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Breast cancer is the most common malignancy in women worldwide and is associated
with high mortality rates despite the continuously advancing treatment strategies.
Glucose is essential for cancer cell metabolism owing to the Warburg effect. During
the process of glucose metabolism, various glycolytic metabolites, such as serine and
glycine metabolites, are produced and other metabolic pathways, such as the pentose
phosphate pathway (PPP), are associated with the process. Glucose is transported into
the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions
of glucose metabolism-related enzymes and GLUT, which are also related to breast
cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast
cancer, is especially dependent on glucose metabolism. Breast cancer also harbors
various stromal cells such as cancer-associated fibroblasts and immune cells as tumor
microenvironment, and there exists a metabolic interaction between these stromal cells
and breast cancer cells as explained by the reverse Warburg effect. Breast cancer
is heterogeneous, and, consequently, its metabolic status is also diverse, which is
especially affected by the molecular subtype, progression stage, and metastatic site.
In this review, we will focus on glucose metabolism and glucose transporters in breast
cancer, and we will additionally discuss their potential applications as cancer imaging
tracers and treatment targets.

Keywords: breast cancer, glucose metabolism, glucose transporter, pentose phosphate pathway, serine/glycine
pathway

INTRODUCTION

Breast cancer is the most common malignancy in women worldwide, and ranks top in the cause
of death in female cancers worldwide (Bray et al., 2018). A total of 2.1 million women were
newly diagnosed with breast cancer in 2018, and 627,000 women died of breast cancer (Bray
et al., 2018). Breast cancer is increasing in underdeveloped and developing countries, and it is

Abbreviations: HK2, hexokinase II; PFK, phosphofructokinase; PKM2, pyruvate kinase isozymes M2; LDHA, lactate
dehydrogenase A; G6PD, glucose 6-phosphate dehydrogenase; 6PGD, 6-phosphogluconate dehydrogenase; RPE, ribulose-
5-phosphate epimerase; RPI, ribose 5-phosphate isomerase; TKT, transketolase; TALDO, transaldolase; PHGDH,
phosphoglycerate dehydrogenase; PSAT1, phosphohydroxythreonine aminotransferase; PSPH, phosphoserine phosphatase;
SHMT, serine hydroxymethyltransferase; GLDC, glycine decarboxylase; CAF, cancer-associated fibroblast; HIF, hypoxia-
inducible factor; MCT, Monocarboxylate transporter; OXPHOS, oxidative phosphorylation; TAM, tumor-associated
macrophage; PPP, pentose phosphate pathway; DHEA, dehydroepiandrosterone; PHGDH, phosphoglycerate dehydrogenase;
ROS, reactive oxygen species; EMT, epithelial-mesenchymal transition; CSC, cancer stem cell; NADPH, nicotinamide adenine
dinucleotide phosphate; 6PGDH, 6-phosphogluconate dehydrogenase; PI3K, phosphoinositide 3-kinase; mTOR, mammalian
target of rapamycin; AMPK, AMP-activated protein kinase; VEGF, vascular endothelial growth factor; BMI, body mass index;
E2, 17 beta-estradiol; IGF, insulin-like growth factor.
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decreasing in developed countries since the early 2000s (Rossouw
et al., 2002; Bray et al., 2004; DeSantis et al., 2015). Breast
cancer presents with diverse characteristics. To categorize such
diverse features of breast cancer, molecular subtypes have been
developed: luminal A, luminal B, HER-2, and basal-like type.
Moreover, estrogen receptor (ER), progesterone receptor (PR),
and HER-2 are the main targets for targeted therapy in breast
cancer, and samples/cases that are negative for these three
receptors are defined as triple negative breast cancer (TNBC),
which comprises about 15% of breast cancer cases. Each of the
molecular subtypes of breast cancer and TNBC shows distinct
clinical and molecular features in treatment response. Generally,
breast cancer is treated with surgery, chemo-radiotherapy, and
targeted therapy for biomarkers. Breast cancer showing hormone
receptor expressions is treated with hormonal therapy such as
tamoxifen, and breast cancer showing HER-2 amplification is
treated with targeted therapy such as trastuzumab. Those that
do not have any treatment targets are treated with a non-
specific chemotherapy.

One of the fundamental characteristics of cancer cells
that differs from normal cells is metabolic reprogramming—
producing energy through glycolysis rather than mitochondrial
oxidative phosphorylation, which is known as the Warburg effect
after the German scientist Otto Warburg who first described it in
the 1950s. The Warburg effect was first described in the 1950s by
Otto Warburg, a German scientist, who stated that cancer cells
secrete high levels of lactate because of an increase in glycolysis
(Warburg, 1956). In the process of glycolysis, which is one of
the main processes of glucose metabolism, glucose can enter
cancer cells by glucose transporters. As a result, various glucose
metabolites are produced that are related to diverse metabolic
pathways, such as the serine/glycine metabolic pathway and
pentose phosphate pathway (PPP). These glucose metabolic
pathways and glucose transporters have pivotal roles in cancer
metabolism as well as in cancer progression and metastasis, and
such metabolic characteristics can be used in imaging diagnosis
and targeted therapies. This review will focus on the glucose
metabolic pathways, such as glycolysis, serine/glycine pathway,
and PPP, in breast cancer and glucose transporters used in
glycolysis and their potential implications in clinical practice.

GENERAL ASPECTS OF GLUCOSE
METABOLISM AND RELATED
METABOLIC PATHWAYS IN CANCER

Glucose metabolism consists of glycolysis and PPP, and
glycolysis-related metabolic pathways consist of serine and
glycine metabolism (Figure 1). A major pathway in the glucose
metabolism of cancer cells is aerobic glycolysis, in the process
of which glucose is first transported into the cancer cells by
glucose transporters and then metabolized to pyruvate by various
enzymes. Many enzymes are involved in this process, of which,
the key enzymes are hexokinase II (HKII), phosphofructokinase
(PFK), and pyruvate kinase (PK) (Li et al., 2015). Pyruvates
produced in glycolysis are then moved into the mitochondria by
mitochondrial pyruvate carriers 1 and 2, where they are turned

into acetyl-CoA and oxaloacetate by pyruvate dehydrogenase
and pyruvate carboxylase, respectively, to enter the TCA cycle
for oxidative phosphorylation (OXPHOS) (Corbet and Feron,
2017). With one of the intermediate metabolites produced during
the process of glycolysis, 3-phosphoglycerate (3PG), starts the
serine pathway, in which 3-phosphoglycerate (3PG) is oxidized
to 3-phosphohydroxypyruvate (pPYR) by phosphoglycerate
dehydrogenase (PHGDH) and pPYR is transaminated to
phosphoserine (pSER) by phosphoserine aminotransferase
(PSAT). pSER is dephosphorylated to serine by phosphoserine
phosphatase. In glycine metabolism, glycine is metabolized
to H-protein-S-aminomethyldihydrolipoyllysine by glycine
decarboxylase (GLDC), an important component of the glycine
cleavage system. This serine metabolism and glycine metabolism
are linked by serine hydroxymethyltransferse (SHMT), which
causes a reversible conversion of serine and glycine (Locasale,
2013). Lastly, PPP is a metabolic pathway that occurs with
glycolysis (Ramos-Martinez, 2017), playing a pivotal role in cell
survival and growth by providing pentose phosphate for nucleic
acid synthesis and also nicotinamide adenine dinucleotide
phosphate (NADPH) for fatty acid synthesis and cell survival
(Patra and Hay, 2014). PPP is comprised of two branches,
the oxidative branch and non-oxidative branch. The oxidative
branch converts glucose 6-phosphate (G6P) to ribulose-5-
phosphate, CO2, and NADPH (Kruger and von Schaewen, 2003),
and the non-oxidative branch produces glycolytic intermediates,
such as fructose 6-phosphate (F6P), glyceraldehyde 3-phosphate
(G3P), and sedoheptulose. These glycolytic intermediates are
important for amino acid synthesis and produce ribose-5-
phosphate (R5P) that is also important for nucleic acid synthesis
(Stincone et al., 2015). Enzymes that are involved in the oxidative
branch are 6-phosphogluconate dehydrogenase (6PGD) and
glucose 6-phosphate dehydrogenase (G6PD), and those that
are involved in the non-oxidative branch are ribulose-5-
phosphate epimerase (RPE), ribose 5-phosphate isomerase (RPI),
transaldolase (TALDO), and transketolase (TKT).

Cancer cells produce a high level of reactive oxygen species
(ROS) compared to normal cells due to the increased activation
of various metabolic pathways (Ahmad et al., 2005). Cancer cell
metabolism is closely related to ROS homeostasis; they cause
ROS detoxifications by using various substrates and metabolic
intermediates in metabolic pathways, the most representative of
which are glycolysis by the Warburg effect and PPP (Aykin-Burns
et al., 2009). Glycolysis by the Warburg effect maintains redox
homeostasis by being independent of mitochondrial OXPHOS
that produces a large amount of ROS (Lee and Yoon, 2015),
and PPP by producing ROS-detoxifying molecule, NADPH,
by G6PD and 6-Phosphogluconate dehydrogenase (6PGDH)
(Salazar, 2018).

Molecules involved in the regulation of glucose metabolism
in cancer in general are oncogenes such as Ras, Src, and
MYC, transcription factors such as hypoxia-inducible factor-1
(HIF-1), signaling pathway such as phosphoinositide 3-kinase
(PI3K)/Akt/mammalian target of rapamycin (mTOR), and tumor
suppressor such as p53. Oncogenes such as Ras, Src, and MYC
increase the expression of HIF-1 that increases the expression of
various glycolytic enzymes, and HIF-1, MYC, and KRAS increase
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FIGURE 1 | Overview of glucose metabolism in cancer cells. Glucose metabolism in tumor cells consists of three main types: glycolysis, the pentose phosphate
pathway (PPP), and the serine/glycine pathway. First, in glycolysis, glucose influx occurs in the cell by glucose transporter GLUT1. Using HK2, PFK, and PKM2,
glucose becomes pyruvate and is eventually converted to lactate by LDHA. PPP comprises an oxidative branch and a non-oxidative branch, where glucose
6-phosphate is converted to 6-phosphogluconolactone and then ribulose-5-phosphate by 6PGD and G6PD. The non-oxidative branch produces
xylulose-5-phosphate by RPE and ribose-5-phosphate by RPI, and then produces fructose 6-phosphate, glyceraldehyde 3-phosphate, sedoheptulose-
7-phosphate, and erythrose-4-phosphate by TKT and TALDO through complex interchangeable reactions. The serine pathway starts with 3-phosphoglycerate,
which is converted to phosphohydroxypyruvate by PHGDH, which is converted to 3-phosphoserine by PSAT1, and 3-phosphoserine is converted to serine by
PSPH. In addition, glycine is converted by GLDC to H-protein-S-aminomethyldihydrolipoyllysine in glycine metabolism, which is linked to serine metabolism by
SHMT in the form of reversible conversion. HK2, hexokinase II; PFK, phosphofructokinase; PKM2, pyruvate kinase isozymes M2; LDHA, lactate dehydrogenase A;
G6PD, glucose 6-phosphate dehydrogenase; 6PGD, 6-phosphogluconate dehydrogenase; RPE, ribulose-5-phosphate epimerase; RPI, ribose 5-phosphate
isomerase; TKT, transketolase; TALDO, transaldolase; PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphohydroxythreonine aminotransferase; PSPH,
phosphoserine phosphatase; SHMT, serine hydroxymethyltransferase; GLDC, glycine decarboxylase.

glucose uptake by inducing GLUT expression. In addition, the
PI3K/Akt/mTOR pathway induces glycolytic enzymes and GLUT
expression, and p53 regulates glycolysis and GLUT through
mTOR and AMP-activated protein kinase (AMPK) (Abdel-
Wahab et al., 2019; Ghanavat et al., 2021).

GLUCOSE TRANSPORTERS IN
GLYCOLYSIS

There are two families of glucose transporters: facilitative sugar
transporters (GLUT, gene family name SLC2A) and Na+/glucose
co-transporters (SGLT, gene family name solute carrier SLC5A).
Additionally found families of glucose transporters are the Sugars
Will Eventually be Exported Transporters (SWEET; SLC50)
family and the Spinter protein (SLC63) family. SLC50 is a Na
(+)/substrate co-transporter involved in the transport of glucose,
myoinositol, and anions and located in the plasma membrane.
SGLT1 (SLC5A1) and SGLT2 (SLC5A2) are important in glucose

uptake with the former expressed mainly in the intestine and the
latter in the kidney (Wright, 2013). GLUT has 14 isoforms that
share structural features, such as 12 transmembrane domains,
amino terminus, carboxy-terminus, and an N-glycosylation site.
GLUTs can be subgrouped into three classes: class I (GLUT1–
4 and GLUT14), class II (GLUT5, 7, 9, and 11), and class III
(GLUT6, 8, 10, 12, and 13). Class I and class II GLUTs are
called odd transporters, whereas class III GLUTs are called even
transporters (Mueckler and Thorens, 2013). Except for GLUT13,
which is a proton-driven myoinositol transporter, all GLUTs
are facilitative transporters. These GLUT isoforms differ in the
tissue type in which they are present, their location within
the cells, cohesiveness with substrates, and control mechanism
(Mueckler and Thorens, 2013). For instance, GLUT1 and GLUT3
are found in the brain, where they function mainly in glucose
transport (Leino et al., 1997; Yeh et al., 2008), whereas GLUT3–
5 and GLUT10–11 are found in the muscle (Bilan et al., 1992;
McVie-Wylie et al., 2001; Rogers et al., 2002; Douard and
Ferraris, 2008). Glucose is an important substrate for GLUT,
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but GLUT can also transport other substrates such as galactose,
mannose, glucosamine, dehydroacetic acid, fructose, urate, and
myo-inositol (Barron et al., 2016; Holman, 2020).

GLUCOSE METABOLISM AND
GLYCOLYSIS-RELATED METABOLIC
PATHWAYS IN BREAST CANCER

Cancer cells harbor a metabolic shift to aerobic glycolysis that
plays an important role in tumor growth, progression, and
metastasis; therefore, glucose metabolism and glycolysis-related
metabolic pathways can have a diverse impact on cancer cells
in breast cancer.

Expression of Glycolysis-Related
Enzymes and GLUTs in Breast Cancer
Breast cancer shows an increased expression of glycolysis-related
enzymes, namely, HKII (Brown et al., 2002; Yang T. et al.,
2018), 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3
(PFKFB3) (O’Neal et al., 2016), and pyruvate kinase M2 (PKM2)
(Lin et al., 2015). In primary breast cancer, HKII is overexpressed
in about 79% of tumors (Brown et al., 2002), which has been
correlated with an increased histologic grade and proliferative
activity (Sato-Tadano et al., 2013). The expression of 6-
phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 activates
PFK-1, a key enzyme in glycolysis (Okar et al., 2001), and is
correlated with HER-2 expression and poor prognosis (O’Neal
et al., 2016; Peng et al., 2018). Additionally, 6-phosphofructo-
2-kinase/fructose-2, 6-biphosphatase 3 expression is related to
the expression of vascular endothelial growth factor (VEGF)-α
in breast cancer, which contributes to angiogenesis and distant
metastasis (Peng et al., 2018). PFK-2 is a muscle isoform M2 of
PK, a key enzyme in glycolysis, and its expression is correlated
with a poor prognosis in breast cancer (Lin et al., 2015). Lactates
produced by glycolysis are transported in and out of cells
by monocarboxylate transporter (MCT) (Wilde et al., 2017).
MCT1 overexpression in breast cancer is correlated with ER
negativity, PR negativity, high Ki-67 labeling index (Li et al.,
2018), basal-like type (Pinheiro et al., 2010), high grade, high
stage, increased recurrence, and poor prognosis (Johnson et al.,
2017). As for MCT4, tumoral MCT4 expression (Li et al., 2018)
and stromal MCT4 expression (Baenke et al., 2015) are associated
with poor prognosis.

Breast cancer has been reported to have an increased
expression of GLUT1–6 and 12 (Table 1; Barron et al.,
2016), and the most important glucose transporter for glucose
uptake in breast cancer is GLUT1 (Grover-McKay et al., 1998;
López-Lázaro, 2008; Furuta et al., 2010; Wuest et al., 2018).
Glucose uptake by GLUT1 is important in the carcinomatous
transformation and carcinogenesis of breast cancer, and it plays
an important role in the early phase of breast cancer development
(Young et al., 2011; Wellberg et al., 2016). GLUT1 overexpression
in breast cancer is correlated with high histologic grade, high
proliferative activity, poor differentiation, and poor prognosis
(Pinheiro et al., 2011; Krzeslak et al., 2012). GLUT4 is an

insulin-stimulated glucose transporter (Vargas et al., 2021), and
glucose uptake is dependent on insulin stimulation in cancer
cell lines (Harmon and Patel, 2004; Moreira et al., 2013; Guedes
et al., 2016). It has also been reported that hyperinsulinemia
increases the risk of breast cancer irrespective of the body
mass index (BMI) (Lawlor et al., 2004; Kabat et al., 2009;
Gunter et al., 2015), and so it can be postulated that insulin
is associated with breast cancer. Cross-talks between signaling
pathways regulated by 17 beta-estradiol (E2) and insulin-like
growth factor (IGF) (Bruning et al., 1992; Conover et al., 1992),
strong mitogen for cancer cells (Beckwith and Yee, 2014), and
actions through ER-signaling (Katzenellenbogen and Norman,
1990) are some possible mechanisms associated with the insulin
effect on breast cancer.

Overexpression of glycolysis-related enzymes and GLUTs in
breast cancer is due to the activation of the signaling pathways
controlling the enzyme expression in breast cancer (Figure 2).
The main molecular pathways involved in the control of aerobic
glycolysis are the PI3K/AKT, AMP-activated protein kinase
(AMPK), mitogen-activated protein kinase, Wnt, and mTOR
pathways (Engelman et al., 2006; Han et al., 2015; Cai et al.,
2018; Hibdon et al., 2019; Irey et al., 2019). Among these, the
PI3K/AKT, AMPK, and mTOR pathways are activated in breast
cancer. PI3K/AKT activates phosphofructokinase-2 (PFK-2) by
phosphorylation (Novellasdemunt et al., 2013; Lee et al., 2018).
PI3K/AKT pathway activation leads to GLUT1 overexpression,
which is then translocated from the cytoplasm to the plasma
membrane (Samih et al., 2000). AKT is activated by E2, thus
increasing the glucose uptake in MCF-7 breast cancer cell
line through translocation of GLUT4 to the plasma membrane
(Garrido et al., 2013). PIK3CA and AKT1 gene mutations are
common in breast cancer (Castaneda et al., 2010; Koboldt et al.,
2012), and PIK3CA mutation is usually found in ER-positive
and HER-2 positive breast cancer. AMPK translocates GLUT4
to the cytoplasmic membrane by activating PFK-2 (Marsin
et al., 2000) and increases GLUT1 expression (Barnes et al.,
2002). AMPK is highly expressed in TNBC and known to be
associated with poor prognosis (Huang et al., 2016). mTOR
is a downstream effector of AKT, comprising mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2) (Hara et al.,
2002; Vivanco and Sawyers, 2002; Baretić and Williams, 2014).
mTORC1 promotes the transition from OXPHOS to glycolysis
and increases the expression of HIF-1α, which in turn increases
the expression of glycolysis-related enzymes such as PFK (Düvel
et al., 2010). mTORC2 promotes glycolysis by activating AKT
(García-Martínez and Alessi, 2008; Ikenoue et al., 2008; Cybulski
and Hall, 2009) and GLUT1-related glucose uptake (Beg et al.,
2017). mTOR is activated in breast cancer through HER-2
overexpression, PI3K pathway alteration, and mTOR mutation
(Hare and Harvey, 2017). Second, the increased expression of
glycolysis-related enzymes in breast cancer is because of the
activation of transcription factors (Figure 2). The transcription
factors associated with glycolysis are c-myc, p53, and HIF-
1. c-myc is responsible for increasing the gene expression
of glycolysis-related genes and, consequently, glycolysis-related
enzymes, such as GLUT, HK, and PFK (Hsieh et al., 2015).
Moreover, estrogen is responsible for the increased expression
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TABLE 1 | GLUT expressed in breast cancer.

GLUT type Patient
number
and
diagnosis

Material and method GLUT status Related factors References

GLUT1
GLUT2
GLUT3
GLUT4
GLUT5
GLUT6

33, IDC IHC, FFPE 90.9% + + / + + +
90.9% + / + +
9.1% +
6.1% +
84.8% + / + +
50.0% +

n/a Godoy et al., 2006

GLUT1 118, IBC IHC, FFPE 42% positive High Ki-67
High HG
bcl-2 negative

Younes et al., 1995

GLUT1 124, IBC IHC, FFPE 46% positive High HG
basal-like type
PR negative
High Ki-67

Pinheiro et al., 2011

GLUT1 100, IBC IHC, FFPE 47% positive High nuclear grade
ER negative
PR negative
Shorter DFS, OS

Kang et al., 2002

GLUT1 78, IDC,
No LN
mets

IHC, FFPE 28.0% + in HG 1
63.8% + in HG 2
58.7% + in HG 3

n/a Ravazoula et al.,
2003

GLUT1 61, BC IHC, FFPE 86.9% + High HG Alò et al., 2001

GLUT1 523, IBC
−55 BLBC
−231
non-BLBC

IHC, FFPE 76.4% + in BLBC
23.8% + in non-BLBC

High HG
ER negative
PR negative
basal-marker +
p53 expression

Hussein et al., 2011

GLUT1 132, TNBC IHC, FFPE 65.2% + in tumor
5.3% + in stroma

n/a Kim et al., 2013

GLUT1 276, IBC IHC, FFPE 88.4% low
11.4% high

High HG
ER negative
PR negative
No LN mets

Choi et al., 2013

GLUT1 809, IBC
−692 IDC
−114 ILC

IHC, FFPE 32.9% positive
−37.3% + in IDC
−6.1% + in ILC

High HG in ILC
Shorter OS in ILC

Kim Y. H. et al.,
2014

GLUT1
GLUT2

12, BC,
5, LN mets

IHC, FFPE 100% positive
100% positive

n/a Brown and Wahl,
1993

GLUT1
GLUT3

70, BC PCR, Western blotting 48.7% positive
21.0% positive

Higher HG Krzeslak et al.,
2012

GLUT1
GLUT4

30, BC ICC 57% positive
43% positive

n/a Binder et al., 1997

GLUT5 20, BC IHC, FFPE 100% positive n/a Zamora-León et al.,
1996

GLUT12 10, IBC IHC, FFPE 80% positive n/a Rogers et al., 2003

IDC, invasive ductal carcinoma; IHC, immunohistochemistry; ICC, immunocytochemistry; FFPE, formalin-fixed paraffin-embedded; IBC, invasive breast cancer; HG,
histologic grade; ER, estrogen receptor; PR, progesterone receptor; LN, lymph node; BLBC, basal-like breast cancer; TNBC, triple negative breast cancer; ILC, invasive
lobular carcinoma; PCR, polymerase chain reaction.

of c-myc, and about 80% of breast cancers are ER-positive
(Butt et al., 2008). p53 is a well-known tumor suppressor,
gene mutations of which are found in most cancers including
breast cancer. p53 mutation is found in about 20%–30% of
breast cancers and more often in ER-negative breast cancer. p53
suppresses phosphoglycerate mutase (PGM), GLUT1, GLUT3,
and GLUT4 expression (Kawauchi et al., 2008; Vousden and
Ryan, 2009); hence, p53 mutation leads to an increased glycolysis

in breast cancer. Lastly, the transcription factor HIF-1α, which
is activated by hypoxia, is an important regulator in glycolysis
and increases the expression of glycolysis-related molecules,
such as HKII, PFK-1, lactate dehydrogenase (LDH) A, GLUT-
1, and GLUT-3. HIF-1α promotes the metabolic shift to
glycolysis by suppressing the mitochondrial function through
the activation of pyruvate dehydrogenase kinase 1 (PKD1) and
MAX interactor 1 (MXI1) (Denko, 2008). HIF-1α overexpression
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FIGURE 2 | Regulation of glycolysis and glucose transporters in breast cancer. Important signaling pathways regulating glycolysis and glucose transporters in breast
cancer are the PI3K/AKT, AMPK, and mTOR pathways. PI3K/AKT pathway activated by 17-estradiol (E2) or genetic mutations increases expression of PFK2 and
GLUT. AMPK pathway activated in breast cancer transports GLUT4 to cell membrane through activation of PFK-2 and increases GLUT expression. mTORC1 among
the mTOR complex increases the expression of PFK by activating HIF-1α. mTORC2 either activates AKT or increases GLUT1 expression. Transcription factors
regulating glucose metabolism in breast cancer are c-myc, p53, and HIF-1α. As such, breast cancer with p53 mutation shows increased expression of GLUT
because c-myc induces increased expression of GLUT, HK, and PFK, and p53 suppresses expression of GLUT. Lastly, activated HIF-1α increases expressions of
HK, PFK, LDHA, and GLUT, and suppresses mitochondrial function by activating PKD1 and MXII. PI3K, phosphoinositide 3-kinase; AKT, Ak strain transforming
protein kinase B; AMPK, AMP-activated protein kinase; mTOR, mechanistic target of rapamycins; PFK, phosphofructokinase; HIF, hypoxia-inducible factor; HK,
hexokinase; LDHA, lactate dehydrogenase A; PKD1, pyruvate dehydrogenase kinase 1; MXI1, MAX interactor 1.

has been reported in breast cancer (Zhong et al., 1999), and
it is attributed to the increased expression of glycolysis-related
proteins in breast cancer because HIF-1α overexpression is
related to HER-2 positivity (Giatromanolaki et al., 2004) and
TNBC (Jin et al., 2016).

Breast cancer is susceptible to sex hormones such as
estrogen, which may have an effect on the regulation of
glucose metabolism. E2 and ERα stimulation activates the
MAPK pathway (Ronda et al., 2010a,b), regulates expression
of GLUT4 (Barros et al., 2006, 2008), and increases glucose
uptake (Niu et al., 2003; Gorres et al., 2011). Furthermore,
E2 activates the PI3K pathway that is involved in glucose
metabolism in breast cancer cells (Simoncini et al., 2000; Lee
et al., 2005), and suppresses phosphatase and tensin homolog
(PTEN), a phosphatidylinositol-3 kinase inhibitory protein
(Noh et al., 2011).

Expression of Glycolysis-Related Enzymes and
GLUTs in TNBC
Triple negative breast cancer is defined as breast cancer that is
negative for ER, PR, and HER-2 and accounts for about 15% of
breast cancer cases. Basal-like breast cancer (BLBC) is defined as
those that have high expressions of basal genes in gene expression
studies such as DNA microarray. Therefore, TNBC and BLBC
are not the same in the strict sense of definitions (Carey et al.,
2010), although they can overlap in many instances. TNBC is

a heterogeneous group, and many researches have focused on
the subgrouping of TNBC. Lehmann et al. (2011) have grouped
TNBC further into basal-like1, basal-like2, mesenchymal, and
luminal androgen receptor, and Burstein et al. (2015) have
grouped TNBC further into basal-like immune-activated, basal-
like immune suppressed, mesenchymal, and luminal androgen
receptor. The general characteristics of TNBC include the
histological characteristics of high grade, high proposition index,
and tumor necrosis, and clinical characteristics of higher rate
of metastasis and poor prognosis (Kumar and Aggarwal, 2016;
Borri and Granaglia, 2020). With these histological and clinical
features, TNBC can be postulated to be of high metabolic status.
One of the important metabolic features of TNBC is high glucose
uptake, and GLUT1 overexpression is seen in TNBC (Hussein
et al., 2011; Oh et al., 2017). High expression of glycolysis-related
enzymes, such as HK2 (Jiang S. et al., 2012), PKM2 (Christofk
et al., 2008; Ma et al., 2019), and LDH (McCleland et al., 2012;
Huang et al., 2016; Dong et al., 2017), and that of lactate
transporters MCT1 and MCT4 have also been reported in TNBC
(Pinheiro et al., 2010; McCleland et al., 2012; Doyen et al., 2014).
The high expression of glycolysis-related proteins in TNBC is
owing to the fact that the glycolysis regulatory factors, such as
HIF-1 (Lin et al., 2016; De Blasio et al., 2020), c-myc (Palaskas
et al., 2011; Shen et al., 2015), and EGF signaling (Avanzato et al.,
2018), are promoted in TNBC. Therefore, TNBC cells are much
more dependent on glucose metabolism than non-TNBC cells
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(MCF-7) (Robey et al., 2005), and GLUT1 inhibition shows a
more anti-proliferative effect for TNBC cells than non-TNBC
cells (MCF-7) (Yang et al., 2021).

Non-glycolysis Glucose Metabolism
Pathway in Breast Cancer
In glucose metabolism, non-glycolysis metabolic pathways,
such as the serine/glycine metabolic pathway and PPP, play
important roles in breast cancer. The expression of serine/glycine
metabolic pathway-related proteins in breast cancer differs
depending on the breast cancer molecular subtype. Serine
metabolic pathway-related proteins were highly expressed in
TNBC (Labuschagne et al., 2014), and glycine metabolic
pathway-related proteins were highly expressed in HER-2 type
breast cancer (Kim S. K. et al., 2014). The basal-like type
also showed a higher expression of serine/glycine metabolic
pathway-related proteins among the TNBC subtypes (Noh et al.,
2014). Analysis using the cBioPortal TCGA Pan-Cancer Atlas
shows PHGDH amplification in approximately 2.2% of breast
cancers (Geeraerts et al., 2021a). PHGDH expression is observed
frequently in ER-negative breast cancer (Possemato et al., 2011),
and increased PHGDH expression in breast cancer is associated
with poor prognosis (Locasale et al., 2011; Possemato et al.,
2011). Similarly, phosphoserine aminotransferase 1 (PSAT1) is
more frequently expressed in ER-negative breast cancer and
is associated with poor prognosis (Gao et al., 2017). Serine
hydroxymethyltransferase 2 expression level is associated with
the histologic grade of breast cancer (Yin, 2015).

High expression of PPP-related enzymes, such as 6PGD (Yang
X. et al., 2018) and TKT (Benito et al., 2017; Yang X. et al., 2018), is
reported in breast cancer. G6PD, one of the PPP-related enzymes,

is associated with the molecular subtype of breast cancer, and
G6PD overexpression is associated with poor prognosis of breast
cancer (Pu et al., 2015; Dong et al., 2016). 6PGDH expression is
high in TNBC, and the expression of G6PDH and 6PGL are high
in HER-2 type (Choi et al., 2018b). The expression of G6PDH
is also the highest in brain metastasis among metastatic breast
cancers (Cha et al., 2017). The expression of TKT is associated
with tumor size and high TKT expression is associated with
poor prognosis in a mouse model of breast cancer (Tseng et al.,
2018). Increased PPP flux by G6PD and HK2 enhancement
induces tamoxifen resistance in breast cancer (Wang et al., 2016).
An increase in HK2 transcription by the yes-associated protein
(YAP) axis also promotes the migration of breast cancer cells
(Tseng et al., 2018).

Glucose Metabolism in the Tumor
Microenvironment of Breast Cancer
Breast cancer is one of those tumors that harbors tumor stroma,
the main cell components of which include cancer-associated
fibroblasts (CAFs), cancer-associated adipocytes (CAAs), and
immune cells. These stromal cells affect the development,
progression, and metastasis of breast cancer through various
interactions with breast cancer cells (Mao et al., 2013; Soysal
et al., 2015; Choi et al., 2018a; Mittal et al., 2018; Wu et al.,
2019b). Thus, metabolic interactions are present between breast
cancer cells and stromal cells (Figure 3), and glucose metabolism
in tumor stromal cells is suggested in the reverse Warburg
effect. According to the reverse Warburg effect, aerobic glycolysis
occurs in CAFs that are present in the breast cancer stroma.
In brief, the reverse Warburg theory describes the glycolysis
that occurs in CAFs by ROS, HIF1A, and nuclear factor-κB

FIGURE 3 | Glucose metabolic interaction between breast cancer cells and stromal cells. The glucose metabolic interaction between the breast cancer cell and CAF
is presented as the reverse Warburg effect, where mitochondrial dysfunction results in a decrease in caveolin-1 levels because of increased autophagy, and an
increase in glycolysis occurs by enhanced HIF-1α and NF-κB in CAF. Lactate produced by glycolysis is transferred to cancer cells by MCT4 in CAF and MCT1 in
cancer cells, which is converted to pyruvate and used as a material for mitochondrial OXPHOS. ROS produced by the OXPHOS process cause an increase in
HIF-1α and NF-κB in CAF. TAM, one of the immune cells of breast cancer stroma, shows increased glycolysis because of the increased GLUT1 and HK2 activity by
enhanced HIF-1α expression; therefore, TAM can compete with cancer cells for glucose. G protein-coupled receptor 132 (Gpr132) senses the lactate produced by
glycolysis to convert the macrophage to an M2-like phenotype, which promotes cancer cell adaptation, migration, and invasion. HIF-1α-stabilizing long non-coding
RNA (HISLA) is transferred from TAM to breast cancer cells through extracellular vesicle transmission, and then, HISLA promotes glycolysis in breast cancer cells.
Breast cancer cells have a metabolic switch that controls glycolysis and OXPHOS depending on the circumstances. CAF, cancer-associated fibroblast; HIF,
hypoxia-inducible factor; MCT, monocarboxylate transporter; OXPHOS, oxidative phosphorylation; HK, hexokinase; ROS, reactive oxygen species; TAM,
tumor-associated macrophage.
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(NF-κB), resulting in lactate being released from CAFs by
MCT4, which is then transported into the tumor cells by MCT1
in breast cancer, creating energy by mitochondrial OXPHOS
(Pavlides et al., 2009; Fu et al., 2017; Wilde et al., 2017).
Lactate produced by CAFs is transported into the tumor cells
as potent nutrients for the TCA cycle, and this lactate can be
an important source of energy for cancer cells because lactate
is the primary source of carbon for the TCA cycle among
circulating metabolites (Hui et al., 2017; Martínez-Reyes and
Chandel, 2017). In co-cultural studies of breast cancer cell
lines and fibroblasts and studies of human breast cancer tissue,
MCT4 was expressed in CAFs, whereas MCT1 was expressed in
tumor cells (Whitaker-Menezes et al., 2011; Witkiewicz et al.,
2012; Johnson et al., 2017). In a co-cultural study of MCF7
breast cancer cells and normal fibroblasts, culture of MCF7
breast cancer cells alone or fibroblasts alone did not exhibit
MCT4 expression, whereas co-culture of MCF7 breast cancer
cells and fibroblasts showed MCT4 expression in CAFs. The
co-culture with fibroblasts showed MCT1 upregulation in MCF7
breast cancer cells (Whitaker-Menezes et al., 2011). Breast CAFs
showed higher expressions of GLUT1 and PDK1 than normal
fibroblasts (Pasanen et al., 2016), and the co-cultural study of
breast cancer cells and fibroblasts showed an increase in glycolysis
and glucose transporter-related genes in CAFs (Ueno et al., 2015).
The reverse Warburg effect is not only observed between cancer
cells and CAFs but also between hypoxic and oxygenated cancer
cells (Sonveaux et al., 2008; Doherty and Cleveland, 2013).

One type of immune cells in the tumor stroma is
tumor-associated macrophages (TAMs) that inhibit antitumor
immunity in breast cancer, resulting in tumor progression. In
general, TAMs exhibit properties of M2 macrophages (Mantovani
et al., 2002; Hollmén et al., 2015), and TAMs in hypoxic tumor
regions express HIF-1 (Burke et al., 2003), which controls the
expression of glycolysis-related genes, including GLUT1, HK2,
PFFB3, and PGK1 (Semenza et al., 1994). Therefore, TAMs in
hypoxic tumor environments may utilize glycolysis. In addition,
lactate generated in the glycolysis process is an important
metabolite, which activates M2 macrophages (Colegio et al.,
2014; Chen P. et al., 2017; Mu et al., 2018). In a co-culture
study of breast cancer cells and macrophages, G protein-coupled
receptor 132 (Gpr132) senses lactate in the tumor environment
to transform macrophages into M2-like phenotypes to promote
cancer cell adherence, migration, and invasion (Chen P. et al.,
2017). In addition, HIF-1α-stabilizing long non-coding RNA
(HISLA) is transferred from TAMs to breast cancer cells via
extracurricular vessel transmission, which increases glycolysis in
breast cancer cells (Chen et al., 2019).

IMPACT OF GLUCOSE METABOLISM
AND GLUCOSE TRANSPORTERS ON
BREAST CANCER BIOLOGY AND THE
RESPONSE TO TREATMENT

First, the proliferation of tumor cells requires a lot of energy
and a variety of materials are needed to create new tumor

cells, which is also true for breast cancer cells. Therefore,
glucose metabolism and glucose transporters, which provide
energy sources for breast cancer, and PPP, which provides
the materials needed for the synthesis of nucleotides, lipids,
and non-essential amino acids, play important roles in breast
cancer proliferation. Second, glucose metabolism affects the
maintenance of epithelial-mesenchymal transition (EMT) and
cancer stem cell (CSC) phenotype in breast cancer. Increased
glycolysis and PPP by epigenetic silencing of fructose-1,6-
biphosphatase can increase NADPH and reduce ROS levels,
which enhance EMT and CSC phenotype in basal-like breast
cancer (Dong et al., 2013; Schieber and Chandel, 2013). In
a breast cancer cell line study, high glucose levels increased
glycolytic enzyme, motor protein, and NF-κB levels and
glucose uptake, and reduced actin, resulting in EMT phenotype
activation (Santos and Hussain, 2020). In addition, HIF-1
activation by hypoxia maintains ROS homeostasis through
the glycolytic pathway and serine synthesis pathway, which is
important for breast CSC induction (Semenza, 2017). Moreover,
glucose metabolism is associated with treatment resistance
in breast cancer, where induced glycolysis is observed by
AKT/mTOR/HIF-1α axis activation in tamoxifen resistant breast
cancer cells, and when HKII is inhibited, tamoxifen sensitivity
is recovered (Woo et al., 2015). Increased glycolysis is observed
in trastuzumab resistant breast cancer cells, and glycolytic
inhibition reduces trastuzumab resistance (Zhao et al., 2011). The
expression of PFK-2 is linked to the responsiveness of anticancer
drugs such as epirubicin and 5-fluorouacil in breast cancer cells
(Benesch et al., 2010; Lin et al., 2015). Chemoresistant TNBC cells
exhibit increased glycolysis and lactate permutation (Zhou et al.,
2010), and PHGDH expression correlates with the responsiveness
of chemotherapy in TNBC cells (Samanta et al., 2016). GLUT
is associated with breast cancer metastasis; a proteomic analysis
of MDA-MB-231 (metastatic breast cancer cell line) and MCF-
10A (normal breast epithelial cell line) showed that one of the
three strongest breast cancer-related proteins was GLUT1 (Risha
et al., 2020). The GLUT expression showed a difference according
to the metastatic sites, and the expression of GLUT1 was the
highest in brain metastasis (Kim H. M. et al., 2014). Additionally,
GLUT12 plays an important role in tumor growth and metastasis
through aerobic glycolysis in TNBC (Shi et al., 2020).

CLINICAL APPLICATION OF GLUCOSE
TRANSPORTERS AND GLUCOSE
METABOLISM IN BREAST CANCER

As we have seen earlier, glucose transporter expression is high
in breast cancer, and glucose metabolism is carried through the
glycolytic, serine/glycine, and PPPs that play important roles
in tumor growth and progression. Therefore, they may have a
variety of clinical applications, especially in imaging diagnosis
and targeted therapy.

Imaging Diagnosis
Positron emission tomography (PET) using 18F-fluorodeoxy
glucose (FDG), a radioactive analog of glucose, is the
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representative functional imaging technique based on the
principle that tumor cells uptake large amounts of glucose
by GLUT via the Warburg effect. These PETs are used for
tumor staging and treatment response monitoring (Bohndiek
and Brindle, 2010). These FDG-PET/CTs are also useful for
diagnosis, staging, and treatment evaluation in breast cancer
(Groheux et al., 2016; Caresia Aroztegui et al., 2017; Paydary
et al., 2019). In addition to FDG-PET/CT, functional imaging
based on glucose metabolism can be performed using magnetic
resistance spectroscopy (MRS). Multiple metabolites can be
simultaneously identified in tumor tissues using MRS, which
can analyze labeling patterns using stable isotopic traces, and
glucose metabolites can be analyzed using 13C-MRS and [13C]-
labeled glucose to image the glycolysis status. MRS can perform
effective metabolic monitoring in breast cancer (Rivenzon-Segal
et al., 2002). Breast cancer with different 13C-MRS expression
patterns show a different glucose metabolism (Grinde et al.,
2011). A high-resolution magic angle spinning MRS analysis
of metabolites in breast cancer, such as β-glucose, lactate, and
glycine, shows good prognosis with reduced concentrations
of glycine. The concentration of β-glucose shows a negative
correlation with proliferation index (MIB-1), indicating that MR
metabolite analysis is valuable in breast cancer prognostication
(Sitter et al., 2010).

Therapeutic Target of Glucose
Metabolism and Glucose Transporters
The expression of glucose transporters and glucose metabolic
enzymes in breast cancer is high; thus, their inhibition can serve
as an effective treatment strategy against breast cancer (Figure 4).
Various preclinical and clinical studies have been conducted to
investigate this implication.

GLUT1 Inhibitors
GLUT1 inhibitors—WZB117 and SFT-31—inhibit cell
proliferation and promote apoptosis in breast cancer cell lines
(Xintaropoulou et al., 2015). WZB117 increases the effectiveness
of radiation (Zhao et al., 2016) and anticancer drugs in breast
cancer cell lines (Liu et al., 2012; Chen Q. et al., 2017). BAY-
876, a selective GLUT1 inhibitor, decreases glucose uptake in
TNBC cell lines (Wu et al., 2019a) and 2-deoxy-D-glucose (2-
DG), a synthetic non-metabolizable glucose analog, competes
with glucose for binding GLUT, which reduces glucose uptake
in the MDA-MB-231 TNBC cell line (Amaral et al., 2018). As
for 2-DG, there are two different phenomena resulting from
the suppression of glycolysis: first, glucose can be deviated
to PPP because 2-DG is not metabolized any further after
phosphorylation into 2-deoxy-D-glucose-6-phosphate (2-DG-
6-P) by HKII (Ralser et al., 2008); and second, 2-DG induces
autophagy due to endoplasmic reticulum (ER) stress. Suppression
of glycolysis leads to a decreased ATP, by which N-linked
glycosylation is suppressed and AMPK is activated. AMPK
activation and N-linked glycosylation lead to ER stress (Xi et al.,
2011, 2013). Autophagy promotes tumor growth in the early
stage of cancer (Cheong, 2015), maintains tumor survival, and
increases metastasis in the advanced stage (Yang et al., 2011).
Anti-GLUT1 monoclonal antibody decreases glucose uptake in

the MDA-MB-231 TNBC cell line, and decreases cancer cell
proliferation and promotes apoptosis in MCF-1 and T47D breast
cancer cell lines (Rastogi et al., 2007). Polyphenols, a huge family
of natural compounds found in plants or food, is one category
of the GLUT1 inhibitors (Williamson, 2017) that shows an anti-
tumoral effect against various cancers including breast cancer.
The anti-tumoral mechanism of polyphenols against breast
cancer includes increased apoptosis, cell cycle arrest, enhanced
autophagy, decreased angiogenesis, anti-inflammatory effect,
blockade for estrogen, aromatase modulation, altered redox
balance, and inhibition of the HER-2 pathway (Mocanu et al.,
2015; Losada-Echeberría et al., 2017). Polyphenols inhibiting
GLUT1 in breast cancer are as follows: Resveratol suppresses
glucose uptake in T-47D cell line by reducing GLUT1 protein
level (Jung et al., 2013), and hesperetin suppresses glucose uptake
by decreasing GLUT 1 mRNA and protein levels (Yang et al.,
2013). Quercetin decreases the glucose uptake in MCF-7 and
MDA-MB-231 by reducing GLUT1 protein level (Jia L. et al.,
2018), as does glabridin in MDA-MB-231 (Li et al., 2019).
Epigallocatechin-3-gallate (EGCG) decreases the glucose and
lactate levels in cancer cells by reducing GLUT1 mRNA levels
in 4T1 cell line (Wei et al., 2018), and cantharidin suppresses
metastasis by inhibiting glucose uptake and lactate production
through decreasing GLUT1 protein level in MCF-7 and MDA-
MB-231 (Pan et al., 2019). Kudingcha, one of the Ligustrum
robustum species, inhibit cancer proliferation through decreasing
GLUT1 protein level in MDA-MB-231 and HCC1806 (Zhu
et al., 2020). Vitamin D3 decreases glucose uptake by decreasing
GLUT1 mRNA and protein levels in MCF-7 and MDA-MB-231
(Santos et al., 2018).

Glucose Metabolic Enzyme Inhibitors
First, 3-bromopyruvate (3-BrPA), an inhibitor of hexokinase,
causes apoptosis in MDA-MB-231 breast cancer cell line (Liu
et al., 2014; Chen et al., 2018) and increases the response to
daunorubicin (Liu et al., 2015) and tamoxifen (Attia et al.,
2015) in breast cancer. Methyl jasmonate, another hexokinase
inhibitor, caused a decrease in tumor volume in mice bearing
4T1 breast cancer cell line (Yousefi et al., 2020). Resveratrol,
an inhibitor of PFK, decreases the cell viability and glucose
consumption in MCF-7 breast cancer cell line (Gomez et al.,
2013). Cyclosporin A, an immunosuppressive agent, inhibits
the expression and activity of PKM2 in breast cancer cell
lines (MCF-7, MDA-MB-435, and MDA-MB-231) and causes
tumor cell death by reducing cell viability (Jiang K. et al.,
2012). Cyclosporin A also maintains mitochondrial function
by suppressing mitochondrial permeability transition pore
(Halestrap et al., 1997; Mishra et al., 2019). When oxamate, an
LDH inhibitor, is administered in conjunction with doxorubicin
and metformin, it causes a rapid tumor growth inhibition in
the xenograft model using human MDA-MB-231 TNBC cell
line (García-Castillo et al., 2017). When paclitaxel and oxamate
are administered together, they induce an effective killing of
paclitaxel-resident TNBC cells (Zhou et al., 2010). Gossypol,
a lipid soluble polyphenolic compound, exhibits antitumor
effects by inhibiting glycolysis through LDH isoenzyme type 5
inhibition (Coyle et al., 1994). Gossypol causes anti-proliferative
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FIGURE 4 | Candidate drugs for the inhibition of glucose metabolism and glucose transporters in breast cancer. Inhibitors for GLUT1 involved in glucose influx in
glycolysis include WZB117, SFT-31, BAY-876, anti-GLUT1 antibody, and polyphenols such as resveratrol, hesperetin, quercetin, glabridin, EGCG, cantharidin,
kudingcha, and vitamin D3. 2-DG competes with glucose for binding GLUT1. Enzyme inhibitors for HK2 involved in glycolysis include 3-BrPA and methyl jasmonate,
and resveratrol as PKF inhibitors; cyclosporine A as PKM2 inhibitor; and oxamate, gossypol, AT-101, and galloflavin as LDHA inhibitors. Enzyme inhibitors for G6PD
involved in PPP include DHEA, 6-aminonicotinamide, and CB83 and oxythiamine as TKT inhibitor. In the serine and glycine pathway, PHGDH inhibitors include
NCT-503, CBR-5884, PKUMDL-WQ-2101, PKUMDL-WQ-2201, and 15 fragments, and sertraline as SHMT inhibitors. HK, hexokinase; PKF, phosphofructokinase;
PKM2, pyruvate kinase isozymes M2; LDHA, lactate dehydrogenase A; G6PD, glucose 6-phosphate dehydrogenase; PPP, pentose phosphate pathway; DHEA,
dehydroepiandrosterone; TKT, transketolase; PHGDH, phosphoglycerate dehydrogenase; SHMT, serine hydroxymethyltransferase.

activity and apoptosis in breast cancer cells (Gilbert et al., 1995;
Ye et al., 2010; Messeha et al., 2019), and when R-(-)-gossypol
(AT-101) is administered in conjunction with trastuzumab in
HER-2 positive breast cancer cell line, it causes synergistic
cytotoxicity and apoptosis (Bulut et al., 2020). Galloflavin, an
LDHA inhibitor, induces cell death in MDA-MB-231 cell lines
and acquired tamoxifen resistance MCF-7 breast cancer cell lines
(Farabegoli et al., 2012).

Serine and glycine pathway inhibitors can be used for
the management of tumors that use serine and glycine
metabolism and for treatment of tumors showing recurrence and
treatment resistance. PHGDH inhibitors—NCT-503 and CBR-
5884—are both allosteric PHGDH inhibitors; NCT-503 binds
to the near substrate-binding pockets; and CBR-5884 hinders
PHGD holigomerization (Mullarky et al., 2016; Pacold et al.,
2016). NCT-503 inhibits tumor growth in PHGDH-amplified
breast cancer xenografts (Pacold et al., 2016), and CBR-5884
inhibits tumor cell proliferation in high PHGDH-expressing
breast cancer cell lines (MDA-MB-468, MDA-MB-436, HCC70,

and Hs578T) (Mullarky et al., 2016). PKUMDL-WQ-2101 and
PKUMDL-WQ-2201, which are allosteric PHGDH inhibitors,
show an antitumor activity in PHGDH-amplified breast cancer
cell lines (MDA-MB-468 and HCC70) (Wang et al., 2017). An
NAD-competitive PHGDH inhibitor, 15 fragments, reduces cell
proliferation in PHGDH-amplified breast cancer cell line (MDA-
MB-468) (Unterlass et al., 2018). Sertraline, an antidepressant, is
a selective serotonin reuptake inhibitor (SSRI) class (MacQueen
et al., 2001), but it also works as a competitive dual
SHMT1/2 inhibitor, reducing the cell growth in serine/glycine
synthesis-addicted breast cancer cell line (MDA-MB-468) and
decreasing the tumor growth in a mouse xenograft study
(Geeraerts et al., 2021b).

G6PD, one of the important enzymes in PPP, has a potent
non-competitive inhibitor, dehydroepiandrosterone (DHEA),
which is an adrenal cortical steroid. DHEA inhibits the growth
and migration of breast cancer cell lines (MCF-7, MDA-MB-
231, and Hs578T) (López-Marure et al., 2011). DHEA can
bind estrogen or androgen receptors because it is metabolized
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to estrogen or androgen (Labrie et al., 2001), however, the
suppression of MCT-7 cell line growth by DHEA is reported to
be independent of estrogen or androgen receptors (Gayosso et al.,
2006). 6-aminonicotinamide, a G6PD inhibitor, can decrease
mammosphere formation and aldehyde dehydrogenase (ALDH)
activity when given with DHEA in breast cancer stem-like cells
that show high PPP activity (Debeb et al., 2016). CB83, another
G6PD inhibitor, can inhibit growth of MCF10-AT1 breast cancer
cell line (Preuss et al., 2013). Oxythiamine, an inhibitor of TKT,
also increases the response of breast cancer cells to doxorubicin
or docetaxel (Tseng et al., 2018).

CONCLUSION

Because of the high expressions of GLUT-1 and the enzymes
involved in glucose metabolism, tumor cells in breast cancer,
as in other tumors, are provided with energy through glucose
metabolism. There are several characteristic factors to consider
in the glucose metabolism of breast cancer. Because breast
cancer is heterogeneous, inter- and intratumoral heterogeneity
is also seen in glucose metabolism. First, glucose metabolic
activity is different among the molecular subtypes, especially in
TNBC, which shows an increased glycolytic phenotype (Wang
et al., 2020). According to the traditional Warburg theory,
tumors showing aerobic glycolysis are suggested to exhibit a
decreased mitochondrial OXPHOS; however, TNBC with a high
metabolic activity shows both enhanced glycolysis and sustained
mitochondrial OXPHOS (Park et al., 2016; Lanning et al., 2017;
Luo et al., 2018; Jia et al., 2019). Luminal type breast cancer rely
more on OXPHOS than glycolysis compared to TNBC (Pelicano
et al., 2014). It also presents metabolic switches between glycolysis
and OXPHOS during cancer progression (Levine and Puzio-
Kuter, 2010; Jia D. et al., 2018; Lai et al., 2020; Moldogazieva
et al., 2020). Therefore, metabolic intratumoral heterogeneity is
exhibited in breast cancer, showing different glycolytic activities
depending on the tumor cell type. Second, there is a metabolic
interaction between tumor cells and the surrounding stromal
cells in breast cancer. Breast cancer is a typical tumor that
contains various stromal cells, the main components of which
are CAFs, CAAs, and immune cells. Metabolic interactions
exist between breast cancer cells and stromal cells; especially
according to the reverse Warburg theory, lactates produced by
glycolysis in CAFs enter tumor cells and produce energy through
OXPHOS. Among the immune cells, B-cells and NK cells
use glycolysis, and tumor-associated neutrophils use glycolysis
and PPP, allowing a metabolic competition with the tumor
cells. Third, unlike in other tumors, CAAs are stromal cells
that are specifically present in breast cancer, and previous
studies suggest that β-oxidation in tumor cells is primarily
studied through the lipid transfer between CAAs and tumor

cells. As the glucose metabolic interaction between CAAs and
tumor cells is rarely studied in breast cancer, it requires
further study. Metabolic interactions between tumor cells and
stromal cells in these breast cancer cases are also reported
to be affected by cancer phenotypes (Brauer et al., 2013),
which may require further research on the metabolic cross-
talk between the cancer cells and stromal cells according to
the molecular subtype of breast cancer. Fourth, breast cancer
shows differential metabolic features depending on the stage
and metastatic site. In order for the tumor to progress into
distant metastasis, multiple and complex processes, such as
intravasation, survival in blood stream, and extravasation, must
be accomplished during this process, and the hurdles, such as
anchorage independent survival and tumor cell proliferation
in foreign microenvironment, should be overcome. One way
to overcome this challenge is metabolic reprogramming. Breast
cancer shows metabolic differences between the primary and
metastatic tumors (Chen et al., 2007; LeBleu et al., 2014; Dupuy
et al., 2015; Simões et al., 2015; Andrzejewski et al., 2017),
and breast cancer does not rely on a single metabolic pathway,
but uses multiple metabolic pathways. Highly metastatic 4T1
cells show increased glycolysis and OXPHOS compared to
non-metastatic 67NR breast cancer cells (Simões et al., 2015).
The most common metastatic sites are the brain, bone, lung,
and liver, which exhibit differential metabolic features owing
to different microenvironments. Liver metastatic breast cancer
demonstrates increased glycolytic pathways compared to bone
and lung metastatic breast cancer (Dupuy et al., 2015), whereas
brain metastatic breast cancer shows increased glycolysis and
PPP compared to bone metastatic breast cancer (Chen et al.,
2007). As a result of the above characteristics of glucose
metabolism in breast cancer, further studies are needed to
consider tumor imaging using glucose metabolism and glucose
metabolic markers as treatment targets. In addition, because
glucose metabolism is associated with resistance to anticancer
drugs or targeted treatments in breast cancer, glucose metabolic
inhibitors can also be considered for a combined therapy with
conventional treatments.
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