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The heart is comprised of multiple tissues that contribute to its physiological functions.
During development, the growth of myocardium and endocardium is coupled and
morphogenetic processes within these separate tissue layers are integrated. Here, we
discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis
of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac
progenitor cells derived from the secondary heart field, in restricting the growth of
the epicardium, and in guiding trabeculation and outflow tract formation. Recent
work also shows that myocardial chamber dimensions serve as a blueprint for Hippo
signaling-dependent growth of the endocardium. Evidently, Hippo pathway components
act at the crossroads of various signaling pathways involved in embryonic zebrafish
heart development. Elucidating how biomechanical Hippo signaling guides heart
morphogenesis has direct implications for our understanding of cardiac physiology
and pathophysiology.

Keywords: Hippo signaling, Yap1/Wwtr1 (Taz), cardiac development, mechanobiology, endocardium,
myocardium, zebrafish, intra-organ-communication

INTRODUCTION

The Hippo signaling pathway is a key regulator of organ size and cell proliferation (Justice et al.,
1995; Xu et al., 1995) in response to mechanical tension [(Dupont et al., 2011) and reviewed in
Low et al. (2014)]. When Hippo signaling is active, the two Mammalian Sterile 20-like kinases
(MST)1/2 and their phosphorylation targets Large tumor suppressor kinases (LATS)1/2 are in
a phosphorylated state (Hergovich et al., 2006; Yin et al., 2013; Figure 1). YAP1 and WWTR1
are direct phosphorylation targets of LATS1/2, which causes their 14-3-3-mediated cytoplasmic
retention and SCF-mediated degradation (Zhao et al., 2007, 2010; Liu et al., 2010). This prevents
proliferative growth within the tissue or organ. Under mechanical stress or conditions of tissue
crowding, Hippo signaling is off and the YAPI/WWTRI1 transcriptional co-activators remain
unphosphorylated and localize to the nucleus. There they bind members of the TEAD transcription
factor family and activate proliferative target gene expression [reviewed in Zhao et al. (2008),
Meng et al. (2016)].
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In vertebrates, Hippo pathway components are key regulators
of cardiovascular development [reviewed in Xiao et al. (2016);
Ma et al. (2019)] and cardiac regeneration [reviewed in Mia
and Singh (2019), Zheng et al. (2020)]. In mice, inactivation
of Hippo pathway components in the developing heart caused
cardiomyocyte overproliferation and increased size of the heart
(Heallen et al, 2011). Consistently, overexpression of YAP
within cardiomyocytes had the same effect (Von Gise et al,
2012). The transcriptional co-activators YAP1/WWTR1 (TAZ)
are also involved in epicardial development and cell proliferation,
epithelial-to-mesenchymal transition (EMT), and epicardial cell
fate specification (Zhang et al., 2014; Singh et al., 2016). During
murine cardiac cushion development, YAP1 potentiates TGF-
driven Smad signaling, which regulates expression of the EMT-
regulating target genes Snail, Slug, and Twist] (Zhang et al,
2014). Mechanical force directed at nuclei of mouse embryonic
fibroblasts and epithelial cells was sufficient for the nuclear
translocation of YAP1 protein (Elosegui-Artola et al, 2017).
Similarly, mechanical stretching of an epithelial monolayer
composed of MCF10A and MII cells in vitro induced entry of
YAPI/WWTRI into the nucleus and stimulated proliferation,
which depended on the shape or the rigidity of the surrounding
extracellular matrix (Aragona et al., 2013). This finding suggests
that external strain forces can overcome the inhibition of
YAPI/WWTRI in growth-arrested or contact-inhibited cells. In
zebrafish endothelial cells, Yap1 controls proliferation in response
to blood flow and is essential for blood vessel maintenance
(Nakajima et al., 2017). In this context, F-actin and Angiomotin
affected the fluid flow-induced nuclear localization of Yap1l. The
apical polarity Crumbs complex with its associated proteins and
cell junctional proteins can affect Hippo signaling [reviewed in
Ma et al. (2019), Martin et al. (2021)]. The tight junctional
protein Zona Occludens 2 (ZO-2) responds to high compression
or tensile forces and directly interacts with YAP1/WWTR1 when
these proteins shuttle between cell junctions, cytoplasm, and
nucleus (Oka et al., 2010, 2012). Stretch-induced YAP1/WWTR1-
dependent proliferation of murine endothelial cells was regulated
by the mechanosensitive junctional protein Cadherin-5 (VE-
Cadherin), indicating that mechanical stimulation at cell-cell
junctions acts as a proliferative cue (Neto et al., 2018).

Zebrafish has evolved as a powerful model organism to study
the role of mechanobiology during cardiovascular development.
Zebrafish embryos can survive without a heartbeat throughout
early development (Sehnert et al., 2002). This has facilitated
experimental procedures with an altered cardiac contractility
or blood flow that are not possible in other vertebrates. For
instance, the formation of cardiac valves in response to blood
flow [reviewed in Steed et al. (2016a), Paolini and Abdelilah-
Seyfried (2018)], the delamination of myocardial cells during
trabeculation (Staudt et al., 2014; Jiménez-Amilburu et al., 2016;
Lai et al, 2018; Priya et al., 2020), or the development of
proepicardium (Serluca, 2008; Peralta et al., 2013, 2020; Andrés-
Delgado et al., 2019, 2020) have been subjects of studies with
unprecedented cellular resolution.

The role of mechanobiology in zebrafish cardiac
morphogenesis and cell fate specification has been the focus
of several recent reviews (Haack and Abdelilah-Seyfried, 2016;

Paolini and Abdelilah-Seyfried, 2018; Duchemin et al.,, 2019b;
Gunawan et al., 2021). Here, we only review the latest findings
on biomechanical Hippo signaling during zebrafish cardiac
development (Figure 2). From these studies, a complex picture
emerges of Hippo signaling interactions with other signaling
pathways in various cardiac developmental processes.

HIPPO SIGNALING AFFECTS THE
ACCRETION OF SECONDARY HEART
FIELD-DERIVED CARDIAC PROGENITOR
CELLS INTO THE ATRIAL CHAMBER

The formation of the zebrafish heart involves the migration
of cardiac progenitor cells from the lateral plate mesoderm
toward the embryonic midline. This process and the formation
of the nascent zebrafish heart cone has been focus of previous
reviews (Staudt and Stainier, 2012; Haack and Abdelilah-Seyfried,
2016). Of note, during heart cone assembly, Yapl signaling
is required for the survival of endodermal cells (Fukui et al.,
2014), an essential tissue layer on which cardiac progenitor
cells migrate. Mutants lacking endoderm (George et al., 1997;
Schier et al., 1997; Zhang et al., 1998; Alexander et al., 1999;
Reiter et al., 1999) or sphingosine 1-phosphate (S1P) signaling
(Kupperman et al., 2000; Osborne et al., 2008) result in
cardia bifida, a condition in which the two bilateral cardiac
progenitor cell populations fail to reach the embryonic midline.
In that study, the authors found that S1P signaling within
the endodermal layer is required for Yapl activity and the
expression of the Yapl target gene connective tissue growth
factor a. In turn, this growth factor is essential for the survival
of the endoderm (Fukui et al., 2014). In a related study,
Miesfeld and Link (2014) identified an involvement of Yapl in
cardiac progenitor cell migration. They generated a transgenic
Yap/Wwtrl-Tead activity reporter line, which indicated that
Hippo signaling was active during cardiac progenitor cell
migration. When overexpressing a dominant-negative transgene
that prevented the interaction between Yapl/Wwtrl and Tead,
cardiac progenitor cell migration to the midline was impaired
(Miesfeld and Link, 2014).

Another recent study by Fukui et al. (2018) expanded on
their earlier discovery that Yapl signaling indirectly affects
cardiac progenitor cell migration. Here, they discovered a
direct role of Hippo signaling within the anterior lateral plate
mesoderm among a subset of secondary heart field-derived
cardiac progenitor cells. Yapl was required in hand2- and islet1-
expressing myocardial cells that migrate to the venous pole
of the heart. Mutants lacking Lats1/2 kinases had significantly
increased numbers of islet1-positive atrial myocardial cells while
a loss of Yapl/Wwtrl had the opposite effect. That study also
employed a transgenic Yapl/Wwtrl-Tead activity reporter line,
which showed enhanced activity in latsI/2 double mutants.
This suggested these kinases restrict Yapl/Wwtrl-Tead activation
during early myocardial determination. The mechanism of
Yapl/Wwtrl activity involved the upregulation of hand2 and
bmp2 expression, which resulted in the phosphorylation of
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FIGURE 1 | Biomechanical Hippo signaling pathways in the zebrafish endocardium. Biomechanical forces are sensed and transmitted by the mechanosensitive
protein Cadherin-5 (Cdh5) and Piezo1/2 ion channels. This turns the Hippo signaling pathway to an inactive state (right) and results in the nuclear translocation of
unphosphorylated YAP1/WWTR1 transcription factors where they form a complex with TEAD transcription factors to regulate gene expression. In the absence of
biomechanical stimuli, the Hippo signaling pathway is active (left). This initiates a cascade of phosphorylation events on MST1/MST2 and LATS1/LATS2 kinases,
which phosphorylate YAP1/WWTR1 proteins that are retained in the cytoplasm or become proteolytically degraded.

Smadl/5/9 in myocardial progenitor cells. Conversely, loss
of Latsl/2 caused increased hand2 expression and increased
numbers of myocardial progenitor cells at the venous pole.
Hence, these functional studies suggest, Hippo signaling restricts
the accretion of myocardial progenitor cells to the venous pole
by suppressing Yapl/Wwtrl-dependent Bmp2b signaling and
hand2 expression (Fukui et al., 2018). However, whether this
process is dependent on mechanical stimuli within the anterior
lateral plate mesoderm that regulates cell migration toward the
venous pole of the heart will be an exciting topic for further
investigations. Of note, Hand2 is a regulator of Fibronectin
expression (Garavito-Aguilar et al., 2010), which is an important
substrate for cardiac progenitor cell migration during early
cardiogenesis (Trinh and Stainier, 2004). Loss of Hand2 causes
cardiac bifida and increased fibronectin expression. Molecularly,
Hand2 negatively regulates Fibronectin signaling to establishes
a favorable milieu for cardiac fusion (Garavito-Aguilar et al.,
2010). Hence, it is plausible that Hippo-Hand2-Fibronectin
signaling may represent a second pathway controlling early
cardiac progenitor cell migrations.

TENSILE FORCES TRIGGER
YAP1-DEPENDENT ENDOCARDIAL
CELL PROLIFERATION

During cardiac ballooning, chamber dimensions approximately
double in size. Within the myocardial layer, this is due to the
accretion of progenitor cells to both poles of the heart (inflow
and outflow tract) (de Pater et al., 2009; Hami et al., 2011;
Lazic and Scott, 2011; Zhou et al., 2011) and cell size increases
(Auman et al., 2007; Samsa et al., 2015). However, endocardial
chamber dimensions increase due to proliferation without a
substantial accretion of external progenitor cells (Dietrich et al.,
2015). Previous studies did not address how endocardial cell
proliferation is triggered.

A recent study addressed the role of Yapl during endocardial
chamber expansion. Using a laser-dissection approach (Behrndt
et al., 2012), the authors first quantified whether an expansion
of myocardial chamber dimensions causes an increase of
tensile forces on endocardial cell junctions (Bornhorst et al.,
2019). When using zebrafish models with increased cardiac
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FIGURE 2 | Hippo pathway-dependent developmental processes during early cardiac development in zebrafish. The zebrafish heart tube at 5 days post fertilization
consists of the inner endocardium (blue), myocardium (red), and the surrounding epicardium (brown). The atrioventricular (AV) valve, comprised of myocardial and

endocardial cells, and the outflow tract (OFT) valve, comprised of smooth muscle and endothelial cells, have formed and blood flow has a unidirectional flow pattern
(dashed red line). The ventricular myocardium has segregated into inner trabecular and outer compact wall layers. Hippo pathways-dependent processes discussed
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chamber dimensions [overexpression of Wnt8a (Dohn and
Waxman, 2012) or loss of Nkx2.5/2.7 (Targoff et al., 2008,
2013)], they detected higher junctional forces within the
endocardium. This triggered nuclear localization of the Hippo
pathway transcriptional regulators Yapl/Wwtrl and increased
endocardial cell proliferation. The authors also found that
the force transmission within the endocardial tissue layer
required the endothelium-specific adherens junction protein
Cadherin-5 (VE-Cadherin) (Figure 3A). Upon loss of Cadherin-
5, nuclear localization of Yapl and endocardial cell proliferation
was reduced in models with increased cardiac chamber
dimensions (Bornhorst et al., 2019). Consistent with this finding,
biomechanical forces due to blood flow also trigger the Yapl-
dependent maturation and proliferation of hematopoietic stem
and progenitor cells in zebrafish (Lundin et al., 2020).

While this work suggests some mode of intra-organ
communication by which myocardial expansion is transmitted
to the endocardium, the precise mechanism of that crosstalk
has largely remained unexplored. Endocardium and myocardium
are connected by extracellular matrix (cardiac jelly), which may
propagate mechanical tension between these tissues [reviewed in
Haack and Abdelilah-Seyfried (2016), Monte-Nieto et al. (2020),
Derrick and Noél (2021)] and trigger increased junctional forces
within the endocardium. This may explain why the expansion
of myocardial chamber dimensions results in Hippo pathway-
dependent proliferation within the endocardium. Another
equally interesting question is, how Cadherin-5 transmits tensile
forces from endocardial cell junctions toward the nucleus.
The molecular cascade may include cytoskeletal components
or mechanosensitive linker proteins, such as Vinculin, or a

connected nuclear pore that allows Yapl to enter the nucleus
(Barry et al, 2015; Elosegui-Artola et al, 2017). Further
experimental evidence will lead to additional insights into the
molecular components involved in mediating tensile force-
triggered proliferation within the zebrafish endocardium and the
potential modes of mechanical coupling between myocardium
and endocardium.

THE MECHANOSENSITIVE PIEZO1
CHANNEL AND YAP1 SIGNALING
MODULATE OUTFLOW TRACT
VALVULOGENESIS

Mechanical forces caused by blood flow play a major role
in the morphogenesis of cardiac valves. A recent study by
Duchemin et al. (2019a) described outflow tract (OFT) valve
formation in zebrafish and characterized mechanosensitive
pathways including signaling by the Hippo effector Yapl
during this process (Figure 3B). Characterization of OFT
morphogenesis is of particular biomedical interest since bicuspid
aortic valve disease is the most common congenital heart defect
(Hoffman and Kaplan, 2002). Similar to the morphogenesis
of atrioventricular valves, a comparatively well-characterized
process [reviewed in Steed et al. (2016a), Paolini and Abdelilah-
Seyfried (2018)], the formation of OFT valves is highly sensitive
to blood flow. The authors discovered that mechanosensing by
the mechanically gated and endothelially expressed transient
potential (Trpp)2 and Trpv4 channels (Kottgen et al., 2008)
and the Piezo-type mechanosensitive ion channel component
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FIGURE 3 | Hippo signaling pathways during zebrafish cardiac development. (A) Cell junctional complexes (including Cadherin-5, Pecam-1, and Vegfr3/Fit4),
stretch-induced ion channels Piezo1/2, or primary cilia act as mechanosensors within the endocardium (blue). Increased junctional forces within the endocardium are
sensed by Cadherin-5, which triggers the nuclear localization of Yap1/Wwtr1 and causes endocardial cell proliferation. A compact wall architecture is organized
within the myocardium (red). Tension heterogeneity upon myocardial proliferation induces actomyosin enrichment at their apical sides and causes the nuclear
localization of Yap1. This triggers delamination of myocardial cells that seed the trabeculation layer. Neighboring myocardial cells activate Notch signaling, which
inhibits actomyosin network contractility. Erbb2-mediated nuclear export of Wwtr1 causes myocardial cell lamination into the trabecular layer. (B) Within the outflow
tract (OFT) valve, Piezo1 regulates Yap1 nuclear localization within the endothelial (yellow) and smooth muscle cell layers (green). Within the endothelial layer, Piezo1
modulates expression of the mechanosensitive transcription factor klf2a. (C) During epicardial formation, Ift88 interacts with Yap1 within the cytoplasm and forms a
complex with Amolt1 to regulate Yap1 activity. Within the nucleus a Yap1-Tead complex activates expression of bmp4, which restricts the growth of proepicardium
(purple) and myocardium (red). (D) Biomechanical forces involve hemodynamics, biomechanical coupling, and tension heterogeneity acting within different tissue
layers. These mechanical stimuli activate mechanosensitive Hippo pathway signaling.
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(Piezol) (Coste et al., 2010; Li et al., 2014; Volkers et al.,
2014) caused a delayed morphogenesis of OFT valves. Trpp2
and Trpv4 play similar roles during the formation of zebrafish
atrioventricular valves (Heckel et al., 2015). In the OFT region,
blood flow affected the expression of the flow-sensitive Klf2a
(Vermot et al., 2009; Heckel et al., 2015; Steed et al., 2016b)
and Notch (Samsa et al., 2015; Fontana et al., 2020) signaling
pathways, which were strongly active in regions of highest shear
stress. Yapl was expressed in both, endothelial and smooth
muscle cells surrounding the OFT. In piezol or trpp2 mutants,
Klf2a reporter expression became activated in anterior and
posterior regions of the valve endothelium, suggesting these
channels inhibit klf2a expression in that tissue. Piezol also
impacted the nuclear localization of Yap1 within the neighboring

vascular smooth muscle cell layer. Since klf2a mutants have
normal Yapl localization and expression, this effect may be
attributed directly to Piezol, which is expressed at low levels also
within the smooth muscle cell layer. Hence, Piezol apparently
has two roles during OFT valve formation by regulating klf2a
expression within the endothelium, and Yap1 localization during
smooth muscle cell maturation. This is yet another example for
the complexity of Hippo pathway activity within the multi-tissue
comprising heart. These findings add Piezol to the repertoire
of mechanosensitive modulators of Hippo signaling during
cardiac valve formation in zebrafish (Duchemin et al., 2019a).
However, the precise molecular mechanisms of that crosstalk
are currently unknown and remain an exciting topic for future
investigations.
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HETEROGENEITIES IN MYOCARDIAL
CELLULAR TENSION AND HIPPO
SIGNALING FORM THE
TRABECULATION LAYER AND
COMPACT WALL OF THE ZEBRAFISH
EMBRYONIC HEART

Myocardial cells undergo several morphological changes during
zebrafish cardiac wall maturation of the ventricular chamber.
These involve cardiac trabeculation, a process of myocardial
cell delamination from the chamber wall and their extension
into the ventricular lumen where they form a network
of interconnected trabecular ridges (Sedmera et al, 2000;
Moormann and Christoffels, 2003; Peshkovsky et al., 2011; Staudt
et al., 2014). Lai et al. (2018) investigated the role of the Hippo
effector and transcriptional co-activator Wwtrl in myocardial
cell delamination (Figure 3A). They found Wwtrl localizes
mainly to myocardial cell nuclei of the compact wall rather than
trabecular layer and its loss causes defective trabeculation. In
mosaic studies, wwtrl mutant myocardial cells more frequently
populated the trabecular layer compared with wild-type cells.
These results suggested Wwtrl is required within compact layer
myocardial cells. Further investigations revealed that a loss of
Wwtrl impacted the organization of cortical actin networks and
cell-cell junctions. Blood flow and cardiac contractility serve as
potential upstream regulators of Wwtrl localization. Evidence
for this hypothesis stems from the finding that a loss of blood
flow due to the knock-down of Troponin T type 2a causes
increased nuclear Wwtr1 localization. Hence, biomechanical cues
may influence the Hippo signaling pathway component Wwitrl,
which changes the organization of cortical actin networks or
cell-cell junctions. Strikingly, signaling by Neuregulin/Erbb2,
another important regulator of trabeculation, caused the nuclear
export of Wwtrl in myocardial cells. These findings suggested
Neuregulin/Erbb2-mediated nuclear export of Wwtrl may drive
myocardial cells into the trabecular layer (Lai et al., 2018). How
this signaling axis impacts myocardial cell contractility during
trabeculation remained an unanswered question.

A recent study by Priya et al. (2020) directly addressed
this question and identified heterogeneous levels of tension
within the myocardial layer as a critical factor in trabeculation
(Figure 3A). The authors found that proliferation and crowding
among myocardial cells led to heterogeneous tissue tension
throughout the compact layer of the myocardium. This triggered
myocardial cells to delaminate and seed the trabecular layer.
Delaminating myocardial cells displayed an enriched actomyosin
network on their apical side and cortical tension was higher
in these cells compared to the non-delamination myocardial
cells. Using two experimental setups, they found an increased
proliferation of myocardial cells (after treatment with a Vitamin
D analog) caused increased myocardial cell density, sufficient
to promote delamination, and decrease of myocardial cell
proliferation (after treatment with Erbb2/MEK inhibitors)
abrogated delamination. Similarly, when the actomyosin
contractile machinery was impaired, myocardial cells remained
in the compact layer while stimulation of myocardial cell
contractility triggered myocardial cell delamination. Hence,

differences in the tensile states of myocardial cells trigger the
delamination process. Loss of Neuregulin/Erbb2 signaling
abolished myocardial cell delamination, which was rescued
by overexpressing constitutively active myosin regulatory
light chain 9 (Myl9). The overexpression of constitutively
active Myl9 also enabled myocardial cells to delaminate in
the absence of blood flow and cardiac contractility. Hence,
differences in cellular actomyosin contractility provide an
essential trigger for myocardial cell delamination in the absence
of either Neuregulin/Erbb2 signaling or blood flow. The study
also addressed what limits myocardial cells in their ability to
delaminate from the compact layer. Those myocardial cells
adjacent to delaminating neighbors activated Notch signaling
and inhibited actomyosin network contractility. This reduced
the number of delaminating cells and allowed the compact
layer to maintain its architecture (Priya et al., 2020). This study
elucidated how biomechanical forces direct myocardial cell
fate decisions within the trabecular layer and demonstrated the
ability for robust self-organization of the myocardium based on a
combination of intrinsic and extrinsic biomechanical cues. How
Erbb2 signaling interacts with the actomyosin cytoskeleton and
regulates Wwtrl localization requires further investigation.

HIPPO SIGNALING RESTRICTS
EPICARDIAL AND MYOCARDIAL
GROWTH BY CONTROLLING PROTEINS
INVOLVED IN CILIOGENESIS

The epicardial layer surrounding the heart has significant roles
in cardiac development [(Moore et al., 1999; Wu et al., 2013)
and reviewed in Limana et al. (2011)] and regeneration [(Kikuchi
et al.,, 2011; Gonzalez-Rosa et al., 2012) and reviewed in Limana
et al. (2011)]. During zebrafish development, this tissue derives
from the proepicardium, a group of cells that arises from two
cell clusters that are close to the atrioventricular canal and inflow
tract of the heart. After their release into the pericardial cavity,
fluid flows caused by the heartbeat move these cell clusters
within the pericardial cavity until they attach to and seed on
the myocardial layer (Peralta et al., 2013). This process requires
BMP and Notch activities (Andrés-Delgado et al., 2019, 2020).
A recent study by Peralta et al. (2020) addressed the role of
Hippo signaling in proepicardial growth. They discovered that
several intraflagellar transport (IFT) complex B proteins, essential
for cilia function and transport of cilia components, control
epicardial cell numbers via modulating the Hippo signaling
pathway (Figure 3C). The ift88 and elipsa/ift54 mutants had
increased epicardial and atrial myocardial cell numbers. This
process was independent of their cilia functions, because another
well-characterized cilia mutant (iguana), lacking all primary cilia,
had reduced epicardial cell numbers. The authors discovered that
a loss of Ift88 causes increased proepicardial bmp4 expression
and Hippo signaling. In an elegant pharmacological suppression
study, the authors found that blocking the interaction between
Yapl and Tead (using the drug Verteporfin) (Liu-Chittenden
et al, 2012), suppressed the increases in BMP activity in
ift88 mutant embryos. These findings suggested that IFT
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proteins require Yapl activity to modulate BMP signaling in
the proepicardium and myocardium. This activity restricts
proepicardial and secondary heart field-derived atrial myocardial
growth. Other ciliary proteins of the Nephrocystin family
regulate YAPI/WWTRI1 (TAZ) activity in human fibroblast, rat,
and mouse cell lines (Habbig et al., 2012; Frank et al.,, 2013;
Grampa et al., 2016). Further, the Hippo kinases MST1/2-SAV1
promote ciliogenesis in 293T cells and depletion of Mst1/2-Sav1l
resulted in ciliopathy phenotypes in zebrafish (Kim et al., 2014).
Given that dysfunctional cilia cause cardiac defects [reviewed in
Klena et al. (2017)], elucidating the connection between ciliary
proteins and the biomechanical Hippo signaling pathway in
cardiac development and regeneration is a promising field for
future research.

DISCUSSION

Recent studies have significantly expanded our understanding
of mechanosensitive Hippo signaling during zebrafish cardiac
development. Currently, a complex picture has emerged of cell-
intrinsic and -extrinsic cues that modulate this biomechanical
signaling pathway. Likewise, our knowledge of the repertoire
of developmental roles of the Hippo effectors Yapl/Wwtrl
and their crosstalk with other pathways is steadily increasing.
Biomechanical forces that can impact Hippo signaling include
hemodynamics, cell stretching, cellular crowding/tension,
junctional forces, mechanical coupling, and actomyosin
cytoskeletal rearrangements (Figure 3D). Upon mechanical
stimulation, mechanosensation and force transmission toward
Hippo signaling proteins involves the cell junctional protein
Cadherin-5 (Bornhorst et al., 2019) and the cation ion channels
Piezo1/2 (Duchemin et al., 2019a). This causes changes in gene
expression profiles involving the Hippo signaling pathway.
Precisely how biomechanical signaling activates the Hippo
pathway in the context of zebrafish cardiac development is
largely unknown.

Studies in the developing zebrafish heart revealed that Hippo
signaling in one tissue layer can be affected by the development of
other cardiac tissues. Such a form of intra-organ communication
between myocardium and endocardium was observed when an
expansion of myocardial atrial chamber dimensions triggered
increased endocardial cell proliferation (Bornhorst et al., 2019).
Increased cardiac chamber dimensions generated junctional
tensile forces within the endocardium. This was sensed and
transmitted into endocardial cells by Cadherin-5, driving nuclear
localization of Yapl and initiating endocardial cell proliferation
(Bornhorst et al., 2019). Further, Flinn and colleagues found that
Yapl has a role in scar tissue formation, which is comprised
of multiple cell types including fibroblasts, epicardial cells,
and macrophages, during zebrafish cardiac regeneration. Yapl
regulates factors that mediate extracellular matrix deposition and
macrophage activity (Flinn et al., 2019). However, they did not
observe any effect on cardiomyocyte regeneration. We still lack a
complete overview of molecular pathways involved in connecting
the different tissue layers, cell types, and whether biomechanically
active extracellular matrix components are part of this Hippo
pathway-dependent intra-organ communication.

The AVC and OFT valves are composed of specialized
endothelial/endocardial cell types, each with different cellular
responses in the context of biomechanical Hippo signaling.
Within OFT endothelial cells, Piezol/2 channels control Notch
and kif2a activities and affect Yapl activation (Duchemin et al.,
2019a). Whether this signaling pathway is also relevant for AVC
endocardial cells needs to be resolved. The depletion of the
polarity protein Lethal (2) giant larvae affected Yapl activity
in cardiomyocytes and reduced their cell numbers. This caused
an enlargement of cardiomyocytes and severe cardiac deficits
including atrioventricular valvulogenesis defects (Flinn et al,
2020). However, these valvular deficits may be an indirect
consequence caused by altered blood flow patterns in these
mutants. Also, potential differences in cell identities between
OFT and AVC valve cells have largely remained unexplored.
Systematically comparing these different valvular cell types and
their biomechanical signaling will help to better understand
how cardiac valve leaflets are being shaped in response to
biomechanical forces. Likewise, it is unknown whether Yapl
is regulated by blood flow in zebrafish endocardial cells in a
manner similar to the regulation of Yapl in zebrafish vascular
(Nakajima et al., 2017) or OFT endothelial cells (Duchemin
et al, 2019a). Currently, we can only speculate that the
diversity of endothelial and endocardial cell types also relates
to their sensitivity to blood flow and that differences in the
activation of biomechanical signaling pathways causes distinct
cell fates and behaviors.

Multiple studies indicated blood flow as a key player
during trabeculation and myocardial wall maturation (Chi
et al, 2008; Peshkovsky et al, 2011; Staudt et al, 2014;
Jiménez-Amilburu et al, 2016; Lai et al., 2018; Priya et al,
2020). In the absence of blood flow, myocardial wall
maturation and trabeculation were disrupted and Wwtrl
nuclear localization increased within myocardial cells of the
compact wall (Lai et al,, 2018). It is not well understood by
which mechanisms the myocardium is able to sense blood flow
and what mode of intra-organ-communication takes place
to transduce blood flow-dependent physical forces between
endocardium and myocardium. In particular, the role of the
endocardium in that mechanosensitive signal transduction
process is unknown.

It is very likely that Hippo pathway signaling is also regulated
by biomechanical stimuli during cardiac development of higher
vertebrates. The pioneering studies in zebrafish have been
facilitated by the ease with which blood flow and cardiac
contractions can be modulated in that model organism. It will
be an exciting but far more challenging approach to elucidate
whether Hippo pathway-dependent cellular and molecular
biomechanical processes play roles during the development
or physiology of the mammalian four-chambered heart. For
instance, recent evidence suggests that changes to cardiomyocyte
cytoskeleton, cell junctions, and extracellular matrix composition
impact YAP nuclear localization and heart regenerative capacity
in mice (Aharonov et al, 2020). Overall, a more profound
insight into mechanosensitive Hippo signaling pathways during
the development of different cardiac tissues will be critical
for understanding heart function under physiological and
disease-related conditions.
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