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Perinatal exposure to starvation is a risk factor for development of severe retinopathy in
adult patients with diabetes. However, the underlying mechanisms are not completely
understood. In the present study, we shed light on molecular consequences of exposure
to short-time glucose starvation on the transcriptome profile of mouse embryonic retinal
cells. We found a profound downregulation of genes regulating development of retinal
neurons, which was accompanied by reduced expression of genes encoding for glycolytic
enzymes and glutamatergic signaling. At the same time, glial and vascular markers were
upregulated, mimicking the diabetes-associated increase of angiogenesis—a hallmark of
pathogenic features in diabetic retinopathy. Energy deprivation as a consequence of
starvation to glucose seems to be compensated by upregulation of genes involved in fatty
acid elongation. Results from the present study demonstrate that short-term glucose
deprivation during early fetal life differentially alters expression of metabolism- and function-
related genes and could have detrimental and lasting effects on gene expression in the
retinal neurons, glial cells, and vascular elements and thus potentially disrupting gene
regulatory networks essential for the formation of the retinal neurovascular unit. Abnormal
developmental programming during retinogenesis may serve as a trigger of reactive gliosis,
accelerated neurodegeneration, and increased vascularization, which may promote
development of severe retinopathy in patients with diabetes later in life.
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INTRODUCTION

Intrauterine or fetal programming has in the past years been connected to age-related metabolic
diseases in adults (Vaiserman and Lushchak, 2019; Hsu and Tain, 2020). Thus, there is striking
evidence indicating that 25–63% of diabetes, cardiovascular disease, hypertension, and obesity can be
attributed to the perinatal factors and features such as low weight at birth (Tian et al., 2006). Notably,
pediatric ophthalmologists were the first to observe that preterm and low-birthweight infants
exhibited a lasting abnormal retinal architecture, suggesting a key role of the intrauterine
environment for vascular development in the retina and retinal neurovascular unit (RNVU)
formation (Swan et al., 2018). Retinopathy is a progressive complication of diabetes with a
global prevalence of 35.4% among diabetic patients (Solomon et al., 2017). Proliferative diabetic
retinopathy (PDR) is the most severe form, which is characterized by progressive neovascularization
leading to severe vision loss and blindness (Wong et al., 2018). Presently, there are only a few
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treatment alternatives for severe retinopathy targeting vascular
pathology such as laser photocoagulation and anti-VEGF therapy
(Wong et al., 2018). However, these treatments are not affordable
in every country, and the prevalence of PDR is reported to be
higher in developing countries as compared to developed
countries (Ruta et al., 2013).

In support of the fetal programming hypothesis, recent
epidemiological observational studies from the Ukrainian and
the Hong Kong Diabetes Registries demonstrated
disproportionally elevated risk for severe diabetic retinopathy
in offspring to parents exposed to famine (Fedotkina et al.,
2021). This evidence indicated that fetal exposure to starvation
can be a triggering risk factor for vision-threatening diabetic
retinopathy in adults, which might, independently or
synergistically with diabetes-related metabolic risk factors,
aggravate disease progression (Fedotkina et al., 2021).
Understanding mechanisms involved in early retinogenesis
during starvation insults, which could increase
preponderance to diabetes retinopathy later in life, might aid
in discovering fundamental cues for novel treatment strategies.
In the present study, we investigated the effects of short-term
exposure to glucose starvation on global transcriptome changes
of embryonic retinal cells comprising mostly neuronal, glial, and
vascular cells.

MATERIALS AND METHODS

Retinal Cell Sample Preparation and
Culture, RNA Isolation, and Sequencing
Isolation and Culture of Retinal Cells. C57BL/6J mice were
purchased from Charles River. The retinas were isolated from
E18.5 mouse embryos and digested with 0.05% trypsin (ready-
made, Gibco) for 15 min at 37°C. The digestion was terminated by
adding Dulbecco’s modified Eagle’s medium (Gibco)
supplemented with 25 mM sodium bicarbonate (Gibco),
25 mM HEPES (Gibco), 10% fetal bovine serum (v/v,
HyClone), and 1% penicillin and streptomycin solution (v/v,
Gibco). The cell suspension was filtered through a 70-μM filter
and centrifuged at 1,300 rpm for 5 min, resuspended in the
medium, and centrifuged. This was repeated twice, and the
cells were plated on poly-L-lysine-coated plates at a density of
2.0 × 106 cells/cm2. Next day, the cells were washed two times
with phosphate-buffered saline (PBS) and starved for glucose in
the Neurobasal medium supplemented with B27 supplement
lacking insulin, with 0.06 g/L-glutamine, 1%
penicillin–streptomycin (v/v, Gibco), and 11 mM HEPES for
6 h. The cells were further cultured for 6 days in the normal
glucose medium (complete Neurobasal medium). The cells were
harvested after 6 days of culturing for RNA isolation to obtain
information on the long-term effects of starvation exposure.

Total RNA was isolated by using the miRNeasy micro kit
(Qiagen), and reverse transcription was done by using the
RevertAid first-strand cDNA synthesis kit (Thermo Fisher).
RNA extracts were isolated by using TruSeq Stranded Total
RNA with Ribo-Zero. Sequencing was done paired-end on the
Illumina NextSeq 500.

The study was approved by the local ethics committee
(Regional Ethics Review Board, Lund, Sweden, 2018-579,
2016/891), and the experiments were performed in
compliance with the ARRIVE guidelines (Kilkenny et al.,
2010).

Processing and Analysis of RNAseq Data
A total of 12 samples were sequenced (n � 6). One of the control
samples was excluded from further analysis since it was not
clustering with other control samples on the principal component
analysis (PCA) biplot. The quality of paired-end RNAseq files was
checked with MultiQC v1.0 by using fastq files. A Phred score
greater than 30 was achieved for each sequencing position for all
samples. There was no adapter contamination shown in QC
(adapter contamination <0.1%), so trimming was not applied in
order not to lose information. The alignment of transcripts was
done by using Kallisto v0.43.1 (Bray et al., 2016) with the
GRCh38.p10 reference assembly with the Ensembl Mus
musculus v90 annotation as the reference transcriptome (Yates
et al., 2016).

On average, we obtained 17.2 ± 6.7 (mean ± SD) million
paired-end reads mapped to the mouse genome. After excluding
lowly expressed genes (expressed in less than 20% of the samples),
a total of 22,978 genes were used in the downstream analyses. The
downstream analysis from this level was done by using the R
statistical environment (www.r-project.org) and R Studio (www.
rstudio.com). The estimated count values of the transcripts given
as Kallisto output were converted to gene-level expression values
by using Tximport v1.6.04 (Soneson et al., 2015). The genes that
had low counts were excluded from the expression matrix with
the inclusion criteria of a CPM higher than 0.5 for at least two of
the samples.

PCA was applied to explore the differences between libraries.
A PCA biplot and sample heatmap were prepared by using a
regularized log transformation (rlog) function in the DESeq2
package (Love et al., 2014). Based on exploratory data analysis,
one of the control samples was excluded from further analysis
since it stood as an outlier on the PCA biplot showing the first two
principal components based on gene expression counts. The PCA
biplot showing the first two principal components that explain
64% of variation across the samples and the sample clustering
based on the gene expression are presented in Supplementary
Figure S1. The starved and control samples were separated along
the first principal component axis, which shows that the gene
expression was a determinant for the separation of the conditions
and that most of the explained variance is primarily due to the
difference between two conditions. The heatmap shows the
clustering of the samples based on Euclidean distances
between the samples. The distances are smaller within the
conditions; hence, the samples are clustered based on the
conditions.

The differential expression analysis was done with using edgeR
v3.20.73 (Robinson et al., 2010; McCarthy et al., 2012). The raw
count values were provided to edgeR since the tool handles the
normalizations for sequencing depth, gene length, and RNA
composition of the libraries (TMM normalization). Condition
is used as a predictor of gene expression in a quasi-likelihood
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negative binomial generalized log-linear model (glmQLFit
function). Empirical Bayes quasi-likelihood F-tests were used
to assess the differential expression (glmQLFTest function).
Batch was not included as a covariate in the final analysis
since there was no obvious batch effect seen in the data
exploration, and above 90% of the differentially expressed
genes remained significant when the batch was added in the
formula. Sex adjustment was not done via adding sex as an
explicit covariate, but a robust algorithm was used to down-
weight sex-linked genes (Phipson et al., 2016). False discovery
rate (FDR) correction was done by using the
Benjamini–Hochberg method. The gene was considered
differentially expressed in case of FDR <0.05.

Cell Marker Selection
Marker genes for different cell types were selected based on
literature (Fruttiger, 2002; Haverkamp et al., 2003; Casini et al.,
2006; Ponomarev et al., 2006, 40; Kim et al., 2008; Johansson
et al., 2010; Sanes and Zipursky, 2010; Winkler et al., 2010;
Armulik et al., 2011; Kay et al., 2011; de Melo et al., 2011;
Bassett et al., 2012; de Melo et al., 2012; Wu et al., 2013; Seung
and Sümbül, 2014; Vlasits et al., 2014; Zhao et al., 2014;
Darmanis et al., 2015; Karlstetter et al., 2015; Macosko
et al., 2015; Maddox et al., 2015; Sanes and Masland, 2015;
Zeisel et al., 2015; Boije et al., 2016; Gill et al., 2016; Shekhar
et al., 2016; Struebing et al., 2016; Tasic et al., 2016; Vecino
et al., 2016; Yu et al., 2016; Hoshino et al., 2017; Lee et al., 2017;
Welby et al., 2017; Zeng and Sanes, 2017; Keeley and Reese,
2018; McDowell et al., 2018; Rheaume et al., 2018; Roesch
et al., 2008). Genes were considered as marker genes of a
relevant cell type upon demonstrating cell-specific expression
in at least two separate publications. Cell type-specific
expression has been confirmed using immunostaining or
single-cell analysis in previous studies. Hence, many of

them are overlapping between cell types, especially the ones
that belong to the same cell classification as neuronal, glial, or
vascular.

Gene Ontology and Pathway Enrichment
Analyses
GO and pathway enrichments were done by using goana and
kegga functions in edgeR. The genes in the relevant GO terms
were extracted from the main page of gene ontology (www.
geneontology.org) and KEGG (genome.jp) databases
(Ashburner et al., 2000; Kanehisa and Goto, 2000; Mi et al.,
2017; The Gene Ontology Consortium, 2017). The following
packages were used for the creation of figures: GOplot (Walter
et al., 2015) and ggplot2 (Wickham, 2009).

RESULTS

Embryonic retinal cells were exposed to short-term 6-h glucose
starvation to study the effects of perinatal glucose starvation on
the global transcriptomic profile (n � 6) (Figure 1A) (Methods).
Control cells were cultured under normal culture environment
(n � 5). RNA was extracted for bulk RNA sequencing, and
differential expression in the starved cells compared to
controls was analyzed. A gene was labeled as differentially
expressed between starved and control cells after multiple
testing adjustment of p-values using FDR <0.05. We detected
over 5,000 genes differentially expressed in response to exposure
starvation; of those, 3,051 were upregulated and 2,533 were
downregulated (FDR <0.05, Figure 1B and Supplementary
Table S1). About 77% of upregulated genes (2,341) and 13%
of downregulated genes (318) had at least a twofold change in the

FIGURE 1 | (A) Schematics of experimental setup, (B) barplot showing the number of differentially expressed genes for different log-fold-change bins, (C) volcano
plot showing the variation of significance with log-fold-change; blue and red colors show downregulated and upregulated genes in the starved conditions with a log-fold-
change greater than 50% between conditions and FDR <0.05.
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starved-for-glucose samples compared to non-treated controls
(Figure 1C).

Exposure to Glucose Starvation Results in
Downregulation of Neuronal Retinal Marker
Gene Expression
To study the effect of exposure to glucose starvation on
transcriptomic profiles of different retinal cells, we analyzed
expression of various retinal cell markers previously described
in the literature (see Methods) (Figure 2 and Supplementary
Figure S3 and Supplementary Table S2). It is worth mentioning
that some of these genes were reported to be expressed in several
retinal cell types and were not specific to a single cell type
although they were still used as markers.

There were 23 retinal ganglion cell (RGC) markers detected,
of which 10 (Gap43, Jam2, Nefl, Nefm, Mmp17, Rbfox3, Spp1,
Stmn2, and Tubb3) were downregulated, while Thy1 and Ebf3
were highly upregulated as a result of starvation. The differential
expressions of other RGCmarkers such as Atoh7, Cartpt, Slc17a6,
and Pou4f1 were not statistically significant.

Expression of amacrine cell (AC) markers (7 out of 16) was
significantly downregulated in the starved samples. These were
markers related with GABAergic cells: glutamate decarboxylase
genes Gad1 and Gad2, GABA transporter Slc6a1, and

metabotropic glutamate receptor gene Grm2. Sema6a, which is
an important gene for starburst ACs (SACs) and for stratification
of the retinal layers (Seung and Sümbül, 2014), was also one of the
downregulated AC markers.

The expression levels of horizontal cell marker genes Lhx1,
Snap25, and Calb1 were decreased in the starved cells, but only
Snap25 was found to be significantly differentially expressed with
FDR <0.05.

General bipolar cell (BC) markers such as Slc1a7, which
encode glutamate transporter; Prdm8; and Vsx2 showed
decreased expression after starvation exposure as well as rod
BC markers Prkca and Vstm2b, which are important for BC
survival and differentiation during embryogenesis. In contrast,
Col11a1, Ebf1, Igfn1, Neto1, Nfia, and Wls were the upregulated
BC markers probably reflecting disproportion in On and Off BC
subtypes.

Photoreceptor (PR) marker genes Abca4, Arr3, Atp1a3,
Gngt1, Rcvrn, and Opn1sw were downregulated in the starved
samples, while the downregulation of rhodopsin (Rho) was not
statistically significant. Synaptic markers such as Ctbp2, Dlg4,
Slc17a7, and Syp were also highly and negatively affected by the
starvation.

For theMüller cells (MC), Rlbp1,Glul, Slc1a3, and Car2 genes,
involved in neuroglial interplay, were downregulated with
starvation, while Cav1, Gfap, and Vim were upregulated.

FIGURE 2 | Differential expression of retinal cell markers between starved and control conditions. The expression values are centered and scaled (Supplementary
Figure S4 shows unscaled plots with expression levels).
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Astrocytemarkers such as Aldh1l1, S100b, and Fgfr3 were highly
upregulated in the starved cells, while Slc1a2 was downregulated.
For microglia, Adgre1, Cd40, Cd68, Aif1, Ptprc, Itgam, and
Cx3cr1 were used as markers, and only Cd68 was found to be
differentially expressed and downregulated in the starved cells.

Notably, we have also detected a decrease in the expression
levels of neuronal cell markers that belong to different lineages,
such as Sox2, Notch1, and also Pax6—an established
developmental marker of progenitor cells in the retina
(Supplementary Table S3).

Starvation Induces Proangiogenic
Reprograming of the Developing Retina
Markers of pericytes and vascular endothelial cells such as Cd34,
Cdh5, Cspg4, Thbd, Pdgfrb, and Acta2 showed upregulation after
starvation exposure, while Vwf and Des were not significantly
differentially expressed. Additionally, some genes associated with
vascularization such as Tek and Angptl1 were also upregulated in
the starved samples. VEGF genes (Vegfa, Vegfc, and Vegfd) were
significantly upregulated after starvation exposure, but the Vegf
receptor gene Kdr is found to be highly downregulated in the
starved samples.

Given that VEGFs have been ascribed to play a pivotal role in
co-patterning of nerves and vessels, we performed co-expression
analysis of differentially expressed genes with Vegfa, Vegfc, and
Vegfd in order to investigate potential VEGF-related candidates
for therapeutic interrogation. Almost half of the differentially
expressed genes were found to be commonly correlated across all
Vegfs (n � 25,12, adjusted p-value ≤ 0.05) (Supplementary Table
S5). Furthermore, to focus on vascularization-related genes in the
co-expression analysis, we employed the gene list from the MGI

database including many blood vessel development- and
angiogenesis-related terms (Supplementary Table S6). Out of
262 differentially expressed genes related with these terms, 200
had common correlation across all three VEGF genes (adjusted
p-value ≤ 0.05) (Supplementary Table S7).

Increased Vascularization Was Associated
With Compromised Neuronal Development
in the Starved Retina
For the investigation of the biological landscape affected by the
short-term starvation exposure, we performed enrichment
analysis using GO terms and KEGG pathways. Figure 3 shows
specific GO biological process (BP) terms enriched for the
differentially expressed genes (Supplementary Figure S4).
Two of the top GO terms were nervous system development
and blood vessel development, which were enriched for the
downregulated (p � 1.4 · 10–42) and upregulated (p � 3.8 ·
10–18) directions, respectively (Figure 3).

Short-Term Glucose Starvation Had a
Lasting Effect On Various BPs and Signaling
Pathways
Figure 3D shows the KEGG pathway enrichments for the
differentially expressed genes. One of the top enriched
pathways is the PI3K-Akt signaling pathway (pup � 2.6 ·
10–11), which is among the most important signaling pathways
for metabolic control, cell survival, and proliferation,
demonstrating enrichment of overexpressed genes in the
starved cells. Among other upregulated KEGG pathways (p <
10–6) as a result of starvation exposure were ribosome (p � 3.2 ·

FIGURE 3 | Functional enrichment results for expressed genes. (A)Gene Set Enrichment Analysis (GSEA) for GO terms GO: 0001568-blood vessel development
and GO:0007399-nervous system development. (B) Overrepresentation analysis of GO terms for differentially expressed genes. (C) Overrepresentation analysis of
KEGG pathways for differentially expressed genes.
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10–30), olfactory transduction (p � 7.1 · 10–14), focal adhesion (p �
1.4 · 10–10), ECM–receptor interaction (p � 7.0 · 10–10), and those
related to cancer (p � 6.3 · 10–8). On the contrary, synaptic vesicle
cycle (p � 6.5 · 10–13) and GABAergic synapse (p � 5.6 · 10–9)
pathways were downregulated, which can imply altering of
neuroglial relations and synaptic transduction in the retina
after glucose deprivation.

Genes Regulating Fatty Acid Elongation
Were Upregulated After Glucose Starvation
to Compensate for Reduced Expression of
Glycolytic Enzymes
To shed light on the processes involved in energy balance affected
by exposure to starvation, we analyzed genes involved in glucose,
lipid, and amino acid metabolism. As expected in the condition of
starvation for glucose, there was decreased expression of the genes
involved in several steps of glycolysis including glucose transport
(Figure 4A). These genes encode enzymes in the pathway from
glucose to pyruvate metabolism, as well as Ldha and Ldhb
encoding for L-lactate dehydrogenase, which catalyzes
pyruvate-to-lactate conversion (Kanehisa and Goto, 2000;
Slenter et al., 2018). In line with decreased expression of
glycolytic genes, glucose transporters such as Slc2a1 (GLUT1)
and Slc2a3 (GLUT3) were downregulated after starvation
(FDR <0.05).

On the contrary, genes encoding for enzymes in the fatty-acid
elongation pathway in the endoplasmic reticulum such as Elovl1,
Elovl3, Elovl5, Fads1, Scd1, Hacd4, Acot1, and Acot2 were highly
upregulated in the starved samples indicative of increased
biosynthesis of fatty acids. Similarly, genes involved in amino
acid transport and metabolism such as Dpp4, Xpnpep1, Xpnpep2,

Mme, and Slc1a5 are highly upregulated in the starved cells
(Supplementary Table S1).

Finally, to investigate the glycolytic and metabolic states of
different retinal cell types, we assessed correlations of neuronal
markers with glycolysis genes (Figure 4B). Assessment of the
links between metabolic characteristics and cell-specific markers
demonstrated a positive correlation between expressions of Ldha
and PR-specific genes (Abca4, Arr3, Atp1a3, Gngt1, and Rcvrn)
involved in different aspects of PR functioning including all-
trans-retinal aldehyde and cation transport, regulation of
rhodopsin activity, proper propagation, and termination of
signaling. Moreover, glycolytic enzymes and Ldha repression
were associated with downregulation of signaling molecules
involved in neuronal subtype-specific patterning and axonal
growth, as well as in synaptic plasticity regulation.
Downregulation of Hk1, Hk3, Hkdc1, Pfk, and Pkm positively
correlated with lower expression of genes encoding adhesion
molecules and intercellular junctions (Jam2 and Mmp17),
proteins regulating neuronal differentiation (Rbfox3) and
growth (Stmn2), axonal transport (Nefl, Nefm, and Tubb3),
and neuroprotection (Spp1) in RGC. Glycolytic enzymes and
Ldha expression were in synchrony with downregulation of
glutamate and GABA signaling and transport in both neurons
and glial cells. Additionally, glycolytic enzyme expressions
showed profound negative correlation with vascular marker
expressions.

DISCUSSION

The main findings in the present study provide evidence of
differential changes in expression of genes contributing to

FIGURE 4 | Metabolic changes after starvation exposure: (A) glycolysis pathway—the genes encoding the enzymes functioning in the pathway were
downregulated, (B) the correlation between retinal cell markers and glycolysis/gluconeogenesis genes (VC: vascular cells, RGC: retinal ganglion cells, PR-BC:
photoreceptor-bipolar cell synapses, PR: photoreceptor cells, HC: horizontal cells, BC: bipolar cells, AC: amacrine cells).
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retinal development and functioning after short-term metabolic
disruption. Obtained data allow us to generate a hypothesis of
irreversible and detrimental reprogramming of neurovascular
unit (RNVU) formation during retinal development after
early-life exposure to glucose starvation. Even after a “relief”
period of normal conditions, the effects on the transcriptomic
landscape of the retina were still immense. The key features
appear to include multiple cellular pathways highlighting
disrupted gene expression in the retina. Specifically,
transcriptomic analysis has revealed a profound decrease in
the expression of neuronal markers, while genes encoding for
vascular markers were upregulated, similar to the diabetes-
associated increase of angiogenesis in diabetic retinopathy.

Investigation of the molecular mechanisms underlying
retinogenesis is important in order to gain knowledge on how
to enlighten the path ahead for prevention or treatment of
retinopathy in adults with diabetes. The top differentially
expressed genes affected by starvation comprised Ppef1, which
encodes for the protein product suggested to play a role in sensory
neuron function and development; Dpp4, encoding a protease
enzyme involved in the cleavage of a broad range of vasoactive
peptides, which is also an established drug target for type 2
diabetes (Dicker, 2011); Meox2 gene, known to regulate
angiogenesis and myogenesis; and Pycr1 and Dnah8, involved
in the ATP-related processes. These findings provide further
support for involvement of multiple mechanisms including
neuronal, vascular, and energy metabolism that together may
contribute to compromise early development of the
entire RNVU.

A major pathological feature of advanced and severe forms of
retinopathy in patients with diabetes is characterized by
accelerated proliferative angiogenesis. This gives rise to an
increased growth of small and immature vessels in the retina,
which are susceptible to breakage and bleeding. In the present
experiments using embryonic retinal cells, the vascular cell
markers showed overall upregulation after exposure to glucose
starvation, which could be a consequence of lack of necessary
nutrition. The restructure of the vascular networkmight therefore
be needed to reach resources even after a short-term glucose
deprivation. In support of this, expression of other genes
important for blood vessel development (Tek and Angptl1)
was also upregulated along with the retinal vascular markers.
As was previously reported, starvation causes acute energy
depletion that can create a hypoxia-like condition (Rego et al.,
1998). As a consequence of this, triggering of mechanisms to
promote increased blood supply takes place, typically involving
activation of HIF—a major driver for the transcription of VEGFs
and overall over 60 genes adjusting cells to a hypoxic state
(Sapieha et al., 2010). In this study, we have demonstrated
that all VEGF genes (Vegfa, Vegfc, and Vegfd) were
significantly upregulated after starvation exposure. Notably,
elevated VEGF-C and VEGF-D levels were found in the retinal
pigment epithelium (RPE) of patients with age-related macular
degeneration (Vellanki et al., 2016). There are also data
confirming a significant role of VEGF-D in retinal
angiogenesis and ganglion cell protection under excitotoxic
injury (Schlüter et al., 2020). In addition, it was demonstrated

that hypoxia-induced expression of VEGF-C in the retina is as
potent as VEGF-A in inducing pathological retinal
neovascularization in PDR and retinopathy of prematurity
(Campochiaro, 2015; Singh et al., 2015; Vellanki et al., 2016).
In the present study, positive correlations between Vegf’s
expression and vascular markers indicate strong promotion of
angiogenesis.

Kdr (or Vegfr2) that bindsVegfa, Vegfc, and Vegfd in the retina
was strongly downregulated in starved samples. In contrast to
Flt1 (Vegfr1) that is restricted to endothelial cells, Kdr is
abundantly expressed in the neuroretina (Penn et al., 2008).
Importantly, during retinal neurogenesis, Kdr is also expressed
by neural progenitor cells and retinal neurons (Hashimoto et al.,
2006). High Kdr expression in embryonic retinal nerve cells
under physiological conditions titrates VEGF to moderate
spatial patterning of angiogenesis and limits internal retinal
vascularization. It was shown that loss of Kdr in neurons
caused misdirected angiogenesis toward neurons, resulting in
abnormally increased vascular density around neurons (Okabe
et al., 2014). Interestingly, Müller cell survival and proliferation
during retinal development depend on VEGFR- and MAPK-
related signaling (Liu et al., 2019). Mice with conditional
knockout of Kdr demonstrated significant loss of Müller cells
under diabetes/hypoxia, which accelerated retinal degeneration.
These show the critical role of VEGF signaling in glial cells’
viability and neuronal integrity (Fu et al., 2018). Thus, increased
VEGF expression after glucose deprivation may reflect activation
of proangiogenic activity of retinal glial cells and provokes
abnormal angiogenesis in the inner retinal compartment,
whereas downregulation of Kdr can be related with reduced
neurogenesis. A simultaneous increase of vascular markers
supports this idea. The fact of increased expression of VEGF
and other vascular markers reflects strengthening of the
glial–vascular relationship, while neuroglial relations were
compromised.

The key master regulator of metabolic relationships between
different retinal cells in RNVU is macroglia (Müller cells and
astrocytes). Müller cells are the main contributors of glutamate
and GABA recycling in the retina and responsible for glutamate
uptake from the synaptic cleft to prevent neurotoxicity
(Bringmann et al., 2013). As glutamate and GABA are
principal neurotransmitters ensuring the radial and lateral
synaptic pathways, respectively (Yang, 2004), their
downregulation could lead to the decrease of the retinal
functional integration and contribute to neuronal degeneration
(Bringmann et al., 2013). Similar to GABA, observed
downregulation of Glul may reflect impaired regulatory
function of Müller cells in neurotransmission and weakening
of the neuroglial relationship. On the other hand, this may be
related with reactive glial cells (de Melo et al., 2012) and the
breakdown of the blood–retinal barrier (Shen et al., 2009),
considering detected upregulation of Gfap and Vim. Reactive
glia in turn may contribute to neuronal death via glutamate
excitotoxicity (Sundstrom et al., 2018).

Notably, decreases in expression of some genes such as
Sema6a, which has an important function in stratification of
retinal layers (Seung and Sümbül, 2014), may furthermore

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7268527

Özgümüs et al. Early Retinogenesis and Starvation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


indicate the overall dissociating effect of starvation exposure on
the retinal structure. We observed a strong decrease in
expression of marker genes for photoreceptors and
photoreceptor-to-bipolar cell synapses, indicating that these
cells and their connections are among the most vulnerable to
abnormal metabolic conditions. Concomitant downregulation
of other neuronal markers, especially the markers for
progenitors and RGCs, and the upregulation of vascular and
reactive glial markers can suggest that the short-term starvation
for glucose may not only cause a retardation in the temporal
development but might also give rise to the events promoting
future neurodegeneration.

Interestingly, the expression of glucose transporters and
glycolytic enzyme genes after exposure to glucose starvation
correlated positively with photoreceptors and RGC, while it
negatively correlated with VEGF expression in the retina. The
similar changes were revealed under retinopathy of prematurity.
Increased angiogenesis was associated with decreased retinal
Glut1 and glycolytic enzyme expressions. In line with this, it
was demonstrated that improvement of glucose uptake and
glycolysis may restore retinal neuron formation and normalize
retinal angiogenesis (Han et al., 2019).

When interpreting reciprocal changes in vascular drivers and
glycolytic enzyme expression, it is important to underline the
spatial distribution of distinct expressions and various responses
of different retinal cells to hypoxia. The main site of aerobic
glycolysis enzyme expression and lactate production is PRs cells
located in the outer retina, whereas the main source of VEGF is
Müller and ganglionic cells located in the inner retina. Within
the retina, PRs rank among the highest-energy-consuming
systems. Although PRs are rich in mitochondria and
oxidative phosphorylation (OXPHOS) enzymes, these cells
convert most of their glucose to lactate through aerobic
glycolysis—a process known as the Warburg effect and
accounts for about 80–90% of glucose metabolism in adult
PRs (Chinchore et al., 2017; Narayan et al., 2017). It is
speculated that aerobic glycolysis provides sufficient glucose
influx to the pentose-phosphate pathway (PPP) with the
subsequent generation of NAPH and lipid synthesis, allowing
the recycle of the appropriate amounts of visual pigment (Sun
et al., 2008). Lactate production depends on the expression and
activity of LDHA, the enzyme critical for the Warburg effect,
which was also downregulated in the retina due to starvation.
The lack of LDH-A expression was detected in rats with
inherited “retinitis pigmentosa,” associated with pathological
loss of the photoreceptors (Narayan et al., 2019). This finding
supports the notion that the PRs are particularly susceptible to
inhibition of glycolysis. Lactate production by PRs is also
important for the retinal glial cell functioning. In contrast to
PRs, Müller glial cells do not express hexokinase or any pyruvate
kinase isoform required for glycolysis (Lindsay et al., 2014;
Rueda et al., 2016). Lactate provided by aerobic glycolysis in
PRs is used as a fuel by Müller cells and RPE. Additionally,
lactate, rather than glucose, is the most effective source of
carbon for glutamine synthesis by Müller cells (Gardner and
Davila, 2017). Naturally, downregulation of glycolytic enzymes,
such as Hk1/3 and Impdh, in the starved retina was associated

with a decline in expression of other molecules involved in
glutamate turnover, neuronal differentiation, axonal growth,
and synaptic transduction. This highlights the importance of a
tight interface between retinal neurons and Müller cells that
work together as an ecosystem to build metabolically specialized
and interdependent RNVUs.

Importantly, the KEGG pathway analysis demonstrated
upregulation of gene clusters related to PI3K-Akt and cancer-
associated pathways in addition to the regulation of cell-matrix
interplay, cell adhesion and migration, protein synthesis, and
proteolysis (Figure 3D). Akt was found to be increased as a result
of hyperglycemia, which is regarded as the primary cause of the
development of retinopathy in the patients with diabetes (Qin
et al., 2015). The increase in the signaling through PI3K promotes
fibrosis in the retina, which in turn aggravates development of
retinopathy. In support of activation of fibrosis in the samples
starved for glucose, the extracellular matrix genes such as
collagens (such as Col4a1 and Col1a1), fibronectin (Fn1), and
laminins (such as Lamb1 and Lama4) were significantly
differentially expressed with high fold changes. This signaling
pathway may be a target for therapeutic intervention of
pathogenic angiogenesis similar to those being developed in
cancer (Sasore et al., 2014).

Limitations
The global expression analyses in the present study are
performed using mRNA sequencing, and the corresponding
protein data and morphological evidence are lacking. Therefore,
additional experiments would be needed to expand current
results for further validation at the protein expression level.
Nevertheless, our observations on downregulation of glycolytic
enzymes and their strong correlation predominantly with PR
markers are in support of the suggested critical importance of
main regulators of aerobic glycolysis in PR not only in the
enzymatic reactions but also possibly in acting as
neuroprotective mechanisms critical in maintaining PR
health, viability, and survival (Weh et al., 2020). It is
important to note that current results were generated using
mouse embryonic retinal cells, and validation in humans would
be warranted. To this extent, a genome-wide association study
for severe retinopathy is ongoing in our cohort of Ukrainian
patients with type 2 diabetes who were exposed to famine at
birth, as a part of the National Ukrainian Registry (Fedotkina
et al., 2021).

In summary, the present data provide hypothesis-generating
evidence that perinatal glucose deprivation may cause metabolic
adaptations in different compartments of the embryonic retina,
leading to alterations in the developmental program of the
entire RNVU. As was shown in the present study by
experimental modeling of starvation for glucose of embryonic
retinal cells, early-life metabolic adaptations might trigger
reprogramming of retinogenesis with alteration of retinal
neurogenesis towards abnormal angiogenesis. Thus, a
negative correlation between the expression of glycolytic
enzymes and VEGFs in the retina after starvation may reflect
the desynchronization of neuroglial interplay and dissociation
between outer and inner retinal functions and therefore choroid
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and retinal vasculature formation. These findings highlight the
crucial importance of restoring the balance between neuroglial
and glio-vascular function. A combined strategy including
antiangiogenic drugs and metabolic correction could be
proposed as a beneficial therapeutic approach. The latter
could include governed stimulation of aerobic glycolysis and
activation of the glutamate transporters to improve neuroglial
coupling through lactate production supporting metabolic
processes, neurotransmitter exchange, and synaptic
transduction.
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