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Background: Cancer stem cells (CSCs), which are characterized by self-renewal and
plasticity, are highly correlated with tumor metastasis and drug resistance. To fully
understand the role of CSCs in colorectal cancer (CRC), we evaluated the stemness
traits and prognostic value of stemness-related genes in CRC.

Methods: In this study, the data from 616 CRC patients from The Cancer Genome
Atlas (TCGA) were assessed and subtyped based on the mRNA expression-based
stemness index (mRNAsi). The correlations of cancer stemness with the immune
microenvironment, tumor mutational burden (TMB), and N6-methyladenosine (m6A)
RNA methylation regulators were analyzed. Weighted gene co-expression network
analysis (WGCNA) was performed to identify the crucial stemness-related genes
and modules. Furthermore, a prognostic expression signature was constructed
using the Lasso-penalized Cox regression analysis. The signature was validated via
multiplex immunofluorescence staining of tissue samples in an independent cohort of
48 CRC patients.

Results: This study suggests that high-mRNAsi scores are associated with poor overall
survival in stage IV CRC patients. Moreover, the levels of TMB and m6A RNA methylation
regulators were positively correlated with mRNAsi scores, and low-mRNAsi scores were
characterized by increased immune activity in CRC. The analysis identified 34 key genes
as candidate prognosis biomarkers. Finally, a three-gene prognostic signature (PARPBP,
KNSTRN, and KIF2C) was explored together with specific clinical features to construct
a nomogram, which was successfully validated in an external cohort.

Conclusion: There is a unique correlation between CSCs and the prognosis of CRC
patients, and the novel biomarkers related to cell stemness could accurately predict the
clinical outcomes of these patients.

Keywords: tumor immune microenvironment, colorectal cancer, cancer stem cell, N6-methyladenosine, machine
learning
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INTRODUCTION

Colorectal cancer is among the most common and lethal
cancers of the digestive system (Sanoff et al., 2007). Although
neoadjuvant chemoradiotherapy and immunotherapy offer good
prospects for operable colorectal cancer cases, the 5-year survival
rates remain low in cases with advanced disease (Bray et al.,
2018). Following advances in individualized tumor treatment, a
remarkable tumor heterogeneity was discovered and shown to
be closely associated with chemoresistance, radiosensitivity, and
patient survival (Chen et al., 2016). Cancer stem cell (CSC) traits,
a crucial part of cancer heterogeneity, are considered to be crucial
drivers of the prognosis and response to therapy (Park et al., 2012;
Chen et al., 2016).

Mounting evidence suggests the existence of CSCs in
colorectal cancer, with studies revealing their roles in metastasis,
drug resistance, and continual adaptation of cancer cells to the
changing microenvironment (Zeuner et al., 2014; Lenos et al.,
2018). It has been demonstrated that accumulated epigenetic and
genetic variability allows CSC to evolve and thereby continue
tumor growth and maintenance, which is closely associated with
the alteration of the tumor microenvironment (TME) (Wicha
et al., 2006; Kreso and Dick, 2014). Recent studies demonstrated
that colon cancer cells with stem-cell-like properties can promote
tumor development, which is regulated by the TME and not a
fully autonomous behavior of individual cells (Ricci-Vitiani et al.,
2007; Choi et al., 2009). Cancer stemness encompasses both the
stemness phenotype of bona fide CSCs and the intrinsic potential
for differentiation into colon cancer cells, which is considered a
fundamental underlying property of malignancy (Michieli et al.,
2004; Cheng et al., 2006). However, most related theories have not
been confirmed in vivo or translated into clinical research, which
can be attributed to the integrated and complex cancer ecosystem.

The interaction between the immune system and CSCs is
still controversial, as the increased tumorigenicity of CSCs
reveals that they can promote oncogenic immunomodulation
in colon cancer (Condeelis and Pollard, 2006; Baharom et al.,
2020). Moreover, cancer cells and CSCs with high stemness
exhibit decreased expression of major histocompatibility complex
(MHC) molecules, thereby promoting immune evasion and
decreasing the activity of antitumor immune cells (Sultan et al.,
2017). However, an integrated understanding of colorectal cancer
stemness, including its interactions with the tumor immune
microenvironment, still requires further research. To evaluate
the role of stemness in tumor pathogenesis and the vital

Abbreviations: CSC, cancer stem cell; TME, tumor microenvironment; MHC,
major histocompatibility complex; COAD, colon adenocarcinoma; READ, rectum
adenocarcinoma; OCLR, one-class logistic regression; CIBERSORT, Cell type
Identification by Estimating Relative Subsets of RNA Transcripts; ESTIMATE,
Estimation of Stromal and Immune cells in Malignant Tumors using Expression
data; m6A, N6-methyladenosine; TCGA, The Cancer Genome Atlas; SNV, single
nucleotide variants; RNA-seq, RNA-sequencing; DEGs, differentially expressed
genes; WGCNA, weighted gene co-expression network analysis; TOM, topological
overlap matrix; MM, module membership; GS, gene significance; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GO, Gene Ontology; TMAs, tissue
microarrays; OS, overall survival; ROC, receiver operating characteristic; AUC,
area under the curve; lncRNA, long non-coding RNA.

factors leading to dedifferentiation and acquisition of stem-cell-
like properties in colorectal cancer, artificial intelligence and
bioinformatic methods could be employed to further understand
cancer stemness (Sokolov et al., 2016; Malta et al., 2018).
One-class logistic regression (OCLR) can be used to extract
epigenetic and transcriptomic features from normal stem cells
and their differentiated progeny, including induced pluripotent
stem cells and embryonic stem cells with different level of
stemness. Notably, this approach could also be used to identify
the stem cell signatures and quantify cancer stemness via a
multi-omics analysis.

In this study, we hypothesized that cancer stemness may
confer immunosuppressive properties on tumors and mediate
the prognosis. To verify it, we developed the immune score
construct and identified the proportions of immune cells using
vector regression. We then assessed of correlations the stemness
indices with molecular features and identified a stemness-related
gene signature. The prognostic signature was explored together
with specific clinical features to construct a nomogram, which
was successfully validated in an external cohort, which might
be helpful in evaluating the prognosis of colon and rectal
cancer patients.

MATERIALS AND METHODS

Data Sources
Within The Cancer Genome Atlas (TCGA) database,1 we
identified the transcriptome profiling by RNA-sequencing (RNA-
seq), single nucleotide variants (SNV), and the corresponding
prognostic and clinicopathological information of the colon and
rectal cancer set. Moreover, the Ensemble IDs were converted
to gene symbols based on the Ensemble database.2 The RNA-
seq results of 433 tissues and 408 colon cancer samples were
obtained from TCGA-colon adenocarcinoma (COAD), and 221
tissues and 208 rectal cancer samples were obtained from TCGA-
rectum adenocarcinoma (READ) with the fragments per kilobase
of transcript million mapped reads (FPKM) method (Zeng et al.,
2018). The SNV results were obtained from COAD and READ
with the VarScan2 Variant Aggregation and Masking.

Colorectal Cancer Patients
Colorectal cancer specimens that underwent surgical resection
from January 2006 through December 2012 were approved
by the Pathology Department of the Cancer Institute and
Hospital, Chinese Academy of Medical Sciences. All of the
patients provided informed consent. Patients who met the
following criteria were included: a) did not undergo neoadjuvant
radiotherapy or chemotherapy before the surgery and b)
with complete clinicopathological information, including sex,
age, tumor location, TNM classification, and follow-up time.
Moreover, the patients in this study were followed up every
3 months until January 1, 2018. Forty-eight tumor tissues and
adjacent normal tissues were collected from colorectal cancer

1https://tcga-data.nci.nih.gov/tcga/
2http://asia.ensembl.org/index.html
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patients with untreated stage III to stage IV. This study has been
approved by the Ethics Committee of Cancer Hospital, Chinese
Academy of Medical Sciences.

mRNAsi in Subtypes
Unsupervised learning, as a machine learning technique, was
employed in the field of medical data mining, and Malta
et al. (2018) drew two stemness indices based on reflected
epigenetic regulation features and transcriptome, respectively,
named mRNAsi and mDNAsi with OCLR. The mRNAsi is
used to identify cancer stemness features and assess the degree
associated with oncogenic dedifferentiation, which could be a
quantitative form of cancer CSCs. Higher mRNAsi scores are
related with cancer biological processes in CSCs and more tumor
dedifferentiation based on the histopathological grades. We
divided colon and rectal cancer patients into high-mRNAsi group
and low-mRNAsi group based on the cutoff value determined by
the median mRNAsi index.

Differentially Expressed Genes
The “limma” packages in R language were employed to identify
differentially expressed genes in the expression data from TCGA,
and the Wilcoxon test was used in the analysis processing
(Yoshihara et al., 2013). The | log2-fold change| > 1 and false
discovery rate (FDR) < 0.05 were considered to be the cutoff
criteria for the selection of differentially expressed genes (DEGs)
between colon and rectal cancer and normal sets. The volcano
plot and heatmap were drawn with the “pheatmap” package in R.

Estimation of the Immune
Microenvironment and Infiltrating
Immune Cells
We employed the Estimation of Stromal and Immune cells
in Malignant Tumors using Expression data (ESTIMATE) to
evaluate the immune score and immune cell infiltration level,
for each colon and rectal cancer sample from TCGA (Song
et al., 2017). Then, we evaluated the enrichment levels of the
29 immune signatures in each colon and rectal cancer specimen
by the single-sample gene set enrichment analysis (ssGSEA)
score (Ritchie et al., 2015). The colon and rectal cases could
be classified into three subgroups based on the ssGSEA score
and hierarchical clustering. Besides, we evaluated the 22 human
immune cell subsets of every colon and rectal cancer sample with
Cell type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) web portal3 and 1,000 permutations
(Barbie et al., 2009). The CIBERSORT deconvolution algorithm
output had a p-value < 0.05 and was considered accurate and
successful deconvolution. Moreover, the output estimates would
be normalized for each sample to add up to one, enabling
their direct interpretation as cell fractions for comparison across
different groups. The package “Genefilter” R was employed to
identify each sample.

3http://cibersort.stanford.edu/

Weighted Gene Co-expression Network
Analysis
We used the weighted gene co-expression network analysis
(“WGCNA”) R package to establish the co-expression network of
differentially expressed genes (Chai et al., 2019). We employed
Pearson’s correlation matrices, co-expression similarity matrix,
and average linkage method to evaluate the correlations among
the included genes. We used the function Amn = | Cmn|
β (Cmn = Pearson’s correlation between gene-m and gene-n;
Amn = adjacency between gene m and gene n; β representing
soft thresholding parameter) to distinguish the strength of
correlations and build a weighted adjacency matrix with a scale-
free co-expression network. We used a topological overlap matrix
(TOM) to evaluate the connectivity and dissimilarity of the
co-expression network established with an appropriate β value.
Based on the TOM dissimilarity measurements, the average
hierarchical linkage clustering could be established, and we set
the minimum genome to 30 to build module dendrograms.

In order to confirm the key modules and genes, we set the
module membership (MM) and gene significance (GS) to be
the measure used to identify the correlation between genes and
mRNAsi and epigenetically regulated mRNAsi (EREG-mRNAsi).
The module eigengenes (MEs) were defined as the significant
components of principal component analysis (PCA) for each
gene module, where the expression level of every gene could be
grouped with a distinct feature. We used a log10 transformation
of the p-value (GS = lgp) for the linear regression of correlations
between clinical phenotypes and gene expression. We used
module significance (MS) to represent the correlation between
clinical traits and gene expression calculated using the average
GS in the module. We used a cutoff of < 0.25 to merge highly
similar modules, which could help cluster the key genes. The
thresholds for the screening of key module genes were set as cor.
gene GS > 0.5 and cor. gene MM > 0.6.

Gene Set, Ontology, and Pathway
Enrichment Analysis
The package “clusterProfiler” in R was employed to evaluate
the enrichment analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) to reveal the key
biological functions of the module genes (Yang et al., 2018).
We set p-value < 0.05 and an FDR < 0.05 as the statistically
significant criteria to output. The whole transcriptome of all
tumor samples was employed for GSEA, and only gene sets
with NOM p < 0.05 and FDR q < 0.05 were set as statistically
significant criteria.

Multiplex Immunofluorescence Staining
To evaluate the expression and distribution of three key
genes related to tumor stemness in colorectal cancer and
normal tissues, we performed multiplex immunofluorescence
staining using the PANO 7-plex IHC kit (Cat. No. 0004100100;
Panovue, Beijing, China) and Tyramide Signal Amplification
Fluorescence Kit (Panovue, Beijing, China) (Yu et al., 2012).
We established the colorectal cancer tissue microarrays (TMAs)
consisting of primary tumor, metastatic tumor, and matched
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normal tissue from cancer patients who had been confirmed
by pathological examination with hematoxylin and eosin (H&E)
staining. Each of these tissues was cut into pieces of 1.0 mm
and attached to the slides (5 mm thick) from the TMAs.
The TMAs were incubated with anti-PARPBP (ab211634;
1:100; Abcam, Cambridge, United Kingdom), anti-KNSTRN
(ab122769; 1:100; Abcam, Cambridge, United Kingdom), and
anti-KIF2C (12139-1-AP; 1:200; Proteintech, Rosemont, IL,
United States) antibodies at 4◦C overnight, and then with
horseradish peroxidase-conjugated secondary antibody and
tyramide. A microwave was used to heat-regenerate the TMAs
after each Tyramide Signal Amplification step. We used 4′,6-
diamidino-2-phenylindole (DAPI) to counterstain the cell nuclei.
The multiplex immunofluorescence image analysis is shown in
Supplementary Materials.

Statistical Analysis
In this study, the colon and rectal cancer specimens were
allocated into training and testing groups randomly through
the 2:1 ratio with the package “caret,” in order to promote the
generalization ability of the model. Moreover, we established
the Lasso-penalized Cox regression model to identify the most
significant survival-related gene signatures with the overall
survival (OS) of patients. We set 10-fold cross-validation as
the criteria to prevent overfitting with the penalty parameter
lambda.1se (Goeman, 2010). Then, the time-dependent receiver
operating characteristic (ROC) curve and the area under the
curve (AUC) were employed to identify the prognostic accuracy
of the three-gene signature model in the training and testing
groups with the package “survival ROC” (Heagerty et al., 2000).
The median of risk scores was set as the cutoff value to
the separate patients into high-risk and low-risk score groups.
We employed the Kaplan–Meier survival analysis and the
log-rank test to evaluate difference in OS between different
groups. The final (forward and backward elimination methods)
multivariate Cox regression analysis was employed to evaluate
the independence of predictors and established three signatures
and a nomogram. Then, we validated the performance of the
Cox model internally and externally with the bootstrap method.
Bootstrap-corrected OS rates were calculated by averaging the
Kaplan–Meier estimates based on 2,000 bootstrap samples.

RESULTS

Colon and Rectal Cancer Patients Could
Be Subtyped Using the mRNAsi
To explore the mRNAsi in colon and rectal cancer, we obtained
the transcriptome profiling for the gene expression and clinical
information of colon and rectal cases from the TCGA database,
and the analysis workflow is shown (Supplementary Figure 1).

The mRNAsi of colon and rectal cancer tissues was
significantly higher than that of normal tissues (Wilcoxon rank
sum test, p < 0.05, Figures 1A,H), which suggested that the
level of stemness is associated with tumor development. The
mRNAsi among different stages of colon and rectal cancer did not
show significant differences (Mann–Whitney U-test, p < 0.05,

Figures 1B,C,I,J), which suggested the mRNAsi may not be
closely related to the clinical stage in many tumor types (Bai
et al., 2020; Mao et al., 2021; Pei et al., 2020). In our study, the
colon and rectal cancer patients were divided into high-mRNAsi
and lowmRNAsi groups based on the cutoff value determined by
the median mRNAsi index (Figures 1D–G,K–N). Stage IV colon
cancer patients with higher mRNAsi had a significantly shorter
OS than those with lower mRNAsi (log-rank test, p < 0.05,
Figure 1G). These results suggested that the mRNAsi of colon
and rectal cancer is closely associated with the prognosis of stage
IV colon cancer patients.

Differences in Gene Mutations and the
Expression of m6A RNA Methylation
Regulators Among the mRNAsi Subtypes
We compared the mutational landscape between colon and rectal
cancer patients in the high- and low-mRNAsi groups. A higher
proportion of APC (80.7%) and TP53 (61.9%) mutations were
found in the high-mRNAsi group than the proportion of APC
(70.7%) and TP53 (51.2%) mutations in the low-mRNAsi group
of colon cancer patients, and the difference was statistically
significant (Supplementary Figures 2, 3).

Moreover, high mRNAsi was significantly associated with
increasing expression of m6A RNA methylation regulators
in colon and rectal (Wilcoxon rank sum test, ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001, Supplementary Figures 4A,B).
Correlation analysis was performed in high- and low-mRNAsi
subgroups of colon and rectal cancer patients (Supplementary
Figures 4C–F). The result suggested that high cancer stemness
could be significantly associated with the high expression of m6A
RNA methylation regulators and regulated their correlation.

Differences of Cell Stemness and
Immune Microenvironment Between the
mRNAsi Subtypes
We used 29 immune-associated gene sets to quantify the
enrichment levels of different immune cell functions, pathways,
and types in colon and rectal cancer samples based on ssGSEA
scores (Chai et al., 2019). The ssGSEA scores of the 29 gene sets
were employed for hierarchical clustering of immune subtypes
into high, moderate, and low groups (Figures 2A,B). We also
evaluated the immune score using ESTIMATE, and the immune
scores were higher in the high subtype than those in the low
subtype (Wilcoxon rank sum test, p < 0.001) (Ritchie et al.,
2015). The mRNAsi in the high subtype was higher than in
the low subtype for colon cancer patients. However, there is no
significant difference for rectal cancer patients (Kruskal–Wallis
test, Wilcoxon rank sum test, p< 0.001, Figures 2C,F). Moreover,
we found that immune score was lower in the high-mRNAsi
group than in the low-mRNAsi group for both colon and rectal
cancer (Wilcoxon rank sum test, p < 0.001, Figures 2D,G).
Moreover, immune score has been proven lower in the high-
mRNAsi group than in the low-mRNAsi group for gastric cancer
(Mao et al., 2021). In addition, when comparing the tumor
mutational burden (TMB) in groups with different levels of
stemness index, we observed the opposite trend, with the level
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FIGURE 1 | Colon and rectal cancer patients could be subtyped using the mRNAsi. (A) Differences in mRNAsi between normal and colon cancer tissues. (B,C)
Comparison of mRNAsi in different T stages (B) or N stages (C) in colon cancer. (D–G) Kaplan–Meier survival curves of mRNAsi in colon cancer. p < 0.05 indicates
statistical significance. (H) Differences in mRNAsi between normal and rectal cancer tissues. (I,J) Comparison of mRNAsi in different T stages (I) or N stages (J) in
rectal cancer. (K–N) Kaplan–Meier survival curves of mRNAsi in rectal cancer. p < 0.05 indicates statistical significance.

of TMB increasing from the low-mRNAsi group to the high-
mRNAsi group (low mRNAsi < high mRNAsi) (Wilcoxon rank
sum test, p < 0.001, Figures 2E,H).

We investigated the proportions and differences of tumor-
infiltrating immune cell subsets between the high- and low-
mRNAsi subgroups of colon and rectal cancer patients using
the CIBERSORT algorithm and the LM22 gene signature
(Figures 3A,E). To further confirm the relationships among 22
tumor-infiltrating immune cell types, we performed correlation
analysis. The results revealed a positive correlation between
CD8+ T cells and M1 macrophages in the high-mRNAsi
subgroup. The CD8+ T cells were more strongly negatively
correlated with mast cells and resting memory CD4+ T cells
in the high-mRNAsi group than the low-mRNAsi group of
colon cancer patients (Figures 3B,C,F,G). Eight types of tumor-
infiltrating immune cells were correlated with the mRNAsi in
colon cancer and five types in rectal cancer (Wilcoxon rank sum,

p < 0.05) (Figures 3D,H). Among them, six types of tumor-
infiltrating immune cells were positively correlated with high
mRNAsi in colon cancer, namely, CD8+ T cells, resting NK
cells, activated memory activated CD4+ T cells, follicular helper
T cells, and resting and activated dendritic cells. Two types
of immune cells were positively correlated with low mRNAsi,
namely, regulatory T cells and M1 macrophages.

The immune checkpoint molecules are significant for
immunotherapy, including MHC classes I and II, and we
investigated the potential correlation between the mRNAsi and
immune checkpoint molecules. Human leukocyte antigen (HLA)
gene expression was enriched in the low-mRNAsi subgroup in
colon and rectal cancer (Supplementary Figure 5). Besides, a
higher expression of m6A RNA methylation regulators and a
lower level of immune checkpoint molecules were found in the
high-mRNAsi group than in the low-mRNAsi group. The result
suggested that the high level of m6A RNA methylation regulators
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FIGURE 2 | Hierarchical clustering of colon and rectal cancer yields three stable subtypes in four different datasets named Immunity_H, Immunity_M, and
Immunity_L. Tumor purity, stromal score, and immune score were evaluated by ESTIMATE. (A) The colon cancer patients in the TCGA-COAD database. (B) The
rectal cancer patients in the TCGA-READ database. (C,F) Comparison of the mRNAsi levels between three colorectal cancer subtypes. Mann–Whitney U-test. (D,G)
Comparison of the immune cell infiltration levels between different mRNAsi groups of colorectal cancer. Mann–Whitney U-test. (E,H) Comparison of the TMB levels
between different mRNAsi groups of colorectal cancer. Kruskal–Wallis rank sum test.

was associated with a low level of immune checkpoint molecules,
which was also proved in pancreatic ductal adenocarcinoma and
breast cancer (Zhou et al., 2021).

Therefore, the high-mRNAsi group exhibited higher levels of
TMB and a lower immune score, which indicated that tumor
stemness may be negatively correlated with tumor immunity and
positively correlated with TMB, which is related closely with
the production of neoantigens in tumors and associated with
response to immune checkpoint inhibitors (Zhou and Li, 2021).

The Screening of DEGs and the
Identification of mRNAsi-Related
Modules
We screened DEGs in datasets of colon and rectal cancer
tissues and normal tissues. We identified 6,498 DEGs in colon
cancer, 4,528 of which were upregulated and 1,970 downregulated
(Figure 4A). In rectal cancer, 2,072 DEGs were upregulated and
1,776 were downregulated (Figure 4F).

A gene co-expression network was established to classify
the genes into biologically significant modules based on the
average linkage hierarchical clustering strongly associated with
the mRNAsi in colon and rectal cancer. In this model, we set

β = 6 (scale-free R2 = 0.95) as the soft threshold to construct
the scale-free network (Supplementary Figures 6, 7), which
yielded 9 gene modules in colon cancer and 14 in rectal cancer
(Figures 4B,C,G,H). To further identify the relationship between
key gene models and mRNAsi, we set MS as the overall gene
expression level of a certain module to identify correlations with
stemness phenotypes. We selected the yellow module with a
correlation of more than 0.7 in colon cancer and the brown
module with a correlation of almost 0.6 in rectal cancer for
subsequent analyses (Figures 4B,D,G,I). We set cor. MM > 0.6
and cor. GS > 0.5 as the selection threshold and identified 61
key genes significantly related to mRNAsi in colon cancer, as
well as 41 key genes in rectal cancer. The PPI network, GO, and
KEGG pathway enrichment analyses were performed to evaluate
the protein interactions and principal biological functions of
the key genes in colon and rectal cancer (Supplementary
Figures 8, 9). By overlapping the mRNAsi-related genes in colon
cancer (Figure 4E) and those in rectal cancer (Figure 4J), we
obtained 34 overlapped genes and established the PPI network
(Supplementary Figures 8, 9). We employed two databases,
cBioPortal and Oncomine, to systematically understand the
key gene mutational landscape and expression (Supplementary
Figures 10, 11; Cerami et al., 2012).
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FIGURE 3 | Composition of immune cells in different mRNAsi groups and
correlation analysis. (A) Barplot showing the fractions of 22 immune cells of
colon cancer patients in the TCGA-COAD database. Column names of the
plot were the sample ID. (B) Heatmap showing the correlation between
immune cells of colon cancer cases in the high-mRNAsi group. (C) Heatmap
showing the correlation between immune cells of colon cancer cases in the
low-mRNAsi group. The shade of each tiny color box represented the
corresponding correlation value between two cells. (D) Comparison of the
proportions of immune cell subsets between different mRNAsi groups of colon
cancer. ANOVA test, p-values are shown. (E) Barplot showing the fractions of
22 immune cells of rectal cancer patients in the TCGA-READ database.
Column names of the plot were the sample ID. (F) Heatmap showing the
correlation between immune cells of rectal cancer cases in the high-mRNAsi
group. (G) Heatmap showing the correlation between immune cells of rectal
cancer cases in the low-mRNAsi group. The shade of each tiny color box
represented the corresponding correlation value between two cells.
(H) Comparison of the proportions of immune cell subsets between different
mRNAsi groups of rectal cancer. ANOVA test, p-values are shown.

Prognostic Value of Genes in the
mRNAsi-Related Modules in Colon and
Rectal Cancer
The colon and rectal cancer patients were divided into training
and validation cohorts, and 34 key genes were selected to
established a prognostic stemness risk score model using the
Lasso algorithm and final (forward and backward elimination
methods) multivariate Cox analysis in the training cohort
(Figure 5A and Supplementary Figure 12). The poly (ADP-
ribose) polymerase 1 binding protein (PARPBP), kinetochore-
localized astrin/SPAG5 binding protein (KNSTRN), and kinesin
family member 2C (KIF2C) were correlated with a poor
prognosis in patients from the training cohort according to
the multivariate Cox regression analysis. The risk scores were
calculated based on the sum of loci β values and the risk
coefficient in the risk prediction model with discrete clinical
outcomes with regard to OS (Figure 5B). The prognostic index
formula for colon and rectal cancer patients in the training
cohorts was as follows: Risk score = [Status of PARPBP ∗ (-
0.6921)] + [Status of KNSTRN ∗ (1.4204)] + [Status of KIF2C
∗ (-0.9696)]. This prediction model based on cancer stemness
could be a valuable tool for distinguishing among colon and rectal
cancer patients. We divided the patients in the training cohorts
into a high-risk group and a low-risk group on the basis of the
median risk score, which was set as the cutoff value to determine
whether the risk of the patient is high or low in the validation
cohorts. The association of the risk prediction model and
prognosis is shown in Figure 5. The results of survival analysis
proved that the OS of the high-risk group was significantly
lower than that of the low-risk group according to the Kaplan–
Meier curves of the training cohorts (log-rank test, p < 0.01,
Figure 5C), as well as the Kaplan–Meier curves of the validation
cohorts (log-rank test, p < 0.01, Figure 5D). The heatmaps of
three significant genes and the risk scores for each sample in
the training and validation cohorts are shown in Figures 5E–
H. Then, ROC curves were employed to verify the validity of
the stemness gene-based prediction model in the training and
validation cohorts (Figures 5I,J and Supplementary Figure 13).
The AUCs were equal to 0.769 at 1 year, 0.683 at 3 years, and 0.728
at 5 years in the training group (Figure 5I and Supplementary
Figure 13). Similarly, the AUCs were equal to 0.685 at 1 year,
0.656 at 3 years, and 0.708 at 5 years in the validation group
(Figure 5J and Supplementary Figure 13), which showed that
the model could achieve satisfactory predictive accuracy in both
the training and validation cohorts.

Validation of the Three-Gene Signature in
Stage IV Colorectal Cancer
GSEA was conducted to analyze potential biological
characteristics of the three-signature genes in colon and
rectal cancer patients. As shown in Figure 6A, according to
HALLMARK collection defined by MSigDB, the genes in the
high-risk group were mainly enriched in cancer stemness-related
pathways, such as DNA repair and PI3K–Akt–mTOR signaling.
According to GO collection defined by MSigDB, the genes were
enriched in functions related to tumor development such as
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FIGURE 4 | Identification of DEGs and stemness-related key modules in colon and rectal cancer. (A,F) Differentially expressed genes: red indicates upregulated
genes, blue indicates downregulated genes, and black indicates genes excluded by DEG screening criteria. (B,C,G,H) Identification of a co-expression module in
colon and rectal cancer. Each piece of the leaves on the cluster dendrogram corresponded to a gene, and those genes with similar expression patterns compose a
branch. Correlation between gene modules and mRNAsi scores or EREG-mRNAsi. The upper row in each cell indicates the correlation coefficient ranging from -1 to
1 of the correlation between a certain gene module and mRNAsi or EREG-mRNAsi. The lower row in each cell indicates the p-value. (D,I) The scatter plot of the top
three important gene modules, and those circles located in the upper right indicate the key genes in these modules. (E,J) Heatmap showing the correlation between
stemness-related genes of colon and rectal cancer cases. The shade of each tiny color box represented the corresponding correlation value between two cells.

methylation, mitotic nuclear division, signal transduction by P53
class mediators, and DNA damage (Figure 6B). According to
KEGG collection defined by MSigDB, the genes were enriched
in apoptosis and P53 signaling pathway (Figure 6C). According
to the immunological gene set collection defined by MSigDB,
multiple immune-function gene sets were enriched in the
high-risk group (Figure 6D). To further explore the relationship
between the expression of the three-signature genes and the
tumor immune microenvironment, we analyzed the corrections

between the three genes and 22 types of immune cell infiltration
profiles (Supplementary Figure 14).

Establishment and Validation of the
Nomogram
A Cox regression model was applied to the training cohort to
identify the predictors of OS. Univariate analyses indicated that
age, stage-T, stage-N, stage-M, and cancer stemness risk score
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FIGURE 5 | The survival analysis and prognostic performance of the three-gene signature of colon and rectal cancer. (A) Lasso of the risk score for colon and rectal
cancer between high-risk and low-risk patients in the training group. (B) PCA of the risk score for colon and rectal cancer between high-risk and low-risk patients in
the training group. (C) The Kaplan–Meier test of the risk score for the overall survival of colon and rectal cancer between high-risk and low-risk patients in the training
group (log-rank test, p < 0.001). (D) The prognostic value of the risk score shown by the time-dependent receiver operating characteristic (ROC) curve for predicting
the 5-year overall survival training group. (E) Risk score curve of the three-gene signature of colon and rectal cancer in the training group. (F) Heatmap showed the
expression of three genes by risk score of colon and rectal cancer in the training group. (G) The Kaplan–Meier test of the risk score for the overall survival of colon
and rectal cancer between high-risk and low-risk patients in the testing group (log-rank test, p < 0.001). (H) The prognostic value of the risk score shown by the
time-dependent ROC curve for predicting the 5-year overall survival in the testing group. (I) Risk score curve of the three-gene signature of colon and rectal cancer in
the testing group. (J) Heatmap showed the expression of three genes by risk score of rectal cancer in the testing group.
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FIGURE 6 | GSEA for samples with high risk and low risk based on the prognostic index of the three-gene signature. (A) The enriched gene sets in GO collection by
the high-risk sample. Each line representing one particular gene set with a unique color, and the upregulated genes located in the left approaching the origin of the
coordinates, by contrast the downregulated lay on the right of the x-axis. Only gene sets with NOM p < 0.05 and FDR q < 0.05 were considered significant, and
only several leading gene sets were displayed in the plot. (B) The enriched gene sets in KEGG by samples with the high-risk sample, and only several leading gene
sets were displayed in the plot. (C) Enriched gene sets in HALLMARK collection by samples of the high-risk sample. Only several leading gene sets are shown in the
plot. (D) Enriched gene sets in C7 collection, the immunologic gene sets, by samples of the high-risk sample. Only several leading gene sets are shown in the plot.

group were associated with OS in colorectal cancer patients
(p < 0.1 in all cases, Table 1). Next, the final (forward and
backward elimination methods) multivariate Cox analyses found
that age, stage-T, stage-M, and cancer stemness risk score group
were independent risk factors for OS (Table 1).

A nomogram for predicting the 1-, 3-, and 5-year OS
was established using these independent variables (Figure 7A).
Because age, stage-T, stage-M, and cancer stemness risk score
group were predictive for OS in multivariate analysis, these
variables were further included in the nomogram. A weighted
total score was calculated from these factors, which was applied
to predict the 1-, 3-, and 5-year OS of colorectal cancer patients.

The nomogram for predicting the 1-, 3-, and 5-year OS
of colorectal cancer patients was developed based on the
multivariate model. The model showed good accuracy for
predicting the OS, and internal validation was performed
using the training cohort with a C-index of 0.738. Calibration
curves for the probability of OS at 1, 3, and 5 years
indicated satisfactory consistency between actual observation
and nomogram-predicted OS probabilities in both the training
cohort and validation cohort (Figure 7B and Supplementary
Figure 15). Furthermore, decision curve analysis (DCA) results
of the nomograms also confirmed their clinical applicability for

predicting the OS, with superior performance compared with
AJCC TNM stage. Thus, the results showed that the nomogram
expressed a higher net prognostic benefit than the TNM staging
system (Figure 7C and Supplementary Figure 15).

Evaluation of the Expression and
Distribution of the Three Key Tumor
Stemness-Related Genes and
Performance of a Stemness-Related
Genetic Model
Next, we detected the expression and distribution of PARPBP,
KNSTRN, and KIF2C in colorectal cancer and performed a
multiplex immunofluorescence staining in TMAs (Figure 8A).
We assessed the single index and single index strength score
of the three genes in cancer tissue and matched normal tissue
samples, which showed that the expression of these genes was
higher in cancer tissues based on the single index strength
score (Student’s two-tailed t-tests, ∗∗∗p < 0.001, Figure 8B).
To further evaluate the performance of the stemness-related
genetic model, we calculated the risk scores based on the single
index strength score of the three genes and the prognostic index
formula (risk scores = [Status of PARPBP ∗ (-0.6921)] + [Status
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of KNSTRN ∗ (1.4204)] + [Status of KIF2C ∗ -0.9696]). We
classified the patients into high- and low-risk groups according
to risk score (Table 2), and the Kaplan–Meier OS curves
of the two groups were significantly different (log-rank test,
p< 0.05, Figure 8C). Additionally, we also established calibration
curves for the probability of OS at 1, 3, and 5 years, which
indicated satisfactory consistency between actual observation and
nomogram-predicted OS probabilities in this cohort (Figure 8D
and Supplementary Figure 16).

DISCUSSION

According to the recently developed CSC hypothesis, tumor
cells are suggested to originate from a stem cell population
with self-renewal capacity (Wicha et al., 2006). These CSCs
have been reported to be involved in resistance to cytotoxic
conditions, promoting the propagation and recurrence of cancer
(Aghaalikhani et al., 2019). Identifying key genes driving
the transformation of tumor CSC and underlying biological
mechanisms in colorectal cancer may uncover unprecedented
therapeutic targets.

Recent studies indicated that cancer CSCs may be a dynamic
population continuously influenced by cooperating forces such as
microenvironmental, epigenetic, and genetic factors (MacArthur
and Lemischka, 2013; Meacham and Morrison, 2013;
Lei et al., 2014). The stem cells in normal colonic crypts are

TABLE 1 | Univariable and multivariable Cox regression analysis of OS in cRC
patients.

Characteristic (OS) Univariable analysis Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

Age (years)

<60 1 1

≥60 1.44 (0.97-2.11) 0.067 1.68 (1.14-2.50) 0.008

Stage-T

T1 1 1

T2 1.19 (0.39-3.63) 0.754 1.53 (0.50-4.67) 0.455

T3 1.44 (0.82-2.53) 0.204 1.28 (0.72-2.30) 0.399

T4 4.35 (2.30-8.22) <0.001 2.46 (1.24-4.91) 0.01

Stage-N

N0 1 1

N1 1.54 (1.04-2.29) 0.033 1.12 (0.72-1.75) 0.594

N2 2.69 (1.84-3.93) <0.001 1.57 (1.01-2.48) 0.042

Stage-M

M0 1 1

M1 3.27 (2.26-4.72) <0.001 2.41 (1.54-3.75) <0.001

Mx 1.69 (1.03-2.73) 0.038 1.69 (0.96-2.73) 0.067

Gene risk

Low 1 1

High 2.43 (1.71-3.45) <0.001 2.29 (1.61-3.27) <0.001

Multivariate Cox regression analysis are used to calculate the hazard ratios (HRs)
and 95% confidence intervals (CIs) for overall survival (OS) in colorectal cancer
(CRC) patients. Covariables that are significant in univariable competing risk
regression analysis (p < 0.1) are included in the multivariable analysis.
Abbreviations: HR, hazard ratio; CI, confidence interval; CRC, colorectal cancer.

continuously and random replaced by other homologous
cells, which can provide an advantage for the accumulation
of oncogenic mutations through complex stem cell dynamics
(Snippert et al., 2014; Song et al., 2014). Myant et al. (2013)
demonstrated that oncogenic mutations accumulated in stem
cells may trigger the rapid development of aggressive subclones
in colon adenomas. The cancer stem cells (CSCs) can compete
with normal stem cells, which could be promoted through
genetic mutations as well as environmental pressures (including
radiotherapy and chemotherapy) (Humphries et al., 2013).
Our results revealed a higher proportion of TP53 mutant cells
in the high-mRNAsi group than in the low-mRNAsi group.
Previous research showed that mutations of TP53 can shut
down its tumor suppressor function, promoting the self-renewal,
reprogramming, and differentiation of CSCs (Brosh and Rotter,
2009; Emmink et al., 2013).

Analysis of tumor infiltration indicated increased infiltration
by CD8+ and CD4+ T cells in the high-mRNAsi group of
colon cancer. Cancer infiltration by CD8+ T cells may predict
higher sensitivity to immunotherapy and better prognosis.
A recent study revealed stem-like CD8+ T-cell populations that
are able to proliferate and produce high levels of checkpoint
molecules under stimulation, with the ability to clonally expand
to functional effector T cells and self-renew (Rizvi et al., 2018;
Skoulidis et al., 2018; Wu et al., 2019). Tumors with high
levels of stemness may have higher levels of infiltration by
immune cells such as CD8+ and CD4+ T cells, as well as
having the potential to produce neoantigens that sensitize them
to treatment with immune checkpoint inhibitors. Although TME
and stemness were both identified as significant features of cancer
in recent years, their covariation across cancers has not been
systematically investigated. We found that TMB is higher in the
high-mRNAsi group than in the low-mRNAsi group of both
colon and rectal cancer. The TMB can be defined as the amount
of non-synonymous mutations in protein-coding regions, which
may promote the production of neoantigens by tumor cells (Pai
et al., 2017). Recent studies established the significance of TMB
as a predictive biomarker for the success of treatment with
immune checkpoint inhibitors (ICIs) such as anti-programmed
cell death (PD)-1 and anti-programmed death-ligand 1 (PD-
L1) therapy (Rizvi et al., 2015; Rimm et al., 2017; Jansen et al.,
2019). In this study, we found that tumors with a high mRNAsi
may potentially be more easily recognized by the immune
system and, therefore, more sensitive to treatment with immune
checkpoint inhibitors.

To further explore the prognostic value and biological
mechanisms of potential therapeutic targets, we built a cancer
stemness-related prognostic model to provide novel insights into
treatment options for colon and rectal cancer. The prognostic
index is based on the fractions of three genes identified among
the cancer stemness-related key module genes. PARPBP, a
significant inhibitor of homologous recombination (HR), has
been demonstrated to be related to increased AFP levels,
proliferation, differentiation, and poor prognosis of lung and
hepatocellular carcinoma patients (Yan et al., 2018; Su et al.,
2020). PARPBP promotes tumor cell migration and invasion
by enhancing mutagenic replication, extravasation, anoikis
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FIGURE 7 | (A) A nomogram for predicting 1-, 3-, and 5-year OS in colon cancer. To calculate probability of OS, first determine the value for each factor by drawing
a vertical line from that factor to the points scale. “Points” is a scoring scale for each factor, and “total points” is a scale for total score. Then, sum all of the individual
values and draw a vertical line from the total points scale to the 1-, 3-, and 5-year OS probability lines to obtain OS estimates. (B) Calibration curves for the
probability of OS at 5 years. The nomogram cohort was divided into three equal groups for validation. The gray line represents the perfect match between the actual
(y-axis) and nomogram-predicted (x-axis) survival probabilities. Black circles represent nomogram-predicted probabilities for each group, and X’s represent the
bootstrap-corrected estimates. Error bars represent the 95% CIs of these estimates. A closer distance between two curves suggests higher accuracy. (C) The DCA
of nomogram in the training set for 5-year OS.

resistance, and self-renewal in lung cancer (Xu et al., 2019).
KNSTRN, an important component of the mitotic spindle,
was found to regulate chromosome segregation and anaphase
onset during mitosis in cancer cells (O’Connor et al., 2013).
Furthermore, recent studies demonstrated that accumulation of
KNSTRN mutations may be an early event in cancer development
that accelerates tumor growth in cutaneous squamous cell
carcinoma and melanoma (Choi et al., 2016; Schmitz et al., 2019).
KIF2C is an important regulator of chromosome segregation,
bipolar spindle formation, and microtubule depolymerization

during mitosis, and it may be related with poor prognosis in non-
small cell lung cancer (Lee et al., 2014). KIF2C was shown to
act as a tumor antigen that can elicit spontaneous and frequent
CD41 T-cell responses of the Th1 type in colorectal cancer,
in a process that is influenced by peripheral T-regulatory cells
(Gwon et al., 2012).

Furthermore, we established a nomogram to better predict
the survival of colon and rectal cancer patients and visualize the
prediction results, which can further improve the compliance and
therapeutic efficacy for patients. Additionally, we compared the
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FIGURE 8 | (A) Tumor tissue and corresponding non-tumorous adjacent tissue were collected from colorectal cancer patients in TMAs. The expression of PARPBP
(green), KNSTRN (red), and KIF2C (cyan) indicates the lipid droplets in tumor-infiltrating myeloid cells. Nuclei (blue) were stained using DAPI. The absolute number of
positive cells was quantified in whole fields (hpf; scale bar = 20 lm). (B) Comparing the expression of PARPBP, KNSTRN, and KIF2C in tumor tissue and
non-tumorous adjacent tissue based on the single index strength score (Student’s two-tailed t-tests, ***p < 0.001). (C) The Kaplan–Meier test of the risk score for
the overall survival between the high-risk and the low-risk group (log-rank test, p < 0.05). (D) The calibration curves for identifying the consistency between actual
observation and nomogram-predicted OS probabilities.

prognostic accuracy of the TNM stage and nomogram model
with DCA, which showed that the nomogram model consisting
of stemness-related genes and clinical phenotype could have a
higher prognostic ability than the TNM stage. The present results
suggest that the model based on three stemness-related genes
may have reliable prognostic accuracy in conjunction with the
clinical phenotype.

However, some of the data in this retrospective analysis
released in publicly available datasets may be limited, and the
incomplete clinicopathological information may cause potential
bias that would influence the evaluation of the prognostic ability.
Data from TCGA are from Western countries, and all of the
datasets consisted of a mutational landscape and transcriptome,
which may hinder the clinical translation and generalization of
the prognostic model. Consequently, we performed multiplex
immunofluorescence staining in TMAs of colorectal cancer
patients from China and verified the prognostic ability of the
nomogram model in an advanced colorectal cancer cohort.
As shown in Figure 2, stage IV colon cancer patients with
higher mRNAsi values had a lower apparent survival probability
than those with lower mRNAsi values, and the difference was
statistically significant, which suggested a correlation between
CSCs and advanced tumor. The evaluation of CSC-related genes
may be a prognostic marker for selecting patients at high risk of
metastasis from CRC, who are likely to benefit from treatment.
Immunofluorescence results could be employed to evaluate the
expression and distribution of the three key stemness-related
genes identified by proteomics, with the potential to make this
model more convenient and reliable in clinical practice.

CONCLUSION

Taken together, our study highlights a robust correlation between
the level of cancer stemness and traits related to tumor

TABLE 2 | Comparisons of baseline characteristics of CRC patients in low- or
high-risk group by risk scores.

Characteristic Low risk
(n = 24)

High risk
(n = 24)

p-value

Age at RC diagnosis, no. (%), years 0.057

<60 14 (58.3) 20 (83.3)

≥60 10 (41.7) 4 (16.7)

Sex, no. (%) 0.562

Female 10 (41.7) 12 (50.0)

Male 14 (58.3) 12 (50.0)

Tumor location, no. (%) 0.768

Colon 9 (37.5) 10 (41.7)

Rectal 15 (62.5) 14 (58.3)

Stage-T, no. (%) 0.033

T1 1 (4.1) 0

T3 16 (66.7) 10 (41.7)

T4 7 (29.2) 14 (58.3)

Stage-N, no. (%) 0.162

N0 4 (16.7) 4 (16.7)

N1 12 (50.0) 6 (25.0)

N2 8 (33.3) 14 (58.3)

Stage-M, no. (%) 0.683

M0 4 (16.7) 3 (12.5)

M1 20 (83.3) 21 (87.5)

Tumor grade, no. (%) 0.017

Grade III 19 (79.2) 11 (45.8)

Grade IV 5 (20.8) 13 (54.2)

p-value was calculated using χ2-test for categorical variables.
CRC, colorectal cancer.

heterogeneity, including the immune microenvironment, TMB,
and the expression of m6A RNA methylation regulatory factors
in colorectal cancer cells. The prognostic signature based on

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 September 2021 | Volume 9 | Article 724860

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-724860 September 3, 2021 Time: 15:58 # 14

Wei et al. Biomarkers in Colorectal Cancer

mRNAsi may contribute to personalized prognosis of clinical
outcomes in colorectal cancer and act as a potential prognostic
biomarker for responses to differentiation therapies in clinical
practice. The proposed stemness-related genetic model could
provide great assistance in formulating efficient therapeutic
strategies for the personalized management of colorectal cancer.
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