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Background: As an important epigenetic modification, m6A methylation plays
an essential role in post-transcriptional regulation and tumor development. It is
urgently needed to comprehensively and rigorously explore the prognostic value of
MO6A regulators and its association with tumor microenvironment (TME) infiltration
characterization of low-grade glioma (LGG).

Methods: Based on the expression of 20 m6A regulatory factors, we comprehensively
evaluated the mBA modification patterns of LGG after unsupervised clustering.
Subsequent analysis of the differences between these groups was performed to
obtain m6A-related genes, then consistent clustering was conducted to generate
m6AgeneclusterA and m6BAgeneclusterB. A Random Forest and machining learning
algorithms were used to reduce dimensionality, identify TME characteristics and predict
responses for LGG patients receiving immunotherapies.

Results: Evident differential mBA regulators were found in mutation, CNV and TME
characteristics of LGG. Based on TCGA and CGGA databases, we identified that
mM6A regulators clusterA could significantly predict better prognosis (o = 0.00016)
which enriched in mTOR signaling pathway, basal transcription factors, accompanied
by elevated immune cells infiltration, and decreased IDH and TP53 mutations. We
also investigated the distribution of differential genes in mMBA regulators clusters
which was closely associated with tumor immune microenvironment through three
independent cohort comparisons. Next, we established m6Ascore based on previous
m6A model, which accurately predicts outcomes in 1089 LGG patients (p < 0.0001)
from discovering cohort and 497 LGG patients from testing cohort. Significant

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1

November 2021 | Volume 9 | Article 725764


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.725764
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.725764
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.725764&domain=pdf&date_stamp=2021-11-25
https://www.frontiersin.org/articles/10.3389/fcell.2021.725764/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Liu et al.

m6A Model Predicts LGG Prognosis

TME characteristics, including genome heterogeneity, abidance of immune cells, and
clinicopathologic parameters have been found between mBAscore groups. Importantly,
LGG patients with high mBAscore are confronted with significantly decreased responses
to chemotherapies, but benefit more from immunotherapies.

Conclusion: In conclusion, this study first demonstrates that m6A modification is crucial
participant in tumorigenesis and TME infiltration characterization of LGG based on
large-scale cohorts. The m6Ascore provides useful and accurately predict of prognosis
and clinical responses to chemotherapy, immunotherapy and therapeutic strategy
development for LGG patients.

Keywords: m6A, low-grade glioma, tumor environment, immunotherapy, prognosis, RNA modificatio

BACKGROUND

Low-grade glioma (LGG) is a progressive, invasive, and
chronic central nervous system disease. LGGs are a group of
heterogeneous neuroepithelial tumors that originate from the
supporting glial cells in the central nervous system (Rueda
et al., 2011; Duffau and Taillandier, 2015; Wesseling and Capper,
2018). Although the tumor progression is relative slow, and
these tumors may undergo malignant transformation, leading
to the development of high-grade gliomas. At present, the
average survival time of LGG patients is generally less than 10
years (Wessels et al., 2003). The available treatment options for
LGGs remain controversial and require further investigation.
Regardless of the classic therapy strategy of resection followed by
chemotherapy or novel developed personalized treatments based
on specific molecular markers of tumors (Wessels et al., 2003;
Duffau, 2007; Martino et al., 2009; Louis et al., 2014), the primary
purpose is to extend the overall survival (OS) of the patients.
Therefore, the development of a model that can evaluate the
survival and prognosis of patients is urgently needed to assist
clinicians in the effective treatment of LGG patients.

Although some cases showed remarkable clinical efficacy
(Dunin-Horkawicz et al., 2006; Alarcon et al., 2015; Patil et al.,
2016), most of patients did not benefit from immunotherapy,
suggesting there are still unmet clinical needs in LGG treatment
(Zhao et al., 2017). The tumor microenvironment (TME)
is composed of cancer cells, stromal cells (cancer-associated
fibroblasts and macrophages), and recruited immune cells that
influence the development and progression of cancer. Tumor
cells interact with the TME to modify the purity of the
tumor, causing changes in various biological behaviors, such as
the induction of immune tolerance, tumor proliferation, and
angiogenesis and the inhibition of apoptosis (Wang et al., 2017).
Determining the degree of TME cell infiltration and tumor purity
to predict the blocking effect of immune checkpoint inhibitors

Abbreviations: AUC, area under the curve; CGGA, Chinese Glioma Genome
Atlas; CNV, Copy number variation; DEGs, Differential expressed genes; EMT,
epithelial-mesenchymal transitions; GGI, Gene-gene interaction; GSVA, Gene set
variation analysis; LGG, low grade glioma; OS, overall survival; ROC, Receiver
operating characteristic; ssGSEA, single sample Gene Set Enrichment Analysis;
TCGA, the Cancer Genome Atlas; TIDE, tumor immune dysfunction and
exclusion; TME, tumor microenvironment.

is an essential step to improve the success rate of existing
immunotherapies and develop new treatment strategies (Wang
etal, 2017, 2018).

The methyltransferases (m6A “writers”), demethylases (m6A
“erasers”), and m6A “reader” proteins coordinate in the process
of m6A modification. m6A RNA methylation is considered to be
the most important and abundant form of internal modification
in eukaryotic cells (Granier et al., 2016; Cui et al., 2017; Pinello
et al., 2018; Luo et al, 2021). According to previous reports,
m6A regulatory factors play a vital role in RNA splicing, export,
stability and translation et (Topalian et al., 2012; Helmy et al,,
2013; Chen et al, 2021; Zheng et al, 2021). Recent studies
have shown that m6A is associated with glioma (Topalian et al.,
2012; Tu et al., 2020; Du et al,, 2021), but its specific roles and
mechanisms are still unknown.

In recent years, several studies have revealed that the TME is
associated with m6A. It has been reported that m6A enhances
the anti-cancer response of tumor-infiltrating CD8+ T cells,
improves the therapeutic effect of anti-PDL1 receptor blockers
(Wood et al,, 2014; Wang et al., 2019). In addition, previous
studies demonstrated that the abnormal expression of m6A
regulators induces tumor proliferation and metastasis (Quail
and Joyce, 2013). However, because of technical limitations,
most p studies were limited to one or two m6A modulators
and cell types, while the anti-tumor effect is characterized by
several tumor suppressors interacting in a highly cooperative
network. In summary, elucidating the mechanisms underlying
TME cell infiltration mediated by multiple m6A regulatory
factors will help to our further understanding of TME immune
regulation. Furthermore, the potential role of m6A methylation
modification in LGG remains unclear. Based on the expression of
21 m6A regulatory factors, this study comprehensively evaluated
m6A modification patterns in LGG samples from The Cancer
Genome Atlas (TCGA) and Chinese Glioma Genome Atlas
(CGGA) databases and compared these results with data from
the Affiliated Hospital of YouJiang Medical University for
Nationalities (AHYMUN) for verification. Surprisingly, we found
that evaluating the m6A modification pattern within a single
LGG could predict patient prognosis and tumor progression. We
also developed a comprehensive scoring system to quantify the
m6A modification pattern in each LGG patient and enable the
accurate prediction of specific prognosis and immunotherapy
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efficacy. Significantly, we first demonstrated the function of
m6A modification in facilitating LGG progression and provides
promising target for prognostic or therapeutic prediction of LGG.

MATERIALS AND METHODS

Data

TCGA data: download the mRNA expression profile data and
sample CNV (Copy number variation) information of low-
grade glioma samples from https://xenabrowser.net/datapages/,
clinical information using R package cgdsr, mutation data using
R package TCGAbiolinks (Colaprico et al., 2016). In addition,
we downloaded the expression profiles of two sets of low-
grade glioma samples from http://www.cgga.org.cn/. Specific
data information are shown in Table 1.

Data Preprocessing

In order to maintain data consistency, we used the Bioconductor
-sva 1 package of R software (version 4.0.0) (Chan, 2018) to
perform batch correction on low-level glioma transcriptome data
downloaded from TCGA and CGGA databases.

Unsupervised Clustering Using 20 m6A

Genes

Extract the expressions of 21 regulators from the TCGA and
CGGA datasets to identify the different m6A modification
patterns mediated by the m6A regulators, of which the expression
of IGF2BP1I is not detected in the CGGA dataset, so the last
20 extracted regulators the expression of the child. The 20
m6A regulatory factors include 8 writers (METTL3, METTL14,
RBM15, RBM15B, WTAP, KIAA1429, CBLL1, ZC3H13), 2 erasers
(ALKBH5, FTO), and 10 readers (YTHDCI1, YTHDC2, YTHDFI,
YTHDF2, YTHDF3, HNRNPA2B1, HNRNPC, FMR1, LRPPRC,
ELAVLI). Using unsupervised cluster analysis, according to
the expression of 20 m6A regulatory factors, identify different
m6A modification patterns, and classify patients for further
analysis. A consistent clustering algorithm is used to determine
the number of clusters and their stability. We used the
ConsensusClusterPlus (Wilkerson and Hayes, 2010) package for
the operation. The distance used for clustering is the Euclidean

TABLE 1 | Sample information form.

Data set TCGA CGGA
IDH

Wild-type 33 144
Mutant 91 439
NA 375 0
Age

>60 68 28
<60 431 596
OS.Status

Deceased 125 291
Living 374 309

distance, and repeated 1,000 times to ensure the stability of
the classification.

Gene Set Variation Analysis and Single

Sample Gene Set Enrichment Analysis

In order to study the difference of m6A modification patterns in
biological processes, we used R package GSVA to perform GSVA
enrichment analysis. GSVA is a non-parametric, unsupervised
method that is mainly used to estimate changes in pathways
and biological process activity in samples. Download the
c2.cp.kegg.v6.2 gene set from the MSigDB database' for
running GSVA analysis.

In order to evaluate the ratio and difference of 24 immune
cells in different m6A regulators cluster, we used ssGSEA (single
sample gene set enrichment analysis) analysis in the R package
GSVA to obtain the infiltration ratio of 24 immune cells. Then use
the Wilcox test to compare the differences between different m6A
regulators cluster samples, and perform cox regression analysis
on the different cells to compare the prognostic differences.

Identify the Differentially Expressed
Genes Between Different m6A

Regulators Cluster

Based on the expression of 20 m6A genes, we divided the
low-grade gliomas in the TCGA and CGGA databases into
two categories, and used the R package limma (Ritchie et al,
2015) to determine the DEGs between different groups. The
significance standard for determining the difference gene is set as
p-value < 0.05 (after BH correction), and the difference multiple
is greater than 2 times or less than 0.5 times.

mé6asocre Calculation

For the differential genes obtained in the previous analysis, use
the random forest method to remove redundant genes, and then
perform survival analysis on the remaining genes, filter out genes
that are less related to survival (p-value < 0.05 is considered
to be related to survival), and then use cox The regression
model divides genes into two categories (coefficient is positive or
negative). Refer to the Gene-gene interaction (GGI) score 4 to
calculate m6Ascore using the following formula.

m6Ascore = scale(z X— Z Y)

X is the expression value of the gene set where Cox coefficient
is positive, and Y is the expression value of the gene set where
Cox coefficient is negative. Using the median of m6Ascore, the
samples were then divided into m6Ascore-high and m6Ascore-
low, and the correlation between these two types of samples and
prognosis was further analyzed.

Correlation Between m6Ascore and

Other Biological Processes
Mariathasan et al. (2018) constructed a set of genes to store
genes related to certain biological processes, including immune

'https://www.gsea-msigdb.org/gsea/index.jsp
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checkpoints; antigen processing and presentation; EMT1, EMT2,

EMT3 and other epithelial-mesenchymal transitions (EMT)

Markers; DNA damage repair; mismatch repair; nucleotide
excision repair and other pathways. We conducted a Pearson

correlation analysis on m6Ascore and these biological processes,
and further revealed the connection between m6Ascore and some
related biological pathways.

Copy Number Variation Analysis

The GISTIC method was used to detect the common copy
number change area in all samples based on SNP6 CopyNumber
segment data. The parameters of the GISTIC method are
set as: Q < 0.05 as the change significance standard; when
determining the peak interval, the confidence level is 0.95. The
analysis is performed by the corresponding MutSigCV module
in the online analysis tool GenePattern® developed by Broad
Research Institute.

Zhttps://cloud.genepattern.org/gp/pages/index.jsf

Tumor Immune Dysfunction and

Exclusion Forecast and IC50 Estimate
Further, we use the R package pRRophetic to estimate the IC50
value of drugs (Cisplatin, Gemcitabine) based on the expression
profile, and compare the differences in IC50 between m6Ascore
high and low samples.

Researchers from Harvard developed the TIDE (tumor
immune dysfunction and exclusion) tool® (Jiang et al., 2018) to
evaluate the clinical effects of immune checkpoint suppression
therapy, with higher tumor TIDE prediction scores and
poorer immune checkpoint suppression the treatment effect
is related, and it has a poor prognosis. Because of the five
types of tumors with reliable tumor immune dysfunction
and rejection characteristics that researchers can calculate,
only melanoma has publicly available patient data on anti-
PD1 or anti-CTLA4 treatment, so the prognosis of immune

3http://tide.dfciharvard.edu/
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checkpoint treatment in this analysis the prediction is done
using TIDE score.

Statistical Analysis

In the significance analysis between various scores, the Wilcox
test was used to compare the differences between the two
groups of samples. In the drawing display, ns means p > 0.05,
* means p < = 0.05, **: means p < = 0.01, *** means
p < = 0.001, **** means p < = 0.0001. The Kaplan-Meier
method was used to generate a survival curve for prognostic
analysis, and the log-rank test was used to determine the
significance of the difference. Receiver operating characteristic
(ROC) curve is used to evaluate m6Ascores prediction of
immunotherapy, and the area under the curve (AUC) is
quantified using R package pROC. When displaying mutation
maps, use the R package maftools to present the mutation
landscape of patients with m6Ascore high subtype and low
subtype. The R package RCircos was used to plot the
chromosome distribution of 21 m6A regulatory factors in 23 pairs
of chromosomes.

RESULTS

Our research was divided into five steps. First, we downloaded
three datasets from the TCGA and CCGA databases and
performed m6A gene expression, mutation, and CNV analysis
based on the collected data. Followed by unsupervised clustering
of m6A genes, we performed GSVA enrichment, differential
gene expression, mutation profiles, and clinical features analyses.
Next, we verified and consistently clustered the m6A-related
genes. We then identified characteristic genes through Random
Forest and Cox regression analysis. Finally, we established
the mé6Ascore and identified its relationship with TME
characteristics. The flow chart of study process is summarized in
Supplementary Figure 1.

Genetic Variation in m6A Regulatory
Factors of Low-Grade Glioma From the
Cancer Genome Atlas and Chinese

Glioma Genome Atlas Databases

A total of 21 m6A regulators analyzed in this study included 8
writers, 2 erasers, and 11 readers. Because there was no control
sample in the TCGA data, it was not possible to compare the
expression of these m6A regulatory factors between LGG and
control samples. Figure 1A displays the dynamic process of m6A
RNA methylation mediated by all known regulators.

In the experiments mentioned above, we observed that the
expression of m6A regulatory factors was generally higher in the
worse prognosis group. To explore the relationship between these
regulatory factors and the prognosis of LGG, we compared TCGA
and CGGA samples using the median expression of 20 regulatory
factors, which was divided into two groups for Kaplan-Meier
analysis (Supplementary Figure 2).

Then, we summarized the frequency of the copy number
variations and somatic mutations of the 20 m6A regulatory
factors in the LGG samples. Only a few mutations in the
m6A regulators were observed in these samples, including
KIAA1429, FMR1, YTHDCI, METTL3, FTO, IGF2BOl1, and
METTLI14 (Figure 1B). The CNV was generally different among
the 21 regulatory factors, some of which showed copy number
amplification, and the deletion frequency of genes was high, such
as FTO, RBM15B, and ZC3H13 (Figure 1C). In addition, we
showed the position of the m6A regulator on the chromosome
(Figure 1D). Overall, we analyzed genetic background and
variation of 21 m6A regulators of LGG.

Unsupervised Clustering of m6A Genes

in 1,089 Low-Grade Glioma Samples

As IGF2BP1 was not expressed in the CGGA data set, we
used the gene expression profile data of 20 m6A regulators
and the survival data in TCGA and CGGA samples to

TABLE 2 | Proportion of immune cells in LGG.

Immune cells p-value HR Low 95%ClI High 95%Cl
Activated CD8 T cell 2.42E-06 0.623838 0.512717 0.759042
Activated dendritic cell 4.28E-12 0.49214 0.402692 0.601457
CD56bright natural killer cell 0.011365 0.777254 0.639479 0.944712
CD56dim natural killer cell 0.685581 1.040787 0.857652 1.263026
Central memory CD4 T cell 7.37E-15 0.447318 0.365237 0.547845
Central memory CD8 T cell 3.04E-10 0.527204 0.431959 0.643451
Effector memory CD8 T cell 1.91E-11 0.505114 0.413792 0.61659

Gamma delta T cell 2.82E-25 0.334964 0.272504 0.411739
Immature dendritic cell 2.82E-09 0.545516 0.44667 0.666235
Macrophage 8.03E-06 0.639708 0.525777 0.778326
MDSC 2.36E-11 0.506285 0.41465 0.61817

Memory B cell 1.44E-18 0.399784 0.325899 0.490421
Monocyte 0.814155 1.023477 0.843431 1.241957
Plasmacytoid dendritic cell 3.59E-10 0.530418 0.435062 0.646675
Type 1 T helper cell 3.88E-16 0.42936 0.350297 0.526267
Type 2 T helper cell 1.98E-11 0.502187 0.410632 0.614155
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perform m6A gene consistency clustering and m6A gene single
factor Cox regression analysis. The m6A regulatory network
shown in Figure 2A describes the interactions between m6A
regulatory factors, showing their correlation and predictive risk
for OS. The impact of m6A regulators on the correlation
in the interaction and the prognosis of LGG patients were

shown in Supplementary Table 1. These results suggested that
the interactions between m6A regulatory factors of different
functional categories play a crucial role in the establishment
of m6A modification patterns of LGG. Next, we determined
the expression of 20 m6A regulators in LGG samples from
the TCGA and CGGA databases and then used the R package
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FIGURE 3 | Comparative analysis between m6A 4 regulators cluster in the TCGA dataset. (A) The distribution of IDH1, EGFR, TP53 mutations in the 2 m6A
regulators clusters. (B) The distribution of cancer type, gender, and age in m6A regulators cluster. (C) The enrichment scores of different mBA regulators cluster
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ConsensusClusterPlus to perform consistent clustering. Two
significant subgroups, m6A regulators clusterA and m6A
regulators clusterB were indicated (Figure 2B). Patients in
mo6A regulators clusterB showed significantly prolonged survival
compared with m6A regulators clusterA patients (p = 0.00016,
Figure 2C).

Functional Annotations and Tumor
Microenvironment Infiltration
Characterization Between m6A
Regulators Clusters

Based on three datasets, we performed GSVA enrichment
analysis to explore the differences in the biological behavior
of the regulatory factors in two m6A modification subgroup,
m6A regulators clusterA and m6A regulators clusterB. As
shown in Figure 2D, m6A regulators clusterA was significantly
enriched in biological processes, such as adhesion junctions,
mTOR signaling, basal transcription factors and cancer-
specific pathways. Nevertheless, m6A regulators clusterB was
significantly enriched in differentiated processes, including
steroid hormone biosynthesis, tyrosine metabolism, arachidonic
acid metabolism and etc.

Furthermore, we performed ssGSEA analysis to obtain the
proportion of immune cells infiltrations, like B memory cells,
activated dendritic cells, MO macrophages (Figure 2E). The
results revealed significantly different distribution of immune
cells abundance in the two subgroups. Next, we depict the

results of univariate Cox regression analysis of immune cells with
different proportions between the two m6A regulators clusters
(Figure 2F). Proportion of immune cells infiltrated in different
subgroups of LGG were listed in Table 2.

In TCGA dataset, we found that the IDHI (chi-square
test, p = 2.31e-05) and TP53 (chi-square test, p = 4.47¢-06)
mutation were significantly more frequently in m6A regulators
clusterB, while EGFR (chi-square test, p = 0.065) mutation was
relatively decreased compared with m6A regulators clusterA
subgroup (Figure 3A). In terms of clinical characteristics, such
as cancer types, gender and age, there was no significant
difference in the two subgroups (Figure 3B). Subsequently, we
performed GSVA analysis, and the enrichment scores in the m6A
regulators cluster groups were significantly different (Figure 3C).
Most m6A regulators were highly expressed in m6A regulators
clusterB. Taken together, there are evident distributions of
tumor microenvironment infiltration characterization, genetic
variation and prognosis between m6A regulators clusters of
LGG (Figure 4).

Differential Expressed m6A-Related

Genes and Constructions of
m6Agenecluster

To further study the potential biological behavior of the
regulators in m6A regulators clusters, we exploited the
“limma” R package and identified m6A phenotype-related
DEGs and the clusterProfiler package to perform KEGG
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FIGURE 4 | The expression of m6A regulatory factors in m6A regulators cluster.
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enrichment analysis on the DEGs. Next, we identified 238
DEGs, which were significantly enriched in the cell cycle
pathway. Furthermore, we performed an unsupervised cluster
analysis of the obtained m6A phenotype-related genes to
group patients according to different genomic subtypes.
Then, we obtained two different clusters of m6A-modified
genome phenotypes, m6AgeneclusterA and mé6AgeneclusterB
(Figure 5A). It suggested that m6AgeneclusterA subgroup had
significantly poor survival in 1,089 LGG patients (Figure 5B).
In addition, the expression of most m6A regulatory factors
in m6AgeneclusterA was significantly higher than that in
mo6AgeneclusterB (Figure 5C).

Establishment of m6Ascore and Its
Association With Tumor
Microenvironment Characterization in

Chinese Glioma Genome Atlas Database
The Random Forest algorithm was used to remove the
redundancy in the differentially expressed genes, and the
characteristic genes most relevant to the classification were
identified. A Cox regression model was then used to determine
the relationship between these genes and the survival of LGG
patients. Based on the coeflicient value of the genes, the
genes were divided into two categories, and the m6Ascore was
calculated in all samples (Figure 6A). Finally, according to the
median mé6Ascore, the samples were divided into two groups:
m6AscoreM® and m6Ascore!®". As presented in Figure 6B, the
m6Ascore!®” group showed significantly better prognosis than
m6Ascore™8h group (p < 0.0001), indicating that the calculation
based on the m6Ascore provides an accurate characterization of
patient prognosis.

The correlation analysis between mé6Ascores and known
gene features showed that the m6Ascore indicated significantly
positive correlation with biological functions, such as DNA
damage repair, DNA replication and cell cycle pathways
(Figure 6C and Table 3). Importantly, m6Ascore"" subgroup
was also highly enriched in immune cells infiltrations (CD8
T effector, immune checkpoint, antigen processing machinery),
malignant biologic behaviors (EMT process, angiogenesis, WNT
targets) and DNA processing (DNA damage repair, DNA
replication, homologous recombination, cell cycle regulators,
nucleotide excision repair, mismatch repair) (Figure 6D).
The Wilcox test showed that m6A regulators clusters and
mé6Ageneclusters were significantly associated with different
m6Ascores (Figures 6E,F). The m6Ascores in m6A regulators
clusterA and m6AgeneclusterA were significantly higher than
other groups.

Furthermore, from the testing TCGA cohort, our analysis
revealed that the m6Ascore was significantly different among
the classification subgroups (including IDHI mutation status,
TP53 mutation status, cancer subtype classification, gender and
age) (Figures 7A,B). Additionally, the m6Ascore™s" subgroup
predicts significantly decreased outcomes of LGG compared
with m6Ascore!® subgroup (p < 0.0001; Figure 7C). Then, we
chose the CGGA database and GEO database (GSE107850) to
verify the survival prediction ability of m6Ascore. We directly
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FIGURE 5 | Comparison between m6Agenecluster. (A) Unsupervised
clustering of m6A phenotype-related genes in low-grade glioma samples. The
samples are divided into different genomic subtypes, called m6AgeneclusterA
and mBAgeneclusterB. (B) Kaplan-Meier curve indicates that m6A modifies
the genome table type has an obvious relationship with overall survival rate.
(C) Expression of 20 m6A genes in 2 gene clusters. The upper and lower
ends of the box indicate the interquartile range of values. The line in the box
indicates the median value, and the black dots indicate outliers. The t-test is
used to test the statistical differences between gene clusters (“***p < 0.001).

extracted the m6Ascore grouping of each sample from the
CGGA database, and then plotted the KM curve. It can be
seen that the survival results of patients in the m6Ascorehigh
subgroup were significantly lower (p < 0.0001; Figure 7D). In
GSE107850, we selected 195 samples and determined the best
classification threshold according to the R function surv_cutpoint
(cutoff = 1.233548). Through the KM curve, we found that the
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mo6Ascorehigh subgroup predicted a significant decrease in LGG
results (p = 0.00017; Figure 7E).

Differential Molecular Characteristics in

m6AscoreM9" and m6Ascore'°" Group

Using the TCGA dataset, we further explored the differences
between m6Ascore’? and m6Ascore!® groups. We used
“maftools” R package to analyze the differences in somatic
mutations between the samples in the m6Ascore™sh and
m6Ascorel® groups. As shown in Figures 8A,B, there are
significant altered frequency of IDHI (69% in m6Ascore™s",
85% in m6Ascore®V), TP53 (55% in m6Ascorehish, 420
in m6Ascore®), ATRX (44% in m6Ascorel8h, 329% in
m6Ascorel®), CIC (12% in m6Ascorel&, 29% in m6Ascorel®™)
and FUBP1 (6% in m6AscoreMs?, 13% in m6Ascorelo") genes.
Figures 8C,D show the distribution of copy number variation
regions in LGG samples in the m6AscoreM®" and m6Ascorel®”
groups. In the m6Ascore® group, the deletion regions
of CCNA were mainly located in 4pl6.1, 5q11.2, 6p21.32,
17q21.3, and 20p13; in the m6Ascore!®” group, the deletion
regions of CCNA were mainly in 1q21.3, 4pl6.1, 5ql1.2,
17q21.3, and 20p13.

m6Ascore Predicts Responses to
Chemotherapy and Immunotherapy of

Low-Grade Glioma

Based on 1,586 Chinese and Western LGG patients from
TCGA and CGGA database, we used the “pRRophetic” R
package to estimate the IC50 value of chemotherapy drugs
(cisplatin and gemcitabine) based on the expression profiles and
compared the IC50 values of these agents between m6AscoreMs?
and m6Ascore®” groups The results showed that the 1C50
values in m6Ascore®” group was significantly higher than
those in m6Ascore®? group, indicating that the mé6Ascore™ish
patients exhibited poor prognosis and unfavorable responses to
chemotherapies (p < 2.2e-16; Figures 9A,B).

Furthermore, Tumor Immune Dysfunction and Rejection
(TIDE) scores was calculated to evaluate the clinical effects
of immune checkpoint inhibitor therapy in m6AscoreMe?
and m6Ascore!® groups based on RNA-seq data. As shown
in Figure 9C, the TIDE score in m6Ascore™" group was
significantly higher than m6Ascore!® group. In addition, we
analyzed the differential expression of immune checkpoint
molecules. It suggested that CD274, CXCLI9, and HAVCR3
expression were significantly increased in m6AscoreMsh
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Overall, m6Ascore™8" brings unfavorable responses for LGG
patients received chemotherapies, but preferable responses
for LGG patients received immunotherapy, suggesting the

compared with m6Ascore®” group (p < 0.01; Figures 9D-F).
determined role of m6Ascore in effective treatment selection.

Validation of m6A Regulators and
Prognostic Role of YTHDF2 in a

Real-World Cohort

To further confirm the reliability and prognostic value of m6A-
related genes, we selected six m6A regulators, including ELAVLI,

YTHDF2, RBMI15, HNRNPA2B1, ALKBH5A, and RBMI5B,

that exhibited the greatest effect on prognosis of LGG. Using
immunohistochemistry, we detected protein expression of these

genes in normal tissues and tumor tissues. The results showed
that ELAVL1, YTHDEF2, RBM15, HNRNPA2B1, ALKBH5A, and
RBMI15B expression was significantly upregulated in tumor

tissues compared with normal tissues (p < 0.05; Figure 10).

DISCUSSION

In the past decade, new concepts for the treatment of LGG
have emerged, including molecular and genotypic diagnosis,

neuroplasticity, function-guided resection and supra-frontal

helped improve our understanding of the biological behavior of
LGG. However, an important issue that remains to be addressed is
that there is no accurate biomarker that can predict the prognosis

resection (Duffau, 2005; Louis et al., 2016). These ideas have

and deterioration of LGG, which prevents the personalized

treatment of these patients (Liu et al., 2020, 2021).

Traditionally, tumor metastasis and invasion were thought to
be primarily mediated by genetic and epigenetic variations in

Current research suggests that the

As an emerging research direction in oncology, the roles
and mechanisms of m6A modification have been investigated

development (Zhang et al., 2017). Therefore, by comprehensively
by many researchers.

analyzing the heterogeneity and complexity of the TME, it
is possible to identify tumor immunophenotypes, accurate
biomarkers, and novel therapeutic targets, thereby improving the
aberrant expression of m6A regulatory factors is associated with
several tumor-related processes, including abnormal cell death,
abnormal proliferation, impaired development, tumor invasion,
tumor deterioration and immune regulation dysfunction (Han
et al,, 2019; Wang H. et al.,, 2019; Zhang et al., 2020). There is
an endless stream of research on the role of m6A in gliomas.
The latest research combines LGG and GBM to study, and
selects genes related to m6A for analysis. The study found that

ability to predict immunotherapy responses (Yoshihara et al.,
PDPN and TIMPI can be used as prognostic factors for glioma.
Potential biomarkers (Lin et al., 2020). In previous studies, we
found that although LGG and GBM are both gliomas, their key
markers and TME are not the same. Therefore, in this study,

and purity of tumor cells also play a vital role in cancer
2013; Rhee et al., 2018).

tumor cells. Recent research shows that the microenvironment
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we only chose LGG for analysis. The analysis of GBM will be
discussed in the next study. We have also innovatively established
m6Ascore to predict the prognosis of LGG patients and the effect
of immunotherapy. It is not a single biomarker. This has played
a guiding role in revealing the cause of LGG and finding new
personalized treatment methods.

Increasing evidence shows that the TME plays an important
role in tumor invasion and metastasis. Previous studies have
found that the TME-mediated regulation of tumor purity
plays a key role in glioma (Fang and Declerck, 2013). Recent
research suggests that m6A plays an indispensable role in
inflammation, immune environment composition, and tumor
progression by interacting with regulatory factors. However,
most previous studies analyzed the effect of a single protein on
the TME or performed a simple functional analysis of m6A.
The investigation of the role of m6A in LGG is even less
reported. Therefore, determining the effects of various m6A

modification modes on the TME in LGG can improve our
understanding of the TME anti-LGG immune response, identify
more effective immunotherapy strategies, and lay the foundation
for the personalized treatment of LGG patients.

Based on the expression of 21 m6A regulatory factors, we
comprehensively evaluated the m6A modification pattern in
LGG samples from the TCGA. The expression profiles of 20
m6A genes in LGG samples (no IGF2BPI gene expression in
the CGGA data) were consistently clustered to obtain m6A
regulators clusterA and m6A regulators clusterB. Subsequent
analysis of the differences between these groups was performed
to obtain m6A-related genes, and then consistent clustering was
conducted to obtain méAgeneclusterA and m6AgeneclusterB.
Subsequently, the Random Forest algorithm was used to reduce
dimensionality, and Cox regression analysis was performed
to identify characteristic genes. We showed that evaluating
m6A modification patterns within a single tumor could predict
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patient prognosis and tumor metastasis. The two clusters
were dramatically enriched in different biological processes,
specifically cancer-related pathways. We found that m6A
regulators clusterA showed a significant immune carcinogenic
status, including antigen processing pathways, CD8 T effectors,
and immune checkpoints. Based on the infiltration characteristics
of TME cells in each m6A regulators cluster, we confirmed
that our immunophenotypic classification for different m6A
modification patterns correct. Most genes and m6A regulatory
factors were overexpressed in m6A regulators clusterA, and the
prognosis of m6A regulators clusterA was poor.

Considering that the m6A modification pattern of each
patient is unique, we need to quantify the m6A modification
mode to enable individualized treatment. To achieve this,
we developed an m6A scoring system to analyze the m6A
modification pattern in each LGG patient. In our study,
we found that the mé6Ascores in m6A regulators clusterA
and m6AgeneclusterA were significantly higher than those
in the other groups, indicating that the m6Ascore can also
reflect the TME in the patient. We also observed that the
mo6Ascore was significantly positively correlated with biological
functions, such as DNA replication and cell cycle. Moreover,
the m6Ascore exhibited significantly different among various
groups of LGG samples depending on IDHI mutation, TP53
mutation status or other LGG subtypes and showed significant
association with the prognosis of LGG (Lehrer et al.,, 2019;
Qi et al, 2020), suggesting that the mé6Acore is a reliable
and valuable tool for comprehensively evaluating the m6A
modification pattern in single LGGs, and can be used to

conduct a detailed analysis of the LGG immunophenotype in
each patient, including the TME status and immune infiltration
pattern. Our comprehensive analysis also showed that the
m6Acore is an independent prognostic biomarker for LGG.
Furthermore, our m6Acore showed a predictive advantage in
LGG immunotherapy.

In our study, we found that m6A modification is related
to DNA damage repair and DNA replication. Previous studies
reported that DNA damage is closely related to autoimmune
disorders that trigger inflammatory immune responses. We
also found that the m6A modification pattern can affect the
components of the LGG TME, such as CD8 T effector cells,
or block immune checkpoints to increase treatment resistance
(Weenink et al., 2019). Furthermore, a high m6Ascore will
promote LGG invasion and infiltration because it may indicate
that patients’ angiogenesis, cell cycle changes will aggravate.
These factors will likely affect precision immunotherapy in
LGG patients. We also found that the m6A modification
pattern can shape a variety of substrates and greatly affect
the immune TME landscape of LGG. This indicates that m6A
modification has an impact on the therapeutic effect of immune
checkpoint blockade, highlighting its potential as a new target
for immunotherapy. We also confirmed that patients with a high
m6Ascore show increased drug resistance to immunotherapy,
which may contribute to the variable treatment effects of
temozolomide, a classic chemotherapy drug, in different patients.
When we evaluated the effect of the TIDE score, the TIDE score
in the high m6Ascore group was also higher, indicating that a
decreased efficacy of immune checkpoint therapy was associated
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with a lower survival rate of patients treated with anti-PD1 and
anti-CTLA4 therapy.

CONCLUSION

In conclusion, this study first demonstrated that m6A
modification plays an important role in tumorigenesis and
TME infiltration characterization of LGG based on large-scale
cohorts. The m6Ascore could accurately predict prognosis and
clinical responses to chemotherapy and immunotherapy for
LGG patients, which provides novel insights and directions for
exploring underlying pathogenesis and identifying novel targets
for the treatment of LGG patients.
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