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Objective: In this study, we mainly explored two questions: Which microorganisms were
functionally active in the endometrium of patients with endometrial cancer (EC)? What
kind of response did the human host respond to functionally active microorganisms?

Methods: Nine endometrial cancer patients and eight normal subjects were included in
this study. HMP Unified Metabolic Analysis Network 3 (HUMANNS) was used to obtain
functional information of microorganisms. In addition, metaCyc-based GSEA functional
enrichment analysis was used to obtain information on the metabolic pathways of the
human host. At the same time, the O2PLS model and Spearman correlation analysis
were used to analyze the microorganisms—host interaction.

Results: With the novel metatranscriptome analysis pipeline, we described the
composition of more than 5,000 functionally active microorganisms and analyzed the
difference in microorganisms between the EC and the normal group. Our research
found that these microorganisms were involved in part of the metabolic process of
endometrial cancer, such as 6-sulfo-sialyl Lewis x epitope, N-acetyl-beta-glucosaminyl.
In addition, the host—microbiota crosstalk of EC endometrium also included many
biological processes, mainly functions related to tumor migration and the Apelin
signaling pathway.

Conclusion: The functionally active microorganisms in the EC endometrium played an
essential role in the occurrence and migration of tumors. This meant that functionally
active microorganisms could not be ignored in the treatment of endometrial cancer. This
study helped to better understand the possible role of endometrial functional, active
microorganisms in the occurrence and development of EC in patients with endometrial
cancer and provided new information for new attempts to treat EC.
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INTRODUCTION

Endometrial cancer (EC) is the fourth most common malignant
tumor in women (Miller et al., 2020). The number of new
endometrial cancers worldwide is about 382,100 per year, and
nearly 89,900 patients die from endometrial cancer each year
(Ferlay et al., 2019). In addition, there are nearly 64,000 new
cases in China every year, resulting in 16,000 deaths (Chen W.
et al., 2018). Moreover, this number was still rising, which was a
considerable challenge.

For an extended period, the uterus was considered sterile.
With the development of detection technology, the endometrium
was proved to have its resident microbiota, the microbial
community (Koedooder et al., 2019). The microbiota was closely
related to the occurrence and development of cancer. For
example, it could cause cancer by inhibiting cell apoptosis,
stimulating proliferation, and interfering with genome stability
(Baker et al., 2018). A study based on 16S sequencing technology
by Walther-Antonio et al. (2016) showed that endometrial cancer
patients and endometrial hyperplasia patients had changes in
the microbiota structure of the endometrium, and there was
a significant difference in the structure of the endometrial
microbiota in mild cases. Another study by Lu et al. (2021)
suggested that the endometrial microbiota were closely associated
with the disorder of inflammatory cytokines in EC. These
studies confirmed that the endometrial microbiota might play an
essential role in EC. However, the host’s response mechanism had
not yet been elucidated.

In addition, the current standard methods of microbial
research, such as 16s rRNA and metagenome analyses, were
all based on DNA sequences. However, the existence of
characteristic DNA sequences was not equal to the existence
of living microorganisms. Furthermore, since DNA molecules
might exist for decades (Glassing et al., 2016), the DNA sequence
might originate from the decomposition of microorganisms,
such as DNA from dead microorganisms (Aagaard et al., 2014).
Therefore, research methods based on DNA sequence could not
confirm the existence of microbiomes (Glassing et al., 2016; de
Goffau et al., 2018; Sola-Leyva et al., 2021).

In this study, based on the functional, active endometrial
microbiota mapping pipeline using metatranscriptome (meta-
RNA sequencing analysis) (Macklaim and Gloor, 2018; Liu et al,,
20205 Sola-Leyva et al, 2021), we explored the changes and
activity of endometrial microbiota in EC. Metatranscriptomics
could analyze microbial transcript profiles using RNA-seq data
to identify living microorganisms and their functions (Macklaim
and Gloor, 2018; Liu et al., 2020). At the same time, we combined
with the host endometrial transcriptome to analyze the effects
of the microbiota on the endometrium or the host’s response to
changes in the microbiota.

MATERIALS AND METHODS
Study Material

The data of nine endometrial cancer patients and eight control
subjects were included in this study. The raw SRA files of RNA-
seq were extracted from PRJNA612305 from the Gene Expression

Omnibus (GEO) repository. As mentioned earlier (DiGuardo
et al., 2021), the Qubit RNA BR assay (Invitrogen, Carlsbad, CA,
United States) was used to quantify total RNA, and the DV200
value (percentage of RNA fragments >200 bases in length) was
used to assess the quality using the 2100 Bioanalyzer RNA Nano
kit (Agilent Technologies, Santa Clara, CA, United States). The
clinical data of the subject cohort included in this study were: EC
cohort: n =9, age: 68.2 & 10.3 years (mean = standard deviation)
and CON cohort: n = 8, age: 61.8 & 13.5 years.

Functionally Active Endometrial

Microbiota Mapping

First, the raw SRA files were converted into FASTQ format by
using SRA toolkit (parameter —split-files) (Staff, 2011). Then,
these FASTQ files were processed by using fastp (Chen S. et al.,
2018) to remove reads containing adapters, more than 10%
unknown nucleotides (N), and more than 50% of low-quality
(Q-value < 20) bases. Subsequently, the remaining sequences
were aligned to the human reference genome GRCh38 from
Gencode v26 using HISAT2 (Kim et al., 2015). The comparison
results were stored in a separate .sam file. At the same time, the
sequence (non-human sequence) that cannot be aligned with the
human reference genome was stored as a separate FASTQ file
(parameter —un-conc-gz). Next, the Kraken2 reference database
was used to align these non-human sequences and output in
mpa style (parameter —use-mpa-style) (Wood et al., 2019). Next,
the reference database (including Bacteria, Archaea, and Viruses
library) was downloaded using the Kraken-build utility. The
scope of the database included the classification information of
the National Center for Biotechnology Information (NCBI) and
the complete genome sequence of RefSeq. Then metagenomeSeq
R package (Paulson et al., 2013) was used to identify the different
species in microorganismal communities of EC and normal
(control) group with the directly assigned read counts. First,
the results of the Kraken2 comparison were further carried out
to remove rare species (at least in four samples, the count was
greater than one) and normalized by using the Cumulative Sum
Scale (CSS) method (Paulson et al., 2013). The process of the
CSS algorithm was mainly to obtain a percentile by dividing
the raw count by the cumulative sum of the counts. In this
way, the relatively constant count distribution in the dataset
was captured to process the raw count. The advantage of this
treatment was that compared to ratio-based normalization or
random sampling methods, CSS had a higher sensitivity (Paulson
et al.,, 2013). Subsequently, the normalized data were used for
differential species abundance analysis, using a zero-inflated log-
normal model in metagenomeSeq.

Functional Enrichment Analysis of
Endometrium Microbial Metabolic
Pathways

The HMP Unified Metabolic Analysis Network 3 (HUMAnN3)
(Franzosa et al., 2018) was used to describe the metabolic
potential of members of a microbial population based on the
MetaCyc database. Then we used the HUMAnNN_renorm_table
script to normalize the data for count per million (CPM).
Finally, all the results were merged into one file through
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the HUMAnNN_join_tables utility. Next, different metabolic
pathways were screened by STAMP software (version 2.1.3)
(Parks et al., 2014).

Host Transcriptome Analysis

Samtools (Li et al., 2009) was first used to transfer the sam
file (as mentioned before, aligned to the human reference
genome) to bam file. We then used featureCounts (Liao et al.,
2014) to quantify the gene expression value. Based on the raw
count calculated by featureCounts, DEseq2 R package (Love
et al., 2014) was used to select the differential expression genes
between EC and normal group with log2-fold-change > | 1|
and adj p-value < 0.05. Since microbial metabolic pathways
were analyzed based on the MetaCyc database, we used the
Pathway Tools utility to obtain all human metabolic pathways
(HUMANZ2cyc, version: 24.5) in the MetaCyc database. The
obtained pathway .col file contains a total of 390 human
metabolic pathways. Then we converted the .col file into a
gene set enrichment analysis (GSEA) input file in GMT format
and used the GSEAPreranked method in GSEA to perform
enrichment analysis of human metabolic pathways based on the
results of the difference analysis (Subramanian et al., 2005).

Comprehensive Analysis of Interactions
Between Endometrial Microbial
Community Changes and Host Gene

Dysregulations

The Two-way Orthogonal PLS (O2PLS) model (Trygg and Wold,
2003) showed excellent performance in the integrated analysis of
multi-omics data, and its estimated value was close to the actual

parameters in both low-dimensional and high-dimensional
data (Bouhaddani et al,, 2016). This study used the O2PLS
model to conduct a comprehensive analysis of endometrial
microbial community changes and host gene dysregulations
using OmicsPLS R package (Bouhaddani et al., 2018). First,
we used the crossval_o2m_adjR2() function to determine the
best parameters through sevenfold cross-validation. Then 02m()
function was used for modeling. Next, ClusterProfiler R package
(Yu et al., 2012) was performed for functional enrichment
analysis of the top 50 genes loading.

In order to analyze the activities of each different species,
Spearman correlation analysis was used to explore the
relationship between species and species, species and host
genes with correlation coeflicient >0.6, and p-value < 0.05.
Compared with other methods (such as Pearson), the normalized
count (gene expression) and component data (relative abundance
of microbiota) of Spearman’s correlation analysis performed
better (Weiss et al, 2016). Furthermore, to study the host’s
response to the species, we used the metascape (Zhou et al., 2019)
tool to perform functional analysis on the relevant genes of the
species. Finally, the Cytoscape software (version 3.8.2) was used
to build the interaction network (Shannon et al., 2003).

RESULTS

Mapping the Functional Endometrial
Microbiota

Through the metatranscriptome analysis pipeline, we identified
and analyzed the RNA of microorganisms present in the
endometrium. Among the detected RNA sequences, the
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FIGURE 1 | The structural characteristics of the endometrial microbiota. Taxonomic classification of the endometrial microbiota of the EC and normal group at the
level of genus (A) and species (B).
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TABLE 1 | The species identified by metagenomeSeq.

Species LogFC p-values
Borrelia coriaceae 1.5971 0.0009
Mycetocola sp. 449 1.5590 0.0187
Anaerostipes hadrus 1.3859 0.0292
Altererythrobacter namhicola 1.2837 0.0100
Leptospira biflexa 1.2646 0.0251
Nitrospirillum amazonense 1.2608 0.0319
Modestobacter marinus 1.2418 0.0420
Gramella forsetii 1.2058 0.0194
Pantoea ananatis 1.1819 0.0079
Hymenobacter nivis —1.2132 0.0022
Potamipivirus A —1.2217 0.0426
Acinetobacter equi —1.2241 0.0481
Corynebacterium flavescens —1.2801 0.0451
Streptococcus mitis —1.2959 0.0298
Mycoplasma californicum —1.3346 0.0405
Pannonibacter phragmitetus —1.7912 0.0287
Corynebacterium ureicelerivorans —2.0840 0.0039

sequences that failed to be aligned to the human reference
genome were about 10%. By using Kraken2 for comparison,
a total of 5576 kinds of transcriptionally active Bacteria
and 381 kinds of transcriptionally active Archaea were

identified (Supplementary Table 1). Figure 1 shows
the top 25 abundance genus (Figure 1A) and species
(Figure 1B) in each sample. The top four most abundant
bacterial species in the endometrium of EC patients were
Clostridium_botulinum, Mycoplasma_hyopneumoniae,
Bacillus_cereus, and Pasteurella_multocida. At the same
time, we noticed that the relative abundance of most species is
less than 1%, which was consistent with the low abundance of
endometrial biomass (Garcia-Grau et al., 2019).

Next, we discussed the species differences in the endometrium
between EC and normal groups. Among the transcriptionally
active microorganisms detected in endometrial samples,
we found significant differences in the abundance of 17
kinds of microorganisms in EC endometrium and normal
endometrium (Table 1).

Metabolic Pathway Enrichment Analysis
Revealed Possible Host-Microbe

Interactions

To study the possible role of transcriptionally active
microorganisms in the endometrium, we analyzed the metabolic
pathways of the host and microbiota based on the MetaCyc
database. Among the detected microorganisms, three metabolic
pathways were significantly enriched in the endometrium of
EC patients (Figure 2A and Supplementary Table 2). In the
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human host, based on the results of DEseq2 analysis, 3885
mRNAs were found to be differentially expressed between
the EC group and the normal group (log2-fold-change > |
1|, FDR < 0.05, Supplementary Table 3). The metabolic
pathway enrichment analysis of differential genes found that
two pathways were significantly enriched, namely, PWY-4921
(protein citrullination, Figure 2B) and PWY-7831 (ABH and
Lewis epitopes biosynthesis type 2 precursor disaccharide,
Figure 2C). Furthermore, as shown in Figure 2E, we found that
the endometrial microbiota of the EC group were involved in
multiple links in the metabolic pathway of the host PWY-7831
(marked by the red circle in the figure).

HUMAnNN3 was also used for KEGG orthology (KO)
enrichment analysis (Supplementary Table 4) and used linear
discriminant analysis effect size (LEfSe) (Segata et al., 2011)
to screen for differences in KO between the two groups.
As a result, we obtained seven KOs that were significantly
enriched in the endometrium of the EC group: cystatin-SN
(K13897), ferritin heavy chain (K00522), molecular chaperone
HtpG (K04079), tumor-associated calcium signal transducer

1 (K06737), protein disulfide isomerase family A, member
3 (K08056), matrix metalloproteinase-7 (matrilysin and
uterine) (K01397), and thioredoxin 1 (K03671) (LDA > 3,
Figure 2D).

Integrated Analysis of Interactions

Between Host and Microbiota
To further explore the relationship between the activities
of endometrial microorganisms and host endometrial gene
disorders, we constructed an O2PLS model (Figures 3A,B).
Through sevenfold cross-validation, it was determined that
the modeling parameters were n = 2, nx = 1, ny = 1, and
the MSE = 127.60 at this time. The model’s loading diagram
(Figure 3A) and the evaluation parameters of the model (R2X:
0.942, R2Y: 0.519) explain that the model construction is
relatively satisfactory. The top 10 loading microorganisms and
the top 20 loading genes are displayed in Figure 3B.

We conducted a KEGG enrichment analysis of the top
50 loading genes and found that they were mainly enriched
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in metabolic-related pathways. In addition, the Wnt signaling
pathway, Apelin signaling pathway, and IL-17 signaling pathway
were also significantly enriched (Figure 3C). From the results
of GO enrichment analysis (Figure 3D), we could see that
the main focus was on the functions related to cell adhesion,
such as extracellular region part, extracellular space, and
extracellular region.

To explore the interaction between species and the host
and the relationship between species, we conducted Spearman
correlation analysis with the correlation coefficient >0.6,
p-value < 0.05 as threshold (Figure 4A). At the same
time, we used Cytoscape software to visualize the network

(Figure 4B). We found that Pannonibacter phragmitetus, which
had a high abundance in EC endometrium, was significantly
positively correlated with Wnt signaling pathway, IL-17 signaling
pathway, and MAPK signaling pathway (Figure 4B). For the
two species with high abundance in the two groups (EC:
Anaerostipes hadrus, Normal: P. phragmitetus), we used the
metascape tool (Zhou et al, 2019) to perform functional
enrichment analysis on their positively (P. phragmitetus,
Figure 4C) or negatively (A. hadrus, Figure 4D) related
genes. We found that the two have standard functions, cell
adhesion molecule binding (GO: 0050839). In addition, we
also found that the negatively related genes of A. hadrus were
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FIGURE 4 | (A) Correlation plot depicting top 50 loading genes and top 20 loading species correlations based on Spearman analysis (*** indicates p-value < 0.001,
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relationship between the species. Functional enrichment analysis of Pannonibacter phragmitetus (C) and Anaerostipes hadrus (D).
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significantly enriched in other functional items related to cell
adhesion, such as extracellular matrix and regulation of cell
adhesion (Figure 4C).

DISCUSSION

For a long time, microorganisms, including bacteria and viruses,
have been thought to play an essential role in the occurrence
and development of cancer. However, the elucidation of related
mechanisms is challenging. Current animal experiments show
that the carcinogenic effects of microorganisms may be more
related to the overall changes in the microbiome rather than due
to a single species (Schwabe and Jobin, 2013).

DNA is a very stable molecule, and unlike RNA that is rapidly
degraded, it can exist for decades. Microorganisms are found in
almost all body parts, including the endometrium (Glassing et al.,
2016), so it is difficult for us to distinguish whether the detected
species is active when using DNA-based detection technology for
microbial detection.

In this study, our first concern was the composition
and structure of functionally active microorganisms in the
endometrium of patients with endometrial cancer and the
difference between the structures of the microorganisms in the
average population. We used the novel metatranscriptomics
pipeline to study the functional and active microorganisms of the
endometrium of patients with endometrial cancer. The analytical
reliability of this novel analysis pipeline had been confirmed
in the study of Sola-Leyva et al. (2021). Based on the analysis
results, we found that the top five phyla that were significantly
enriched in the endometrium of patients with endometrial cancer
were Firmicutes, Proteobacteria, Tenericutes, Actinobacteria, and
Bacteroidetes (Supplementary Figure 1). This was consistent
with the research results of Walther-Antonio et al. (2016), which
once again confirmed the reliability of the novel pipeline used in
this study. At the same time, we also got the difference between
the two groups of microorganisms. As far as we know, this was
the first study to describe the difference in functional species
composition at the species level.

Another issue we were concerned about was how these
different species interact with the human host. Through
enrichment analysis of metabolic pathways based on the
MetaCyc database, we found that the microorganisms of EC
endometrium participated in the metabolic reaction process of
EC endometrium from N-acetyl-beta-glucosaminyl to 6-sulfo-
sialyl Lewis x epitope and promoted 6-sulfo -Biosynthesis of
sialyl Lewis x epitope. 6-Sulfo-sialyl Lewis x epitope was highly
expressed in a variety of tumors, and its role was mainly to
promote tumor metastasis by adhering tumor cells to blood
endothelial cells (Nakagoe et al., 2002). However, it had not
been reported in endometrial cancer. N-acetyl-beta-glucosaminyl
metabolism key enzyme B-N-acetylglucosaminylglycopeptidef -
1,4-galactosyltransferase was closely related to the occurrence of
epithelial-to-mesenchymal transition (EMT) in tumors (Zhang
et al., 2011; Khan et al., 2018). In our last part of the results,
we also found that the highly abundant species in EC had an
inhibitory effect on the biosynthesis of N-Glycan. Therefore,

we speculated that endometrial microorganisms participate in
tumor migration by affecting the metabolic activities of the
host’s endometrium.

In addition, by establishing a high-performance O2PLS model,
we had further studied the functions of different species.
The enrichment analysis results of the top 50 loading genes
were roughly the same as the enrichment results of metabolic
pathways, such as functions related to tumor migration (N-
glycan biosynthesis and Glycosaminoglycan biosynthesis). At the
same time, we found that these species with high abundance
in the EC endometrium were closely related to activating the
Apelin signaling pathway, which had been confirmed to be
related to the increased risk of endometrial cancer (Yang et al.,
2016). Another important finding was that species with high
abundance in EC had an inhibitory effect on the processing
of endoplasmic reticulum proteins. Thus, we speculated that
endometrial microorganisms also played an essential role in the
unfolded protein response (UPR).

The uterus was a site with very low microbial biomass.
In this study, we used a novel analysis pipeline to describe
the composition of functionally active microorganisms in the
endometrium of endometrial cancer. Exploring the interaction
mechanism between these active microorganisms and the host
was the focus of our research. As far as we know, this was the
first study on the mechanism of microbe-host interaction. We
believe that this could provide new ideas for the treatment of
endometrial cancer. However, this article still had limitations.
The sample size included in this study was small, and the
sample size needed to be expanded in the future for more in-
depth research.
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