabbit anti-human PARP (1:1,000, cat. No.
9532S) antibody, rabbit anti-human AKT (1:1,000, cat. No.
92728) antibody, rabbit anti-human phosphor-Akt (1:2,000, cat.
No. 4060S) antibody, rabbit anti-human GSK3p (1:1,000, cat.
No. 9315S) antibody, rabbit anti-human phosphor-GSK3p (Ser
9) (1:1,000, cat. No. 9322S) antibody, and rabbit anti-human
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (1:1,000,

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2021 | Volume 9 | Article 722734


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Xu et al.

Costunolide Induced Apoptosis via Autophagy

cat. No.5174S) antibody were obtained from Cell Signaling
Technology, Cambridge, MA, United States. Rabbit anti-mouse
Ki-67 (1:1,000, cat. No. abl6667) was obtained from Abcam,
Cambridge, United Kingdom. A horseradish peroxidase (HRP)-
labeled goat anti-rabbit Immunoglobulin G (IgG) antibody
(1:2,000, cat. no. CW0103) was purchased from CWbio, Beijing,
China. Cell Counting Kit-8 kits (CCK-8), ROS detection
kits (S0033S), Annexin V-fluorescein isothiocyanate (FITC)
apoptosis detection kits (C1062M), and cell cycle detection kits
(C1052) were purchased from Beyotime. D-luciferin (122799)
was from Perkin Elmer, Waltham, MA, United States. NAC
(HY-B0215), SC79 (HY18749), 3-Methyladenine (3-MA) (HY-
19312) were from MedChemExpress, Monmouth Junction, NJ,
United States. 4% polyformaldehyde was from Solarbio, Beijing,
China.

Cell Culture

HGC-27 and SNU-1 were cultured in Roswell Park Memorial
Institute 1640 (RPMI 1640) (containing 100 pg/ml streptomycin
and 100 IU/ml penicillin) supplemented with 100 ml/L FBS and
kept at 37°C with 5% CO, atmosphere.

Cell Proliferation Assay and Observation

of Cell Morphology

HGC-27 and SNU-1 that are in the logarithmic growth phase
were collected and inoculated into a 96-well plate at 5 x 103
cells/well, cultured overnight at 37°C; then HGC-27 and SNU-
1 were treated with Cos at different concentrations (0, 2.5,
5, 10, 20, 40, 80, and 160 wmol/L) in FBS-free RPMI 1640
for 24 and 48 h, and cell proliferation was detected by
the Cell Counting Kit-8 assay. We added 10 pl of CCK-
8 reagent to the cells in each well and incubated them at
37°C for 4 h; optical density values were measured with
a microplate reader at 450 nm. After the half-maximum
inhibitory concentration (IC50) was determined, the cells in four
different Cos concentrations were selected according to the IC50,
observed, and photographed under inverted light microscopy
(Leica, DMIL, Germany x 200). The cells in five microscope
fields of view were randomly selected for counting to evaluate the
cell viability in each group.

Colony Formation Assay

HGC-27 and SNU-1 were seeded into the 60 mm dish at a
density of 500 cells/well and cultured into RPMI 1640 containing
10% FBS for 24 h, then treated with various concentrations
of Cos (0, 10, 20, and 40 pM). The treated cells were
resuspended in RPMI 1640 containing 10% FBS and cultured
in 5% CO, at 37°C for 15 days to form colonies. After
the dish was washed with PBS, the colonies were fixed with
4% polyformaldehyde at room temperature then dyed with
1% crystal violet for 30 min at room temperature. Colonies
comprising 50 cells or more were counted by microscope (Leica
Microsystems, Wetzlar, Germany) as previously described (Chen
et al., 2016). Each experiment was done thrice in this study.
Colony formation rate = the number of each treatment/the
number of control x 100%.

Hoechst 33258 Staining

HGC-27 and SNU-1 were seeded into 12-well plates, cultured for
24 h, then treated with 0, 10, 20, and 40 uM Cos for 24 h. The
adherent cells were washed twice with PBS, then stained with
Hoechst 33258 (Beyotime) for 5 min at room temperature in
the dark. After being washed twice, the blue-stained nucleus was
observed under the BX41 fluorescence microscope (Olympus,
Tokyo Japan; amplification: x 400). The nucleus of living cells
presents diffuse and uniform fluorescence, and the characteristic
of apoptotic cells was that the nucleus or cytoplasm presents
dense granular and clumpy fluorescence. Images were captured
to quantitatively analyze via Image Pro Plus analysis software 6.0
(Media Cybernetics Inc., Rockville, MD, United States).

Tunel Staining

The apoptosis of GC cells and animal tumors were evaluated
via the Tunel Apoptosis Assay Kit (Beyotime). Firstly, the cell
samples and paraffin-embedded tissue sections (4 pm thick)
were treated by protein kinase K and 3% H,O,, respectively,
and incubated with Tunel detection solution (the component
of Tunel staining kit) for 1 h at 37°C, then incubated with
Streptavidin-HRP working solution. At last, the DAB solution
was added and the samples were observed and photographed
under the BX41 fluorescence microscope (Olympus Corporation;
amplification: x 400). Images were captured to quantitatively
analyze the apoptosis of cells via Image-Pro Plus analysis software
6.0 (Media Cybernetics). The number of apoptotic cells and
the total number of cells were counted, and the proportion of
apoptosis was calculated. Apoptosis cell proportion = number of
positive cells/total number of cells x 100%.

Flow Cytometry Assay

Cell cycle, apoptosis, and ROS level were measured by flow
cytometry analysis. HGC-27 and SNU-1 (2.0 ml/well, 3 x 10°
cells/mL) were seeded and cultured into the six-well plate for
24 h. After aspiration, the cells were incubated with 2.0 ml of
Cos at different concentrations (0, 10, 20, and 40 pmol/L) or
treated with Cos before pretreating with NAC in FBS-free high-
glucose DMEM for 24 h. The cell cycle detection kit, Annexin
V-FITC apoptosis detection kit, and ROS detection kit were
used for analysis according to the manufacturer’s instructions,
respectively. Briefly, the collected cells were stained with 75%
ethanol at 4°C overnight, propidium iodide (PI) for cell cycle
analysis, and Annexin V-FITC and PI for 15 min at 37°C
in a darkroom for apoptosis analysis, respectively. Then they
were incubated with 2',7'-dichlorodihydrofluorescein diacetate
(DCFH-DA) for 15 min at 37°C in a darkroom for ROS
level analysis. The cells were analyzed via flow cytometry (BD
FACSCalibur; Becton Dickinson, San Jose, CA, United States).

Western Blot Analysis

The levels of cell cycle-related protein (Cyclin B1, Cdc25¢, Cdk1),
intrinsic apoptosis-related proteins (Caspase 3, Bak, Bax, Bcl2,
PARP), extrinsic apoptosis-related proteins (caspase 8, DR4, Fas,
FasL), autophagy-related proteins (LC3B, beclin-1, p62), and
signaling pathway-related proteins (AKT, P-AKT, GSK3B, and

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2021 | Volume 9 | Article 722734


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Xu et al.

Costunolide Induced Apoptosis via Autophagy

P-GSK3p) in HGC-27, SNU-1 were analyzed by Western blot
analysis. Briefly, the protein of GC cell lines HGC-27 and SNU-1
was extracted with radioimmunoprecipitation assay (RIPA) lysis
buffer containing protease inhibitors on ice, and quantified using
the BCA Protein Assay Kit. The protein bands were separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to nitrocellulose membranes. After being
blocked with 5% bovine serum albumin (BSA) in phosphate-
buffered saline with Tween (PBST) for 1 h, the membranes
were incubated with primary antibodies at 4°C overnight, then
incubated with HRP-conjugated secondary antibodies for 1 h at
room temperature. The SuperSignal ELISA Femto Substrate was
added onto the membranes in a darkroom and was subsequently
exposed to x-ray films. The intensity of the Western bands was
determined by Image J software version 1.46 [National Institutes
of Health (NTH), Bethesda, MD, United States].

Immunofluorescence

The slides with the climbed cells in the culture plate
were fixed with 4% paraformaldehyde and permeabilized
with 0.5% Triton X-100 for 20 min. After being blocked
with BSA, the cells were incubated with the LC3B primary
antibody overnight at 4°C. At last, they were incubated
with Alexa-Fluor 488-conjugated secondary antibodies in 1%
bovine serum at 37°C for 1 h in the dark. Nuclei were
counterstained with DAPI for 15 min in the dark. Images
were photographed via a confocal laser scanning microscope
(OLYMPUS FV3000; Olympus Corporation, Center Valley, PA,
United States; amplification: x 1000), and endogenous LC3
puncta formation were analyzed using the FV10-ASW viewer
software ver. 4.2b (Olympus).

Transmission Electron Microscopy

We harvested the cells by centrifuging at 3000 r/min for
10 min, washing twice with cold PBS, aspirating the supernatant,
and fixing with 2.5% glutaraldehyde along the tube wall.
Then electron microscope slices were prepared according to
conventional procedures. At last, cell ultrastructure in every
group was observed under the electron microscope (HITACHI,
HT7700-SS, Tokyo, Japan).

Tumor Model in vivo

The procedures and ethics of animal use have been reviewed
and approved by the Biomedical Ethics Committee of Shaanxi
Provincial People’s Hospital (The Third Affiliated Hospital of
Xi’an Jiaotong University) (approval no. 2021-155). The 16
female Balb/c nude mice (5-6 weeks old, 19.5 £+ 2.6 g) were
from the Animal Center of Shanghai Institute of Family Planning
Science (Shanghai, China) [SCXK (Hu) 2018-0006].

Firstly, the HGC-27 cells with stable expression of luciferase
were constructed by lentivirus. Secondly, luciferase-positive
HGC-27 cells (5 x 10° cells per mouse) were injected
subcutaneously into the right flank of Balb/c nude mice, when
the tumor volume reached 100 mm? (Festing and Altman, 2002).
The mice were randomly divided into four groups (n = 4/group),
the negative control, the positive control, and the experimental
group. In the experimental group, the mice were administered

intraperitoneally with 30 mg/kg and 50 mg/kg Cos, respectively,
and with the same volume of dimethyl sulfoxide (DMSO) in the
negative control group, with cisplatin (2 mg/kg) in the positive
control group. It was injected every 3 days. The weight of the
animal was analyzed every 3 days, and the length (L) and width
(W) of the tumor were measured with a caliper. The volume
calculation formula is:

L x (W)23/2 (Du et al,, 2012). Thirty days later, animals were
sacrificed and the dissecting tumors, heart, liver, spleen, lungs,
and kidneys were for corresponding analysis.

Hematoxylin-Eosin and Tunel Staining

The tissues (containing tumors, hearts, livers, spleens, lungs,
kidneys) were fixed in 4% paraformaldehyde for 24 h,
dehydrated, and embedded in paraffin. Sections 4 pm thick
were stained with hematoxylin and eosin (H&E) and Tunel
for morphological observation, respectively. Images were
observed and photographed under the BX41 fluorescence
microscope (Olympus Corporation; amplification: x200) and
quantitatively analyzed via Image-Pro Plus analysis software 6.0
(Media Cybernetics).

Immunohistochemistry

The paraffin-embedded tissue sections (4 pm thick) were
deparaffinized and rehydrated, incubated with rabbit polyclonal
antibodies specific to Ki-67 and P-AKT at 4°C overnight,
incubated with HRP-conjugated secondary antibody at room
temperature for 2 h, and stained in hematoxylin for 3 min and
observed under the BX41 fluorescence microscope (Olympus
Corporation; amplification: x200).

In vivo Imaging of Balb/c Nude Mouse
Tumor Model

Bioluminescence imaging (BLI) was performed using an IVIS
imaging system (Perkin Elmer, Waltham, MA, United States)
after 15 and 24 days after drug intervention; 100 pl PBS
containing 25 mM D-luciferin (Caliper Life Sciences, Hopkinton,
MA, United States) was injected intraperitoneally 10 min before
luciferase detection.

Statistical Analysis

All data were represented as mean &+ SEM. The biotechnology
was repeated at least three times in vitro. The intergroup
deviations were evaluated with a one-way analysis of variance
(ANOVA) implemented in the GraphPad Prism 6.0 software,
with P < 0.05 indicating a statistically significant difference.

RESULTS

Costunolide Inhibited the Proliferation
and Colony Formation in GC Cells

CCK-8 and colony formation assay were used to analyze the
effect of Cos (Figure 1A) on GC cell proliferation. As shown
in Figure 1B, Cos could significantly inhibit the proliferation of
HGC-27 and SNU-1 cells in a dose-dependent manner compared
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with that in the control group (p < 0.001), but the effect of
Cos on normal gastric cells (GES-1) was not as sensitive as GC
cells (p > 0.05) (Figure 1B). As shown in Figure 1B, the half-
maximum inhibitory concentration (IC 50) for the two cells
at 24 or 48 h is about 40 WM. Therefore, Cos concentrations
of 0, 10, 20, and 40 pM were chosen in these assays. Phase-
contrast microscope results showed that Cos induced shrinkage,
deformation, and rupture and inhibited the proliferation in GC
cell lines HGC-27 and SNU-1, but it had no effect on GES-1
(Figure 1C). In addition, colony formation assay further revealed
that Cos obviously inhibited proliferation in a dose-dependent
manner (p < 0.001) but, on GES-1, was not as sensitive as GC
cells (Figure 1D).

Costunolide Induced Cell Cycle Arrest in
GC Cells

To estimate the effect of Cos on the cell cycle, we performed
flow cytometry and western blot analysis in HGC-27 and SNU-1
cells. The flow cytometry results suggested that Cos significantly
induced cell cycle arrest in the G2/M phase in HGC-27, SNU-1
cells with obvious dose-dependency (p < 0.001), but the effect
of Cos on GES-1 was not as sensitive as GC cells (p > 0.05)
(Figure 2A), and Western blot showed that the expression levels
of cell cycle-related proteins (Cdc25¢, Cdkl, Cyclin B1) in GC
cells were significantly downregulated by Cos, especially in the
40 uM Cos group (p < 0.001), but the effect of Cos on GES-1
cells was not significant (p > 0.05) (Figure 2B).

Costunolide Induced Apoptosis in GC
Cells

Hoechst 33258, Tunel staining, and flow cytometry were used to
evaluate the effect of Cos on apoptosis in GC cells. Hoechst 33258
and Tunel staining showed that along with Cos concentration
increase, the rate of apoptosis cell increased (p < 0.001)
(Figures 3A,B). The flow cytometry results revealed that Cos
could dose-dependently lead to the apoptosis of GC cell lines
HGC-27 and SNU-1 in the Cos treatment compared with the
control group (p < 0.001) (Figure 3C).

Costunolide Induced Intrinsic Apoptosis
but Not Extrinsic Apoptosis in GC Cells

To further explore the mechanism of Cos-inducing apoptosis, we
analyzed intrinsic and extrinsic apoptotic. Western blot revealed
that the levels of intrinsic apoptotic proteins [Cleaved-Caspase
3 (Cle-Caspase 3), Bax, Bak, Cleaved-PARP (Cle-PARP)] were
upregulated with dose-dependency, but Bcl-2 was downregulated
in HGC-27 and SNU-1 cells in the Cos treatment compared with
the control group (p < 0.001) (Figure 4A). However, the activities
of extrinsic apoptosis proteins [Cleaved-Caspase 8 (Cle-Caspase
8), DR4, Fas, FasL] did not change significantly between the Cos
treatment group and the control group (p > 0.05) (Figure 4B).

Costunolide Induces Autophagy in GC
Cells

To demonstrate the effect of Cos on autophagy in GC cells,
autophagic activity and autophagy-related proteins were analyzed

in HGC-27 and SNU-1. Transmission electron microscopy
results showed that the formation of autophagic vacuoles
in HGC-27 and SNU-1 significantly increased after Cos
treatment (Figure 5A). The confocal microscopy results showed
that treatment with Cos could lead to the aggregation of
autophagosomes both in HGC-27 and SNU-1 (p < 0.001)
(Figure 5B). Autophagy markers (LC3B, beclin-1, IREla) were
increased and p62 was decreased after Cos treatment with dose-
dependent manner (p < 0.001) (Figure 5C).

Costunolide-Induced Cell Cycle Arrest in
GC Cells Was Not via Increasing

Reactive Oxygen Species Levels

To investigate the mechanism of Cos-induced cell cycle arrest,
apoptosis, and autophagy of GC cell, the levels of ROS were
detected. The flow cytometry results showed that Cos could boost
ROS generation both in HGC-27 and SNU-1 cells in a dose-
dependent manner compared with the control group (p < 0.001)
(Figure 6A). HGC-27 and SNU-1 cells were first treated with
4 mmol/L NAC (an ROS scavenger) before the cells being
incubated with 40 uM Cos. The flow cytometry results showed
NAC could not reverse G2/M arrest (p > 0.05) (Figure 6B), and
the results of cell cycle protein markers in HGC-27 and SNU-1
also showed the same trend (p > 0.05) (Figure 6C).

Costunolide Induced Apoptosis and
Autophagy of GC Cell via Increasing

Reactive Oxygen Species Level

The flow cytometry results indicated NAC could significantly
reduce Cos-induced apoptosis (p < 0.001) (Figure 7A). The
Western blot results showed that the ratio of P-AKT/AKT
and P-GSK3P/GSK3p markedly downregulated in the Cos
treatment groups with dose-dependent manner compared with
the control group (p < 0.001) (Figure 7B). GC cells were
pretreated with 4 mmol/L NAC for 1 h before the cells
were treated with 40 pwmol/L Cos for 24 h. The ratio of
P-AKT/AKT and P-GSK3p/GSK3p in the Cos and NAC co-
treated group markedly upregulated higher than that of Cos
alone (p < 0.05) but downregulated lower than that of NAC
alone. In addition, apoptosis-associated protein PARP and
autophagy-associated protein LC3BII in the Cos and NAC co-
treated group downregulated higher than that of Cos alone
(p < 0.05) (Figure 7C).

Costunolide-Induced Cell Cycle Arrest in
GC Cells Was Not via Inhibiting

AKT/GSKS3p Signaling Pathway but

Induced Apoptosis and Autophagy via
Inhibiting AKT/GSK3g Signaling Pathway
The flow cytometry results revealed SC79 (an AKT activator)
could not reverse G2/M arrest in HGC-27 and SNU-1 cells
treated with Cos (p > 0.05) (Figure 8A), and the results of
cell cycle protein markers in HGC-27 and SNU-1 also showed
the same trend (p > 0.05) (Figure 8B). However, SC79 could
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reverse apoptosis and autophagy in HGC-27 and SNU-1 cells
(p < 0.05) (Figure 8C).

Costunolide Induced Apoptosis via

Activating Pro-death Autophagy

To study the relationships between autophagy and ROS-
AKT/GSK3p pathway, and between Cos-induced apoptosis and
autophagy, we pretreated HGC-27 and SNU-1 with 4 mmol/L
3-MA (an autophagy inhibitor) for 1 h before the cells were
incubated with 40 WM Cos. The results revealed 3-MA could
reverse the downregulation of cell viability after Cos treatment
in HGC-27 and SNU-1 cells (Figure 9A). The flow cytometry
results showed that 3-MA did not reverse the upregulation
of ROS after Cos treatment in HGC-27 and SNU-1 cells
(Figure 9B), and the Western blot results showed 3-MA also did
not reverse the upregulation of P-AKT and P-GSK3p (Figure 9C),
which meant autophagy was downstream to ROS-AKT/GSK3p
pathway. Western blot results showed that 3-MA could reverse
the upregulation of autophagy-related and intrinsic apoptosis-
related proteins after Cos treatment in HGC-27 and SNU-1,
while extrinsic apoptosis-related proteins were not significantly
altered among these groups. This indicated that Cos induced
intrinsic apoptosis via activating pro-death autophagy (p < 0.05,
Figure 9D).

Costunolide Inhibited Tumor Growth

in vivo

To estimate the anti-tumor growth effect of Cos in vivo, HGC-
27 tumor-bearing xenograft nude mouse models were established
and treated. The results showed that tumor volume and weight
in 30 mg/kg and 50 mg/kg Cos were significantly reduced
compared with the DMSO group, especially in the 50 mg/kg
group (p < 0.01), but both of them increased compared to
the Cisplatin group (Figures 10A-C). IVIS images showed the
same change after Cos treatment for 15 and 24 days (p < 0.01)
(Figure 10D). In addition, the HE staining results of tumor
tissue revealed the number of tumor cells in tissue sections was
decreased by Cos administration in mice and was even less
in the 50 mg/kg Cos group. As shown in Ki-67 and P-AKT
immunohistochemical staining results, Ki-67 and P-AKT positive
ratios were obviously inhibited in the 30 mg/kg and 50 mg/kg
Cos group, especially in the 50 mg/kg group, compared with the
DMSO group (p < 0.01). In contrast, the Tunel staining was
increased in Cos-treated mice, especially in the 50 mg/kg Cos
group (p < 0.01) (Figure 10E).

Costunolide Induced Apoptosis and
Autophagy in vivo

Western blot results confirmed that intrinsic apoptotic associated
proteins (Cle-Caspase 3, Bak, Bax, Cle-PARP) (Figure 11A)
and autophagy-associated protein LC3BII (Figure 11B) were
upregulated in Cos treatment groups, and was higher in the
50 mg/kg Cos-treated group compared with DMSO group,
while apoptosis-related protein Bcl-2, autophagy-related protein
p62, and the ratio of P-AKT/AKT and P-GSK3B/ GSK3f
(Figure 11C) were significantly decreased in the Cos treatment

group, especially in the 50 mg/kg treatment group, compared
with DMSO group (p < 0.001).

Costunolide Had No Side Effects in

Major Organs in vivo

The results showed no significant change in body and liver
weight between the Cos treatment group and the DMSO group
(p > 0.05) (Figures 12A,B), and HE staining of pathological
sections elucidated that Cos treatment had no evident damage to
the major organs (heart, liver, spleen, lung, and kidney) of mice
(Figure 12C), which confirmed the safety of Cos in vivo.

DISCUSSION

With the advancement of medical technology, the therapy of
gastric cancer has improved to a certain extent. However,
due to the side effects and damage of radiotherapy and
chemotherapy, the 5-year survival rate is still very poor (Bray
et al., 2018). Therefore, more effective therapeutic methods and
drugs are urgently required. In recent years, natural plant-derived
ingredients have been widely applied in the medical field due to
their low toxicity and various biological activities (Yu et al., 2017).
In China, natural products, such as artemisinin (qinghaosu), have
been universally applied in the treatment of malaria for long
history (Tu, 2011). Consequently, natural products have been
regarded as pioneers in drug discovery (Mosca et al., 2020).

Cos is a naturally active sesquiterpene lactone extracted
from the medicinal plant and possesses remarkable and diverse
biological and immunological properties, such as anti-cancer,
anti-microbial, and neuroprotective activities (Kim and Choi,
2019; Peng et al., 2019; Liu et al, 2020), a key medicine for
treating various gastrointestinal disorders (Wang W. et al., 2020).
As we all know, there are many risk factors for gastric cancer,
containing gastric ulcer, atrophic gastritis, and Helicobacter
pylori infection (Park et al., 1997). Cos can resist these risk
factors (Xie et al, 2020), which is particularly important in
the prevention and adjuvant treatment of gastric cancer. Some
researches revealed that Cos exerted anti-tumor activity by
suppressing cell proliferation. One research indicated that Cos
prevented the proliferation of liver cancer cells by regulating the
signaling pathway of epithelial growth factor (EGF) (Si et al,
2020). Another reported that Cos inhibited the proliferation,
invasion, and metastasis of osteosarcoma by inhibiting the STAT3
signaling pathway (Jin et al., 2020). Moreover, Cos suppressed the
proliferation in leukemic cell (Saosathan et al., 2021) and ovarian
cancer cells (Fang et al., 2019). We discovered Cos inhibited the
proliferation of gastric carcinoma cells, and the inhibitory effect
of Cos specifically targets gastric cancer cells because Cos has
no obvious inhibitory effect on normal gastric mucosal GES-
1 cells, and Cos induced cell cycle arrest in GC cells but has
no obvious effect on GES-1 cell. The effectiveness and safety
of Cos was also verified in an animal model, with evidence
confirming that in body and liver weight, there was no significant
difference between the Cos treatment group and Control group.
However, we just used one normal gastric mucosal cell line
GES-1 in our study. In future experiments, we will obtain a

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2021 | Volume 9 | Article 722734


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Xu et al.

Costunolide Induced Apoptosis via Autophagy

Relative intensity of fluorescence

A (%) 0O HGe-27
g 150 L ISN[VE]
3 * * L *
Z 100
.g # #
3 50 I-'-I
0+ T T T
Cos - - + - -
3-MA - + - - -
B Cos - - + +
3-MA s 2ot st wer
-
Ve M M M
% g g &
T O e P PR S T O I T
g g " g]
| J,
Z388 88 &g ig
(%] & L
ui-u7 10 DCF:&‘)M 10° 10 Qw-n2 10° DCF»;M 10° 10 gi-ai 10° Dcn‘fr‘)kn 10° 10° sz 10° Dcn‘-&;u 10° 108
C Cos - - + + Cos - = P §
3-MA - + ) + + _ N
D Cos - - + + Cos - R %
3-MA -+ - + 3-MA - + - +
LC3B-I LC3B-I
LC3B-II LC3B-II
62
B
Caspase 3 Caspase3 g
. le-Caspase 3
~ Cle-Caspase 3 ‘o
& < 3
@ g
PARP PARP E
le-PARP &
Caspase 8
Caspase 8
Cle-Caspase 8
Cle-Caspase §|
FIGURE 9 | Cos induced apoptosis via activating pro-death autophagy. HGC-27 and SNU-1 were pretreated with 3-MA for 1 h, then treated with indicated
concentration of Cos for 24 h. (A) The cell viability was analyzed using CCK-8 assay. (B) ROS levels were analyzed using flow cytometry analysis. (C) The
expressions of pathway-related proteins were analyzed using Western blot analysis. (D) The expressions of autophagy-related proteins (LC3B, Beclin1, p62), intrinsic
apoptosis-related proteins (Caspase 3, Bax, PARP), and extrinsic apoptosis-related proteins (Caspase 8, FasL) were analyzed using Western blot. Compared to Cos
(40 uM), *p < 0.05; compared to 3-MA + Cos (40 uM), #p < 0.05.

O HGC-27
61 B snu-1
- [
1
3 =
2 . "
*# *#
1 ] |II
0 T T T T T
3-MA -+ -+ - - +
Cos - - + + - - + o+
0O P-AKT/AKT
I B P-GSK3B/GSK3B
129, ey i,
1 -
0.8 1
0.6 1
0.4 1
0.2 1
0 -
Cos - - + - - + o+
3-MA -+ -+ - - + +
HGC-27 SNU-1
Cle-caspase 3/Caspase 3
B Bax/GAPDH
PARP/GAPDH
B Cle-caspase 8/Caspase 8

B FasL/GAPDH

Frontiers in Cell and Developmental Biology | www.frontiersin.org

1

3]

November 2021 | Volume 9 | Article 722734


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Xu et al. Costunolide Induced Apoptosis via Autophagy

A B —&— DVISO C 3,5
= —@=— (C0s(30mg/kg) [
£ 1000 Cisplatin z 15 2
COS(Somg/kg)_ E 600 . " 6 : - =
% 600 B3 g 0.5
> P [
Cos(50mg/kg) . 400 et 0
g 200 D DY
- RS AN
) . E 0+ T T T T T 1 Q é\oo @% \f_)Q
Cisplatin 12 15 18 21 24 27 30 3> &
o o
¢y ¢y
D 24 days 25
’ i} 2 20 e
g g 15 -
a : gz 10
: 2% 0 L
E; g o0 T T T )
= - N e & 15 days
: SO P Iy
] Q & & &
E g N
o O") 0‘1
o C
5} ::; 500
> g & 400 .
£ e =
[} o x 300
e 2
: g 2 200
o T g 100 Ij_l
I
< 0 T T v
E N N .o 24days
g NS
O & P
S
E
w
]
&=
K60
18 40 *
° N
220 o
H
~ &0
o
>4
K]
c
=
Rt
T P F R
s ¢
S &
#04,200m & &
FIGURE 10 | Cos inhibited tumor growth in vivo. (A) Tumor was taken after 30-day treatment in the DMSO, Cos (30 mg/kg), Cos (50 mg/kg), and cisplatin groups.
(B) Tumor volume of mice was measured every 3 days. (C) Tumor weight of mice was measured after 30-day treatment in the DMSO, Cos (30 mg/kg), Cos
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(E) Histochemical analysis of H&E staining, Ki-67, tunel, and P-AKT levels in tumor tissue sections in the DMSO, Cos (30 mg/kg), Cos (50 mg/kg), and cisplatin
groups (magnification was x200, x400, x200, and x400, respectively). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 11 | Cos induced apoptosis and autophagy in vivo. (A) The expressions of apoptosis-related proteins (Caspase 3, Bak, Bax, Bcl-2, and PARP) of Cos
induced in mice tumor were analyzed by Western blot. (B) The expressions of autophagy-related protein (LC3B, p62) of Cos induced in mice tumor were analyzed
by Western blot. (C) The expressions of signaling pathway-related protein (AKT, P-AKT, GSK-38, P-GSK-3p) of Cos induced in mice tumor were analyzed by

[ Cle-Caspase 3/Caspase 3
W Bak/GAPDH
M Bax/GAPDH
_ 0T Bcl2/GAPDH
g 8 Cle-PARP/PARP
L
c
3
2
Q
()
=
=
(©
T
o
DMSO Cos(30mg/kg) Cos(50mg/kg) Cisplatin
OLc3BIl/LC3B 1
3 M p62/GAPDH .
K] T
3 254 .
5]
= 1.5
2 1- . -
% 0.5 | ' ' L
o
0 1 Ll
DMSO Cos(30mg/kg) Cos(50mg/kg) Cisplatin
1.2 4 O P-AKT/AKT
% B P-GSK-3B/GSK-3B
[
AT I
= *k
‘v 0.89
g
5 .
2 0.64
() ke
>
5 044
o
€ 0.2
0 T T T
DMSO Cos(30mg/kg)  Cos(50mg/kg) Cisplatin

couple of other normal gastric mucosal cells lines as control
group, which will be more convincing. Studies have found
that Cos inhibits the proliferation of human ovarian cancer
cells via activating apoptosis and autophagy (Fang et al., 2019).
Moreover, in renal cell carcinoma, Cos also caused apoptosis

and autophagy via triggering ROS/MAPK signaling pathways (Fu
etal., 2020). A previous study revealed Cos-induced apoptosis in
human gastric cancer cells, but the autophagy activity and the
relationship between apoptosis and autophagy of Cos induced
in gastric cancer are seldom studied. This study found that Cos
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FIGURE 12 | Cos had no side effects in major organs in vivo. (A) The body weight of mice was measured every 3 days. (B) Liver weight of mice was measured after
30 days. (C) H&E staining of heart, liver, spleen, lung and kidney tissue sections (magnification: x200) was measured after Cos treatment for 30 days. Compared to
the DMSO group, *p < 0.05, **p < 0.01, **p < 0.001.
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could significantly inhibit HGC-27 and SNU-1 growth, induce
G2/M phase arrest, and trigger apoptosis and autophagy in a
dose-dependent manner. Further experiments confirmed that
Cos improved cellular ROS levels and blocked the AKT/GSK38
signaling pathway. NAC pretreatment reversed the effects of
Cos-induced apoptosis and autophagy via AKT/GSK3 signaling
activation. Moreover, Cos induced pro-death autophagy to
activate apoptosis.

Deregulation of the cell cycle represents an important trait of
tumors (Yu et al., 2020). Many anti-cancer drugs inhibit tumor
cell proliferation via stalling the cell cycle (Wu et al., 2020). Cos

was found to induce G1/S phase arrest in human esophageal
carcinoma Eca-109 cells (Hua et al., 2016b) and induce G2/M
phase arrest in human liver cancer HepG2 cells and breast cancer
MDA-MB-231 cells (Mao et al.,, 2019). Our study revealed Cos
could significantly induce GC cell cycle arrest in the G2/M phase
via mediated Cyclin B1, Cdc25c, and Cdkl protein expression.
Another trait of tumors is their ability to evade apoptosis.
Therefore, inducing apoptosis represents an indispensable
mechanism for anti-cancer drugs (Zhang et al., 2016; Kang et al.,
2019; Liu et al,, 2019). Cos was previously confirmed to induce
apoptosis in human gastric carcinoma, prostate cancer, liver
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cancer, bladder cancer, and esophageal carcinoma. In accordance
with these findings, our study indicated that Cos could induce the
apoptosis of gastric cancer cell lines HGC-27 and SNU-1. Drugs
induce cancer cell apoptosis through the mitochondrial or the
extrinsic apoptosis pathway depending on the type of cancer cell
and other factors. Recent studies indicated that Cos induces cell
apoptosis of bladder cancer and lung cancer via mitochondrial
pathways and induces leukemia cancer and breast cancer via
extrinsic pathways (Hua et al,, 2016; Zhang et al., 2016; Hu et al,,
2018). Our results showed that Cos upregulated mitochondrial
apoptosis protein expression of Caspase 3 and PARP, and the
ratio of Bax/Bcl-2 and Bak/Bcl-2. However, extrinsic apoptosis
proteins [Cle-Caspase 8, DR4, Fas, Fas ligand (FasL)] were not
significantly altered, suggesting that Cos induced apoptosis via
intrinsic (mitochondrial) pathway in gastric cancer cells.

Autophagy is a lysosomal degradation pathway with the
characterization of an increase in the number of acidic vesicle
organelles associated with autophagosomes, dysregulating in
cancer cells as another important way of PCD (Kanno et al,,
2008; Choi et al., 2012). Autophagy has the dual effects of
promoting cell death and inhibiting cell death, depending on
tumor cell types (Yun and Lee, 2018). Recent studies exhibited
that Cos could activate autophagy in renal cell carcinoma and
ovarian cancer through the ROS/MAPK pathway (Fu et al,
2020), while inhibiting autophagy in hepatocellular carcinoma
cells (Okubo et al., 2021). Results of this study confirmed that
Cos significantly activated autophagy, featured by the increased
expression of LC3BII and Beclin 1, while p62 decreased in a
dose-dependent manner. That was contradictory to the report
that apigenin could induce autophagy and promote the increase
in p62 expression (Wei et al,, 2020), but consistent with the
report that Tanshinone I activated autophagy via decreasing the
expression of p62 (Zhou et al., 2020). The reason for the p62
decrease in our study may be that p62 protein is located on the
autophagosome by LC3 binding, and it is degraded by autophagy
(Dong et al., 2020).

Reactive oxygen species are by-products of aerobic
metabolism. Higher ROS levels are observed in various
cancer cells than normal cells (Gorrini et al., 2013), and ROS
is a vital factor for drug-activated apoptosis and autophagy
(Zhang et al,, 2016). Cos induced apoptosis through ROS-
mediated endoplasmic reticulum stress in human U20S cells
(Wang et al., 2016). Cos also increased ROS levels in human
esophageal carcinoma Eca-109 cells, lung adenocarcinoma
A549 cells, and renal cell carcinoma, leading to apoptosis and
autophagy (Nadda et al., 2020). Cos could dose-dependently
promote ROS generation in gastric cancer cells, and NAC
pretreatment could reverse Cos-induced apoptosis and PARP
spliceosome generation. As an important effector downstream
of ROS, AKT/GSK3f mediates the apoptosis and autophagy
of a variety of cells (Deng et al., 2019; Wang et al,, 2019; Zhao
etal., 2019). One study reported that it suppresses gastric cancer
by repressing AKT/GSK3p signaling to inhibit autophagy (Dai
et al., 2021). Another reported placenta-specific 8 inhibited
oral squamous cell carcinogenesis via blocking AKT/GSK3p
signaling pathways (Wu et al., 2020). This study confirmed
the inhibitory effects of Cos on the AKT/GSK3B pathway,

which was reversed by SC79 (AKT activator) pretreatment.
These results indicate that Cos promoted autophagy and
apoptosis via inhibiting the ROS-mediated AKT/GSK3p pathway
in HGC-27 and SNU-1, which is consistent with animal
experiment results.

At last, we also proved that Cos activated prodeath autophagy
to induce intrinsic apoptosis via modulation of the AKT/GSK-38
signaling pathway in gastric cancer (Figure 12). The mechanism
has been further confirmed that the Cos plus 3-MA (an inhibitor
of autophagy) treatment significantly inhibited the expression
level of apoptosis-related proteins compared with Cos alone.
It was reported that the overexpression of p62 could promote
cell apoptosis, which is related to the ubiquitin-associated
(UBA) domain at the C terminal (Zhang et al., 2013). This
finding indicates that p62 protein can be used not only as
a marker for autophagy activation but also as an important
regulator of apoptosis.

In summary, Cos significantly inhibited cell proliferation,
hindered G2/M phase progression, and promoted apoptosis
and autophagy in HGC-27 and SNU-1. Mechanistic studies
reveal that Cos promoted ROS generation and inhibited the
AKT/GSK3p pathway, thus triggering cell-intrinsic apoptosis
through activating prodeath autophagy (Figure 13). This study
showed that Cos might be a potential drug for the treatment
of gastric cancer. However, there were some limitations in our
study. Firstly, we just chose the female Balb/c nude mice for
an animal model; it may be a limitation. In the future, we
will use a mix of sexes for animal studies. In addition, in
this present study, we only used small-molecule inhibitors as
methods of perturbation, such as NAC, SC79, and 3-MA. In
the following experiment, we will include orthogonal approaches
such as siRNA-mediated knockdown or gene overexpression to
confirm the results. Lastly, in order to further investigation in
Cos development, we will strictly design the clinical trial program
and perform rigorous clinical trials with actual tumor level
data to clarify.
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