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The “Neuro-Glial-Vascular” Unit: The
Role of Glia in Neurovascular Unit
Formation and Dysfunction
Elisabeth C. Kugler, John Greenwood and Ryan B. MacDonald*

Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom

The neurovascular unit (NVU) is a complex multi-cellular structure consisting of
endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each
component is closely linked to each other, establishing a structural and functional unit,
regulating central nervous system (CNS) blood flow and energy metabolism as well as
forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name
suggests, the “neuro” and “vascular” components of the NVU are well recognized and
neurovascular coupling is the key function of the NVU. However, the NVU consists of
multiple cell types and its functionality goes beyond the resulting neurovascular coupling,
with cross-component links of signaling, metabolism, and homeostasis. Within the NVU,
glia cells have gained increased attention and it is increasingly clear that they fulfill
various multi-level functions in the NVU. Glial dysfunctions were shown to precede
neuronal and vascular pathologies suggesting central roles for glia in NVU functionality
and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU
development and function in the retina and brain, how these change in disease, and
how advancing experimental techniques will help us address unanswered questions.
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INTRODUCTION

The brain and retina, which constitute the central nervous system (CNS), are highly complex
tissues, requiring high levels of energy for function and tight control for health. To achieve
this, they contain a specialized vasculature that controls parenchymal homeostasis, transport of
metabolites, and confers, in part, so-called immune privilege (Forrester et al., 2018; Taylor and
Ng, 2018). Most importantly, the bi-directional movement of molecules across the blood-tissue
barriers is strictly controlled to maintain CNS health and brain function. For many decades
the focus of this regulatory capacity lay at the endothelial cell (EC), the predominant cell of
the blood-brain barrier (BBB), but more recently the wider neurovascular unit (NVU) has been
recognized as providing functionality. The NVU is a complex multi-hetero-cellular structure of EC,
neurons, glia, smooth muscle cells (SMCs), pericytes, and extracellular matrix (ECM). Together,
these components regulate blood flow and metabolism, thus allowing the controlled exchange of
nutrients and metabolic waste products (Hawkins and Davis, 2005; Lok et al., 2007). To meet the
high metabolic demand of the CNS, particularly in response to an intensification of physical or
mental activity, increased neuronal activity leads to subsequent changes in cerebral blood flow
(functional hyperemia), in a process called neurovascular coupling. While neurons can directly
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regulate this system (McConnell et al., 2017), glial cells are
often in direct physical contact with the vasculature and
neurons, thus are critically positioned to interface between
these cellular components where they may contribute to the
relay of information and act as a modulator of such crosstalk.
Additionally, NVU components are crucial for brain protection
and homeostasis as ECs form the BBB, and glia physically
ensheathing the blood vessels are seen as a secondary barrier
(Kutuzov et al., 2018). With this close physical interaction
between ECs and glia, nutrients required for CNS function
are delivered from the blood vessels to neurons mainly via
glia cells (Hurley et al., 2015), while waste compounds are
passed via glial cell to microglia or back into the bloodstream
(Marina et al., 2018). Dysfunction of the NVU is characterized
by dysregulation of neurovascular coupling, neuron death,
gliosis, microglia activation, mural cell transmigration, and
BBB breakdown (Zlokovic, 2005; Willis, 2011). Dysfunction
of the BBB is associated with increased vascular leakage,
transcellular transport, immune cell infiltration, and reduction
of intercellular junctions (Figure 1). Accordingly, glial cells and
other NVU cells work closely together to maintain CNS function
and maintenance.

In this review, we discuss glia cell types and their role in the
NVU, by examining glia specializations to support neurons, the
vasculature, and neuro-vascular interactions in the NVU. Lastly,
we will highlight how rapidly improving techniques and tools will
help us answer pressing outstanding questions in the field. While
this review is not meant to be an exhaustive list of the many types
of glia within the CNS, we aim to highlight their importance for
the development, function, and dysfunction of the NVU in the
brain and retina.

COMPONENTS OF THE
NEUROVASCULAR UNIT

The complex interaction between NVU cells requires each
cellular component to operate in a complex and coordinated
manner to ensure homeostatic control of the BBB and blood
retina barrier (BRB). Each component exhibits specialized
features that are critical to the overall maintenance of NVU
function (Figure 1). Briefly, ECs form a single-layer lining of
tubular blood vessels, which are specialized depending on the
vascular bed in which they are situated (Chico and Kugler, 2021).
At the BBB/BRB, ECs exhibit reduced pinocytosis/transcytosis
(O’Brown et al., 2019; Villaseñor et al., 2019), increased
expression of tight junction molecules, such as claudins,
occludin, or zonula occludens 1 (ZO-1; Figure 2A; Fanning
et al., 1999; Nitta et al., 2003), and exclude free transport of
substances over 400kDa (Pardridge, 2001). Mural cells, which
constitute pericytes and vascular smooth muscle cells (vSMCs),
are positioned in the basement membrane shared with ECs,
maintain vascular stability, provide structural support for blood
vessels, govern vasodilation/constriction (Tong et al., 2021),
as well as contribute to NVU function by BBB maintenance
(Armulik et al., 2010; Bell et al., 2010; Henshall et al., 2015).
Neurons in the NVU transduce signals and control local cerebral

blood flow directly, such as via nitric oxide (NO), as well
as indirectly via glia cells, such as via arachnoid acid or
potassium (K+) (Attwell et al., 2010). Additionally, neuronal
activity itself shapes vascular and BBB formation via levels of
neurotransmitter release (Lacoste et al., 2014; Whiteus et al.,
2014). Glial cells physically ensheath blood vessels with their
endfeet, creating the semi-permeable glia limitans (Kutuzov et al.,
2018). Importantly, glia physically connect vessels to neurons
(Zonta et al., 2003), modulate neurotransmission, and impact
neurogenesis (Argente-Arizón et al., 2017; Falk and Götz, 2017).
Microglia, macrophages, and perivascular macrophages (PVM)
play roles in phagocytosis and the CNS inflammatory response,
ensuring CNS maintenance and health (Guillemin and Brew,
2004; Serrats et al., 2010). The vascular basement membrane,
which encompasses blood vessels, acts as a passage for fluid
transport (Morris et al., 2016), while the perivascular basal
laminae and ECM molecules support the glio-vascular interface
(Hoddevik et al., 2020). Together, these components form a
spatially and functionally integrated NVU with bidirectional
communication, namely neuro-vascular-coupling and vascular-
neuro-coupling. However, the precise mechanisms of the diverse
roles of glial cells in NVU form, maintenance and function
remain unclear. Answering these fundamental questions will
be of particular importance as the NVUs’ main role is
considered neurovascular coupling, but indeed various other
aspects such as integration of signaling, metabolism, and
homeostasis occur across NVU components and thus must also
be considered.

OVERVIEW OF GLIAL CELLS TYPES AND
THE NEUROVASCULAR UNIT

Glia were originally described as scaffolds providing structural
support and maintaining biophysical integrity (Virchow, 1856),
making their role in supporting the structure and biophysical
integrity of the CNS their most widely described function
(Losada-Perez, 2018). However, glia are now being increasingly
appreciated for their many other functional and regulatory
roles, such as neurotransmission, BBB function, and controlling
immunity (Table 1). To fulfill the variety of specialized functions
required, glia cells are highly specialized according to each CNS
region with respect to proteomic signatures, electrophysiology,
Ca2+ signaling, morphology, and proximities to synapses (Tsai
et al., 2012; Molofsky et al., 2014; Ben Haim and Rowitch, 2017;
Chai et al., 2017). Moreover, even within morphological groups,
such as astrocytes, there is heterogeneity of cell types and their
pathological responses (John Lin et al., 2017; Hasel et al., 2021)
that may also reflect regional differences in the structure and
function of the NVU.

The most abundant and widespread glial cell type in the
brain are astrocytes. Astrocytes are fivefold more numerous
than neurons (Sofroniew and Vinters, 2010), with individual
astrocytes contacting up to two million neuron synapses
with elaborate morphologies (Oberheim et al., 2009). This
high spatial correspondence between astrocytes and neurons
is accompanied by astrocytes regulating neuron health by
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FIGURE 1 | Schematic of the neurovascular unit (NVU) in health and disease. The NVU is a hetero-cellular complex formed by glia, neurons, vSMCs, pericytes,
microglia, and blood vessels, that form the blood-brain barrier (BBB) and blood retina barrier (BRB). Glia cells (green) impact neurons (orange), endothelial cells (ECs)
(magenta), and each other. For NVU functionality, various direct (i.e., glia-to-glia, tripartite synapse, endfoot-to-EC, EC-to-endfoot) and indirect (i.e., neuron-to-EC via
glia, neuron-to-EC via mural cells, microglia) pathways need to be considered. Upon disease multi-level changes are observed, including altered cell shapes,
function, and interactions [see also (Lécuyer et al., 2016; Jha et al., 2018)]. NVU component changes include gliosis, neuron death, EC-connectivity changes, mural
cell transmigration, and microglia activation.

controlling neurotransmitters, such as glutamate or adenosine,
as well as maintaining hydromineral brain homeostasis,
such as Ca2+, Cl−, or water (Simard and Nedergaard,
2004; Keaney and Campbell, 2015; Price et al., 2018). In
addition to contacting neurons, astrocytes also contact blood
vessels, affecting local blood flow by regulating blood vessel
diameters by vasoconstriction (e.g., by arachnoid acid) and
vasodilation (e.g., by prostaglandins) (Kimelberg, 2010).
Astrocytes also physically and functionally contribute to the
BBB and its permeability for factors such as molecular traffic
of glucose or proteins (Abbott et al., 2006). Thus, astrocytes
are central to the function of a healthy functioning NVU, and
overall CNS function.

In the retina, the principal glial cell type are Müller glia
(MG), which contact blood vessels and neurons, fulfilling similar
functions as astrocytes in the brain (Newman and Reichenbach,
1996; Subirada et al., 2018). The structure, morphology, and
species-specific differences of retinal MGs are well described
(Cajal, 1995) and MG exhibit at least five apico-basal domains
that stretch from the apical stem around photoreceptors to the
basal endfoot in the inner limiting membrane (Wang et al., 2017).
However, MG are not just highly organized apico-basally, but also
laterally to interact with other cells; this intercalation between
cells is in a so-called tiled fashion, thereby contacting almost all
cells within the retina (MacDonald et al., 2017; Wang et al., 2017).
The retina is protected by two separate components of the BRB.

The outer (oBRB) consists of retinal pigment epithelium and the
inner (iBRB) is located at the level of the retinal capillaries. The
latter is established by MGs and pericytes, with dysfunction being
implicated in several retinal diseases such as diabetic retinopathy
(DR; Cunha-Vaz et al., 2011; Frey and Antonetti, 2011; Díaz-
Coránguez et al., 2017; Park et al., 2017). In the mammalian
retina, there are also astrocytes that contact blood vessels and
are pivotal as a structural growth template during angiogenesis,
mainly via vascular endothelial growth factor (VEGF) and
Hypoxia-inducible factor (HIF) pathways, following ganglion
cell templates (O’Sullivan et al., 2017; Paisley and Kay, 2021).
This suggests that MG and astrocytes may work together in the
mammalian retina to influence the development of the NVU as
well as to regulate its function. In humans, the retinal astrocytes
are limited to the inner vascular plexus, while MG contact both
plexi and are likely to induce the BRB functionality/maturity in
the deep plexus, raising the likelihood for differential coupling
between astrocytes and MG in the healthy and potentially
diseased retina (Tout et al., 1993; Fruttiger, 2007; Ashraf et al.,
2020). However, MG are the only glia found in the fovea, which
is free of astrocytes, microglia, and vascular EC, suggesting
that in some regions of the retina MG are sufficient to solely
meet the functional needs required for high acuity vision
(Reichenbach and Bringmann, 2020).

Besides the principal glial cells in the brain and retina (i.e.,
astrocytes and MG), other glial cells exist to fulfill crucial
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FIGURE 2 | Glia-endothelial interactions. (A) Pathways across the BBB and BRB allow for the transport of various types of molecules. (B) Glial signaling impacts
ECs [i.e., glial-derived neurotrophic factor (GDNF), transforming growth factor β (TGF-β), Ang1, fibroblast growth factor 2 (FGF2), and vascular endothelial growth
factor (VEGF)] and in turn BBB stability (dotted arrow). (C) BBB stability is highly dependent on EC inter-cellular junction integrity including adherens junctions, gap
junctions, junctional adhesion molecules, and tight junctions adapted from Abbott et al. (2006); Malik and Di Benedetto (2018).

TABLE 1 | Summary of glia cell types, function, shape, and markers.

Glia cell type Functions Shape

Radial glia o Generate glia and neurons in development (Rakic, 2003) Bipolar

o Stem cells and BBB maintenance in adulthood (Sharif et al., 2018)

Astrocytes o Control neurotransmitters as well as ionic and osmotic homeostasis (Simard and
Nedergaard, 2004; Keaney and Campbell, 2015; Price et al., 2018)

Star-shaped

o Regulate blood vessel diameters (Kimelberg, 2010)

o Act as angiogenic templates (O’Sullivan et al., 2017)

Müller glia o Retina-specific, species-specific glia cells (Cajal, 1995) Apico-basal organization with 5 sub-domains (Wang
et al., 2017)

Microglia o CNS primary immune cells (Nimmerjahn et al., 2005) Highly plastic, depending on activation state

Ependymal cells o Line the brain ventricles, producing cerebrospinal fluid, and act as progenitors
(Bigio, 2010; Furube et al., 2020)

Simple columnar shape

Oligodendrocytes o Axon insulation and create myelin (Elbaz and Popko, 2019) Ensheath axons

functions in the CNS. During development, progenitors, so-
called radial glia, will divide to generate neurons and glia
(Rakic, 2003), while also making contact with the vasculature
where they contribute to the regulation of CNS angiogenesis.
In certain CNS regions, radial glia persist into adulthood
as stem cells, contributing to BBB maintenance via retinoic

acid signaling (Sharif et al., 2018). Microglia are the primary
immune cells in the CNS, surveying their environment and
responding to insult, fulfilling roles in phagocytosis and
inflammation where they express both pro-inflammatory (e.g.,
IL-1β) and anti-inflammatory (e.g., IL-10) molecules, with
subsequent upregulation of factors such as Glial Fibrillary Acidic
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Protein (GFAP). Additionally, microglia-to-astrocyte crosstalk in
response to glutamate plays a role in neuro-immune-interactions
(Nimmerjahn et al., 2005; Macht, 2016), and microglia are
required for normal neurogenesis, mostly by nerve growth factor
(NGF) and tumor necrosis factor (TNF; Matejuk and Ransohoff,
2020). Another type of glia, called ependymal cells, line the brain
ventricles, producing cerebrospinal fluid, and subpopulations
acting as progenitors for astrocytes and oligodendrocytes (Bigio,
2010; Furube et al., 2020). Thus, there are several types of glia
found within each CNS tissue, yet several pressing questions
remain to understand the importance of glia in the NVU. These
include what role do glial cells play in driving NVU formation
during development, how are glial cells directed to contact
and support multi-cellular units within the NVU, and what
are the consequences of dysfunction of these glial components
on NVU function.

GLIAL SUPPORT FOR NEURONS IN THE
NEUROVASCULAR UNIT

The fact that glia are a structurally integral part of the NVU
physically linking the vasculature and neurons, emphasizes their
functionality in BBB/BRB formation and CNS development.

Glia cells provide structural support to neuronal tissues for
anisotropic mechanical tension (Nagashima et al., 2017), and loss
of MG in the retina results in tearing of the tissue due to the loss
of their biophysical support (MacDonald et al., 2015). Another
biophysical role of glia is that they can swell, which subsequently
affects the NVU by spatial changes. The impact of glia volume
changes on neurons is facilitated and relayed by the fact that glia
ensheath pre- and post-synaptic terminals of neurons to form
the “tripartite synapse” (Araque et al., 1999; Santello et al., 2012;
Hillen et al., 2018). Due to this physical proximity, changes in glia
cell size can modulate the extracellular space and subsequently
neuron excitability (Florence et al., 2012; Vecino et al., 2016).
This is achieved by the synergistic activity of Aquaporin 4 (Aqp4),
a channel protein, which is needed for water transport and
is enriched in astrocytic endfeet (Gleiser et al., 2016), as well
as the transient receptor potential cation channel TRPV4 for
Ca2+ influx (Jo et al., 2015). However, even though Aqp4 and
TRPV4 are considered main factors, glia swelling is a complex
process and, depending on the context, other factors were shown
to play a role in glia volume changes. These include K+ ion
transport via connexin 43, Kir 4.1, or Na+/K+-ATPase, and
ion flux via Na+-K+-Cl− co-transporter (NKCC1), or glutamate
movement via specialized transporters (Lafrenaye and Simard,
2019). These factors can also change in disease or upon injury,
as exemplified by sulfonylurea receptor 1 – transient receptor
potential melastatin 4 (SUR1-TRPM4) which is upregulated in
CNS injury (Mehta et al., 2015), but the impact of such changes
on NVU function remain poorly defined.

Besides this physical link, glia also functionally link NVU
components, exemplified by their impact on EC junctions,
transporters, and pathways (Figure 1; Hayashi et al., 1997;
McAllister et al., 2001; Haseloff et al., 2005). This functional
link is in part achieved by factors such as glial cell line-derived

neurotrophic factor (GDNF), VEGF, fibroblast growth factor 2
(FGF2), or angiopoietin-1 (Figures 2B,C; Igarashi et al., 1999;
Lee et al., 2003; Lécuyer et al., 2016; Blanco-Suarez et al.,
2018; Jha et al., 2018). But glia cells are also key to supporting
neurotransmission by removal of neurotransmitters to terminate
synaptic transmission and reestablish neuronal excitability, thus
avoiding toxic overstimulation, called excitotoxicity (Turner and
Adamson, 2011). Glia also directly regulate neuronal activity
within the synapse (Pannasch and Rouach, 2013; Sibille et al.,
2014) and synchronize/modulate synaptic inputs (Fellin et al.,
2004; Fellin, 2009) on the level of signaling via gliotransmitters,
such as gamma-aminobutyric acid (GABA), glutamate, or
cytokines (Kim et al., 2020). The major neurotransmitters are
the excitatory glutamate and the inhibitory GABA, working
together to regulate CNS function. Following the removal of
neurotransmitters from the synaptic cleft, glia cells transfer
these neurotransmitters back to neurons in a process called
the glutamate-glutamine cycle that requires ammonia (NH3)
and ammonium ion (NH4

+) derived from NVU blood vessels
(Bak et al., 2006; Limón et al., 2021), thus reestablishing
functional neuron neurotransmitter pools. This maintenance of
synaptic potentials comes at a very high metabolic cost with
the energy for this provided by astrocytes and blood vessels
(Vergara et al., 2019). While it was previously assumed that
both glutamate and GABAergic neurons are under astrocytic
control, a recent in vitro study challenges this, suggesting that
GABAergic neurons establish functional synaptic transmission
without glia (Turko et al., 2019). Another neuromodulator
released from neurons or glia (Butt, 2011), impacting neuronal
function, is adenosine derived from adenosine triphosphate
(ATP) breakdown. Adenosine stimulates receptors that regulate
the release of GABA, glutamate, acetylcholine, noradrenaline,
5-HT, and dopamine (Sperlágh and Vizi, 2011).

Thus, glia are specialized morphologically, biophysically, and
molecularly to support and regulate the NVU. However, the
multitude of glial functions within the NVU makes it challenging
to discern which mechanisms are necessary and sufficient for
NVU form and function. To understand the role of glia cells,
further studies are needed where glia cells are disrupted (i.e.,
lacking, inhibited, or overactive). Such studies will allow us to
disentangle NVU interactions, establish the exact role of glia cells
within it and the pathophysiological consequences.

GLIA CELLS AND THE
NEUROVASCULAR UNIT VASCULATURE:
ANGIOGENESIS AND REGULATION OF
BLOOD FLOW

As glia directly contact and ensheath blood vessels, they directly
influence EC structure and function rather than passively co-
exist. Indeed, in the last decade, it has become clear that glial
cells play an active role in facilitating vascular angiogenesis via
expression of factors, such as VEGF or transforming growth
factor 1β (TGF-1β) in radial glia cells (Virgintino et al., 2003;
Welser et al., 2010; Biswas et al., 2017; Siqueira et al., 2018).
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Moreover, radial glia were shown to stabilize murine nascent
cortex vessels via inhibition of Wnt signaling and proliferation
in EC in a contact- and age-dependent manner, a process which
is potentially mediated by MMP-2 (Ma et al., 2013). Glia cells,
specifically CNS-specific macrophages (microglia), were also
shown to play pivotal roles in the fusion of blood vessels, called
anastomosis. This is achieved by Notch1-expressing macrophages
that link path-seeking dll4-expressing vascular tip cells (Outtz
et al., 2011) as well as by acting as physical chaperones which
express TIE2 and NRP1, regulating anastomosis downstream
of VEGF-mediated endothelial tip cell induction (Fantin et al.,
2010). After vessel- and NVU-formation, glia are also pivotal
for BBB maturity, via factors such as retinoic acid supplied
by radial glial cells, which increases BBB stability and the
expression of BBB-specific genes such as p-glycoprotein (P-
gp), occludin, and Glut-1 (Mizee et al., 2013) [see details
for BBB transport systems and junctions (Zhao et al., 2015)].
Similarly, astrocytic Src suppressed C kinase substrate (SSeCKS)
reduces VEGF and increases EC tight junctions (Lee et al.,
2003), or astrocytic angiotensin-converting enzyme-1 (ACE-1),
which produces angiotensin II that facilitates BBB maturation
and junction protein stabilization (Lavoie and Sigmund, 2003;
Wosik et al., 2007). ECs and glia interact bidirectionally in NVU
development. Firstly, radial glia support EC maturation toward
decreased proliferation, reduced tip cell marker DLL4, and
reduced vascular permeability, thus supporting BBB maturation.
Subsequently, ECs increase GFAP-positivity in radial glia in a
VEGF-A dependent manner, leading to astrocyte differentiation
and NVU formation (da Silva et al., 2019). In addition to
these molecular impacts, the migration patterns of blood
vessels, astrocytes, and neurons are closely associated with each
other like scaffolds, with astrocytes providing VEGF for EC
migration and, vice versa, ECs in turn provide oxygen for
astrocyte differentiation (Bozoyan et al., 2012; Duan et al., 2017;
O’Sullivan et al., 2017). Critically, in pathology, lactate-stimulated
MG express G-protein–coupled receptor 81 (GPR81), which
triggers neovascularization via pathways such as Wnt or Norrin
(Madaan et al., 2019).

Besides these roles in angiogenesis, glia are also pivotal in
regulating blood flow via regulating NVU synaptic activity as
well as by releasing factors such as calcium, NO, arachidonic
acid, and prostaglandins (Gordon et al., 2007; Attwell et al., 2010;
Biesecker et al., 2016; Magaki et al., 2018). It was also shown
that angiotensinogen-to-angiotensin II cleavage occurs in glia,
with angiotensin I receptor (AT1-R) causing vasoconstriction
(Kawamura et al., 2004), while AT2-R causing vasodilation
(Fletcher et al., 2010). Moreover, glia contribute to vasodilation
indirectly by interaction with other NVU components such as
pericytes, which then, in turn, impacts the vasodilatory state
(Nortley and Attwell, 2017). Here, one important molecule is
calcium, with calcium signaling not only being coordinated
between glia cells (Muñoz et al., 2015), but also ECs (Thakore
et al., 2021). It remains to be understood to which extent
glia-EC signaling is indirectly (via neurons or pericytes) or
directly coupled. Lastly, neuron-derived NO regulates glia-
mediated vasodilation via prostanoids and epoxyeicosatrienoic
acids (Someya et al., 2019). Together, glial cells therefore not

only play a role in angiogenesis, anastomosis, EC maturation, and
blood flow regulation, with glia dysfunction potentially leading
to BBB breakdown, pathological vascularization, dysregulation of
vasoregulation and failure to deliver sufficient oxygenation.

RECIPROCAL
NEURONAL-TO-VASCULAR
TRANSPORT VIA GLIA

As the CNS has high metabolic demands and lacks a carbohydrate
storage system, the NVU is critical to serving the retina and
brain metabolic needs as glucose has to be continuously supplied
via the blood to meet the constant CNS energy demand. This
is particularly crucial as neurons rely on oxidative metabolism,
making them sensitive to changes in levels of oxygen and
potentially ischemia (Turner and Adamson, 2011); on the other
hand, astrocytes rely on glycolytic metabolism, and glucose
can be stored in them in the form of glycogen, rendering
them central players in NVU and CNS metabolism (Öz et al.,
2007). Crucially, pyruvate carboxylase, an enzyme that is key to
synthesizing the neurotransmitter glutamate from glucose via the
anaplerotic pathway, is almost exclusively expressed in astrocytes,
positioning them as essential producers of the neurotransmitters
GABA and glutamate (Schousboe et al., 2019). Recently it was
shown that retinal MG also conduct anaplerosis (Singh et al.,
2020), suggesting that MG support retinal NVU metabolism
similar to astrocytes in the brain.

While the majority of vascular-to-neuron glucose metabolism
occurs directly via glia in the NVU, a minor proportion of the
glucose flux happens directly between blood vessels and neurons
(Maoz et al., 2018). At the end of glycolysis, lactate and pyruvate
are produced, but instead of being merely “end-products” they
are utilized further to generate energy. Indeed, lactate is taken
up by neurons and is metabolized in preference to glucose when
both are available (Bouzier-Sore et al., 2003; Bouzier-Sore et al.,
2006). Once transported into the neuron, lactate is converted
to pyruvate and used for ATP production. Thus, glia not only
provide compounds for neurons but also complement them
in their metabolic requirements. Besides glucose metabolism,
astrocytes are also crucial for fatty acid oxidation (FAO) to
generate ATP, and catabolic ketogenesis to generate ketone
bodies for neuronal metabolism; with ketone bodies or lactate
being used by neurons as an energy substrate to produce ATP
(Bélanger and Magistretti, 2009; Souza et al., 2019). Importantly,
neurons produce toxic fatty acids that are endocytosed by
NVU astrocytes for cytoprotection and CNS health (Ioannou
et al., 2019). Metabolically, astrocytes also play a critical role
in L-serine de novo synthesis, which is converted to D-serine
in neurons, acting as a co-agonist of N-methyl-D-aspartate
(NMDA) receptors (Yamasaki et al., 2001). Together, these data
demonstrate that glial cells play a key role in maintaining
the homeostatic status of the metabolism of neurotransmitters,
glucose, FAO, L-serine, as well as NO, essential for maintaining
normal function of the NVU. Any disturbance of this fine-tuned
balance, therefore, such as would occur in diseases as diverse
as stroke and diabetes, will influence NVU function resulting in
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further failure to supply adequate essential substrates for normal
neuronal function.

In addition to the above metabolic coupling, neuron-to-
vascular coupling is achieved by NO, a gaseous neurotransmitter
acting as a vasodilator that is needed for neurovascular
coupling and regulating the vasodilatory vascular response, called
functional hyperemia (Hoiland et al., 2020). In hyperemia,
glia cells are essential in relaying either vasodilation or
vasoconstriction depending on the available NO concentration
(Metea and Newman, 2007). Further to physiological NO,
glia-mediated NO and gliosis-related production of reactive
oxygen (ROS) or nitrogen species (RNS), play a role in nitro-
oxidative stress such as in neuroinflammation and disease such
as epileptogenesis. Indeed, Sharma et al. suggest that epilepsy is
preceded by a cascade of reactive gliosis, ROS/RNS, inflammatory
cytokines, and neurodegeneration (Sharma et al., 2019). This
neuro-vascular metabolic coupling of glucose, fatty acid, L-serine,
and NO via glia is dependent on glia directly contacting ECs
within the NVU. The required spatial connections between
endfeet and ECs are partially achieved via connexins, which form
intercellular gap junction channels and hemichannels that are
expressed in ECs and astrocyte endfeet, as well as are associated
with BBB maturation (Zhao et al., 2018). Also, Pannexins (Panx)
that resemble connexin-based hemichannels, are thought to
play a role in vasculo-neuro coupling although there is still
a debate on their function in CNS development and health
(Giaume et al., 2020).

GLIAL CELLS AND THE
NEUROVASCULAR UNIT IN DISEASE –
PATHOGENESIS, AND DYSFUNCTION

Beyond their roles in physiological conditions, glia and microglia
contribute to neuroinflammation in response to injury, stroke,
or other neurological diseases (Cekanaviciute and Buckwalter,
2016). They act as primary initiators of the inflammation
cascade by increased reactivity and the secretion of factors
such as chemokines (Sofroniew and Vinters, 2010; Karve et al.,
2016). One ubiquitous biomarker of so-called glial activation is
increased expression of GFAP (Diaz-Arrastia et al., 2013). Despite
the extensive list of definitions for different glia cell states, the
field agrees that inactive and reactive glia cells display changes
in molecular profiles, including alterations in the cytoskeleton,
metabolism, chaperones, secreted proteins, signaling proteins,
and transporters. These molecular changes are accompanied by
morphological transformation in cellular phenotype, such as
hypertrophy (Escartin et al., 2021), which may impact the ability
of glial cells to provide multiple support functions for each NVU
component(s) and hence its uncoupling.

Besides the physiological functions of glial cells in
inflammation, their roles in pathological settings are of
wider interest. For example, increasing evidence also shows glia
as a link between vascular and neurological contributions in
cognitive impairment, Alzheimer’s Disease (AD), and seizures
(Burda and Sofroniew, 2014; Edison et al., 2018; Price et al.,
2018; Diaz Verdugo et al., 2019). Neuropathologically, AD is
characterized by intracellular neurofibrillary tangles and brain

parenchymal amyloid β-peptide (Aβ) deposits. The latter form
neuritic plaques and cerebral amyloid angiopathy, leading to
angiopathy and NVU dysregulation (Soto-Rojas et al., 2021).
Astrocytes have been shown to degrade amyloid-beta in an
apolipoprotein E (APOE)-dependent manner, a process that
could be impaired in AD (Koistinaho et al., 2004), leading to
plaque formation. Neurodegenerative disorders are complex
conditions with multiple underlying causes and the role of
glia has not been fully elucidated (Gleichman and Carmichael,
2020). Nevertheless, several astrocyte/glia risk factor genes,
such as APOE, particularly the E4 isoform (Pihlstrøm et al.,
2018) or Clusterin (CLU) and FERM Domain Containing
Kindlin 2 (FERMT2) (Verheijen and Sleegers, 2018), have
been identified for AD. Also, it is generally acknowledged that
AD involves inflammatory responses, initiated, or mediated
via microglia and astrocytes that lead to BBB breakdown
(Akiyama et al., 2000; Nagele et al., 2004). Throughout AD
disease progression, different aspects were found to affect the
NVU. In pre-senile AD, increased proliferation (Ki-67), gliosis
(GFAP), and vascular changes, but not neurogenesis were shown
(Boekhoorn et al., 2006). In late-onset AD, vascular dysregulation
and BBB breakdown are considered as the earliest biomarker
(Iturria-Medina et al., 2016; Sweeney et al., 2018), with vascular
dysregulation preceding changes in amyloid beta deposition,
metabolism, function, structure, and memory. However, future
work is needed to link genetic and mechanistic causes of AD
and the spatiotemporal impacts on individual NVU components
and NVU function.

In the retina, understanding the NVU and glia contribution
is of particular interest as NVU dysfunction can precede neural
dysfunction in patient retinas, such as in patients with Type
1 Diabetes who exhibit DR (Lasta et al., 2013). In DR and
other retinal diseases, inflammation and accompanying side
effects are critical contributors to disease progression and vision
loss. Crucially, it has been shown that MG provide VEGF,
which contributes to the upregulation of inflammatory markers,
such as ICAM1 and TNFα (Le, 2017). These pro-inflammatory
compounds induce pathological vascular leakage and retinal
neovascularization, making anti-VEGF therapies an important
therapeutic strategy in DR. In DR, it was shown that the MGs
that express VEGF display a distinct morphology (Pierce et al.,
1995), suggesting that they enter a reactive phenotype with
altered function before expressing VEGF, which in turn leads to
changes in NVU and vascular function. Besides morphological
changes and increased VEGF expression, MG also show altered
expression of trophic factors in DR, such as NGF, brain-
derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3),
neurotrophin-4 (NT-4), ciliary neurotrophic factor (CNTF), or
glial cell line-derived neurotrophic factor (GDNF), as well as
inflammatory factors such as interleukin 1β (IL-1β), IL-6, IL-
8, and TNF-α. Together, these factors contribute to disease
progression and neuron survival (Boss et al., 2017). Indeed,
in diabetes, it is likely that such changes result in early NVU
dysfunction and subsequent failure of neurovascular coupling
and hence an insufficient supply of nutrients, which then cause
further damage to the NVU. Another retinal disease with clear
implications of MG dysfunction is macular telangiectasia 2 which
causes loss of central vision due to vascular defects (MacTel 2)
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(Powner et al., 2010a,b). Critically, it was shown that loss of
MG matches the area of macular pigment depletion in MacTel
2 patients (Powner et al., 2010b). Moreover, the loss of these
MG impacts on the NVU as a secondary hallmark feature of
MacTel 2 is the formation of dysfunctional telangiectatic vessels.
One potentially crucial aspect when thinking about the regional
restriction of MG loss and vascular defects is that macular MG
rely more on serine biosynthesis than peripheral MG (Zhang
T. et al., 2019), with serine synthesis disruption resulting in
mitochondria dysfunction and oxidative stress and ultimately
retinal pathology (Zhang et al., 2018). This retinal pathology
is also associated with swelling-induced MG volume changes
(Lafrenaye and Simard, 2019) and penetration of astrocytes into
deeper layers (Coffey et al., 2007). Thus, rather than having a
passive role in pathogenesis, the activation state of glia, together
with changes in their morphology and molecular expression, is
directly associated with disease progression of diseases such as
DR and MacTel 2.

Finally, it is important to note that retinal demand for oxygen
is even greater than that of the brain. This is especially so
during dark adaptation when metabolic activity and oxygen
demand is high. The configuration of the vascular supply to the
retina means that during high demand the functional reserve of
oxygen is minimal, even when neurovascular coupling maximizes
functional hyperemia. This makes the retina extremely vulnerable
to hypoxic damage and so even small alterations to the function
of any component of the NVU, including MG, is likely to result
in compromised retinal function.

FUTURE DIRECTIONS AND AREAS OF
SCIENTIFIC INTEREST

Combining the Strengths of Models
As the NVU is a heterologous structure formed by different cell
types, it is crucial to study the NVU, and the role of glial cells
in it, in various models to understand how those cells integrate
to form a functional NVU. Despite our increased understanding
of NVU and BBB formation, our insight into the exact processes
that glial cells regulate in NVU formation and function is still far
from complete. This is emphasized by the fact that in vivo studies
are still limited in experimental scope and flexibility.

As an in vivo model, rodents are an invaluable pre-clinical
asset to study glia and their role in the NVU. However, caution
has to be paid when wanting to draw direct conclusions from pre-
clinical models. For example rodent glial cells are smaller and less
complex than human glial cells, with human astrocytes being 2.6-
fold larger, 10-fold more GFAP-positive primary processes, and
relaying signals faster (Oberheim et al., 2009), suggesting that
NVU metabolism and signaling dynamics are different between
rodents and human. Similarly, certain glial cells are primate-
specific, such as interlaminar astrocytes, and can therefore not
be studied in rodents (Colombo et al., 1995; Colombo and
Reisin, 2004). To complement NVU and glia studies in rodents,
zebrafish have also been invaluable, particularly as NVU function
and development can be studied in real-time in vivo and
throughout the CNS (Gestri et al., 2012; Richardson et al., 2017;

Angueyra and Kindt, 2018). Zebrafish characteristics, such as
ex utero development, genetic tractability, and embryonic
transparency render them a crucial asset (MacDonald et al., 2017;
Richardson et al., 2017). Crucially, the site of the BBB is conserved
in zebrafish and humans in capillary ECs (O’Brown et al., 2018).
However, even though neurovascular coupling was shown to be
conserved, it remains to be answered to which extent the NVU is
truly conserved across species (Chhabria et al., 2018). Again, glia
in zebrafish and mammals show differences, exemplified by the
lack of typical stellate astrocytes in zebrafish (Grupp et al., 2010)
as well as the fact that progenitor cells are widely maintained in
the zebrafish adult CNS while being mostly transient in mammals
(Than-Trong and Bally-Cuif, 2015). However, zebrafish are
being increasingly used as an experimental model to contribute
to the understanding of astrocyte development and function
(Mu et al., 2019; Chen et al., 2020; Muñoz-Ballester et al.,
2021). Importantly, zebrafish radial glia are capable of adult
neurogenesis and harbor a very high regenerative capacity,
making zebrafish a suitable model to study de- and re-generation
(Thummel et al., 2008; Kroehne et al., 2011; Gemberling et al.,
2013; Goldman, 2014; Powell et al., 2016). In vitro, reductionist
models have also been invaluable in providing insights to study
glia and their role in the NVU. However, glial cultures, originally
established by dissociation and plating of brain homogenates
(Booher and Sensenbrenner, 1972; McCarthy and de Vellis,
1980), lose their structural context, rendering the information
obtained of limited relevance. Similarly, cultured MGs were
previously shown to de-differentiate (Hauck et al., 2003; Otteson
and Phillips, 2010) casting doubt on the translatability of the
data to in vivo settings. Advancements in establishing 3D cell
cultures, however, have allowed for more physiological insights
into glia biology (Haycock, 2011; Watson et al., 2017). This
is especially the case when considering recent NVU studies in
organoids (Nzou et al., 2020) and organ-on-a-chip (Maoz et al.,
2018) models. Still, in comparison to in vivo models, in vitro
studies are often considered to provide limited insight into their
tissue context and developmental processes only recapitulating
single-timepoint and -context information (Duke et al., 2004;
Helms et al., 2016).

Manipulating the Composition and
Function of the Neurovascular Unit
Our morphological and functional understanding of the NVU,
through examining the molecular composition and regional
specifications of the different cell types in the CNS, has
also advanced significantly. This has allowed us to begin to
understand the molecular profiles of cellular components of the
NVU as well as their specialization and conservation across
species (Cahoy et al., 2008; Roesch et al., 2008; Zhang et al.,
2014; Vanlandewijck et al., 2018; Ross et al., 2020). One aspect of
particular interest is to examine glia-to-EC contacts, whether this
is impacted by regional specialization, and whether this and NVU
function, is influenced by glia/EC identities. Understanding such
specializations will provide novel insights into the integration
of CNS barriers provided by the ECs, basal lamina, and glia
limitans, as their specialization might cause them to respond
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differently to stimulation, injury, or disease and how it affects
the NVU. Regional specializations and barrier properties might
also elucidate new routes for drug delivery. Thus, to understand
how NVU components function as a unit, it is also crucial to
establish the contribution of the individual components and
how different NVU cell types combine spatially and functionally
together. While the latter can be achieved by careful observation,
the former usually requires system changes, ideally cell-specific,
to be introduced (e.g., removal, over-expression, inhibition of
proteins or cells, etc.). This is exemplified by a recent study that
used tamoxifen-inducible astrocyte ablation in mice, showing
that astrocytes are key to maintaining the integrity of the
BBB as loss of astrocytes coincided with vascular leakage and
decreased EC ZO-1 expression (Heithoff et al., 2021) and BRB
(Puñal et al., 2019), thus confirming early work undertaken
over three decades ago (Janzer and Raff, 1987). This BBB
alteration could not be rescued by other cells. Moreover, these
alterations were accompanied by non-proliferative astrogliosis
which, over time, limited vascular leakage (Heithoff et al.,
2021). In addition, functional imaging is allowing the unraveling
of NVU functions such as neuronal activity using dynamic
calcium imaging (Chhabria et al., 2018) and cellular relationships
following metabolic compound exchanges (Kanow et al., 2017).
Similarly, optokinetic response measurements are increasingly
used to measure visual acuity (Dietrich et al., 2019; Sugita et al.,
2020). Linked to performing functional imaging, understanding
metabolic fluxes, storage, and turnover is crucial in beginning to
understand how NVU components communicate and support
each other’s function and how they may be disturbed in
disease. This understanding of metabolic pathways is particularly
challenging as metabolites are difficult to visualize, particularly
over long periods of time. Multi-modal studies using live dyes,
in vitro designs, as well as computational modeling, will help in
the understanding metabolic pathways, fluxes via glia, as well as
direct neuron-to-vascular transport.

In vivo Imaging and Objective
Quantification to Understand Glial Cell
Interactions
To understand the role of glia and the NVU, the correct tools
are needed to visualize components with sufficient resolution to
resolve subcellular structures. For this, zebrafish are particularly
well suited as transgenic reporter lines exist to label as well
as manipulate (i.e., upregulation, downregulation, and loss of
function) each component of the NVU in vivo. As such,
multi-transgenic reporter lines can be generated to visualize
complex cell structures and interactions in the developing
retina (Lieschke and Currie, 2007). Further, the function of
the NVU can be visualized in real-time in vivo using several
physiological readouts such as blood flow (e.g., red blood cell
movement) or neuronal activity (calcium reporters). Elaborate
integrations of NVU studies are needed to answer questions on
the spatiotemporal integration of angiogenesis, barrierogenesis,
gliogenesis, and NVU function. This is exemplified by recent
studies (Rosa et al., 2015; Zhang R. et al., 2019) showing that
neuronal activity during development impacts glial maturation

at the synapse. However, it is unclear how these events may
in turn influence glial support for neurons and ultimately
NVU formation. Combining state-of-the-art visualization tools,
examinations of NVU dynamics and functional studies in vivo
will compliment high-resolution structural studies [e.g., electron
microscopy (Willis, 2011)] and provide further insights into the
roles of glia in the form and function of the NVU.

As glial morphology is tightly linked to their function,
quantitative objective analysis of glia morphology can provide
novel insights. Recent advances in NVU in vivo imaging,
such as Two-photon microscopy (TPM), Intrinsic optical signal
imaging (IOSI), Optical coherence tomography (OCT), or Laser
speckle contrast imaging (LSCI) will greatly contribute to our
understanding of NVU functionality and dynamics (Yoon and
Jeong, 2019). This will enable imaging of functional readouts,
such as blood flow, following neuronal stimuli including
exposure to light flicker in the retina, to ascertain the impact
of glial dysfunction on neurovascular coupling mediated events.
This is complemented by ever more sophisticated tools in
which to study the NVU in freely behaving animals (Cong
et al., 2017; Senarathna et al., 2019) as well as the ability
to investigate NVU function during development (Chhabria
et al., 2018). The advancement of imaging modalities and
spatio-temporal resolution offers great benefits for understanding
these developmental and functional relationships in the NVU
(Figure 3). However, one drawback to having this increase
in resolution is the exponential increase in the amount
of data that is generated per experiment. With the vast
amount of experimental data, data analysis and computational
expertise has become a limiting factor for many laboratories.
Trained specialists and specialized data analysis training are
needed to extract meaningful data in a high-throughput,
standardized, and objective manner (Levet et al., 2021).
Dedicated specialized computational approaches can address
this analytical bottleneck to analyze data, and push scientific
boundaries by computationally modeling what is experimentally
impossible. This could be by in silico multi-transgenics (i.e.,
artificially overlaying transgene expression on a reference tissue)
to establish a virtual retina atlas, similar to the zebrafish brain
atlas, allowing for further neuronal activity mapping (Randlett
et al., 2015) and co-localization analysis (Ronneberger et al.,
2012) in silico. Similarly, deep learning approaches open new
avenues from feature mining (Dollar et al., 2007), over retinal
ganglion counting (Masin et al., 2021), to fundus and OCT
analysis (Badar et al., 2020). Furthermore, this is accompanied
by an increased assessment of feature and data connectivity and
relationships, such as principal component analysis and Uniform
Manifold Approximation and Projection (Allaoui et al., 2020).
Additionally, carefully designed data analysis workflows will
provide new insights into our data and the NVU, most likely in
a way that is beyond current comprehension.

The coupling of quantitative analysis of glia shape and
NVU function will also be essential in understanding the
kinetics of NVU degeneration and dysfunction in disease
(Luengo-Oroz et al., 2011). This is exemplified by studies
that link cell feature information to genomic profiles (Yuan
et al., 2012) or even link feature analysis to image cytometry,
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FIGURE 3 | Advancements in image acquisition methods and resolution, enable the study of NVU component interactions as shown here by the interaction between
MG endfeet (blue) and blood vessels (magenta), separated by the BM (white arrowhead; inset) in the developing zebrafish retina. The image was acquired with Zeiss
LSM 900 AiryScan2 microscopy that allows in vivo acquisition with a resolution of 120 × 120 × 350 nm (x,y,z).

which measures cellular protein and DNA in images (Tárnok,
2006). Once robust and repeatable ways to characterize glia
morphology are established, it will be possible to directly link
cell morphology to function and to their molecular profiles,
which could then in turn be linked to NVU functionality
studies. One prominent example used transcriptomics to identify
and classify retinal bipolar cells by matching their molecular
expression with cell morphology (Shekhar et al., 2016). These
comprehensive experimental paradigms could be used for each
component in the NVU, throughout its development, to identify
the molecular mechanisms regulating cell shape, function, and
connectivity. These insights into precise cellular mechanisms that
control the development and function of the NVU may also
inform the pathogenesis of disease in mature tissues. As such,
identification of the molecular and morphological changes (e.g.,
glial hypertrophy), that potentially precede pathology in disease,
would facilitate the diagnosis of NVU dysfunction and provide
the opportunity for early treatment and better clinical outcomes.

CONCLUSION

It is increasingly clear that glial cells are critical for NVU
development, function, maintenance, and dysfunction in disease.
However, uncovering the precise contribution of glial cells
to the NVU has been challenging to date, particularly when
trying to understand and integrate their dual contribution to
neurons and the vasculature. With the advancement of imaging,

computational and genetic tools, it will be possible to use
multidimensional approaches (morphology, function, genetics,
interactions, and dynamics) to clarify the exact role(s) of glial
cells in the NVU. Examining the role of glia in the “neuro-glial-
vascular unit” with such a holistic approach will enhance the
understanding, diagnosis, and treatment of aging and disease in
the nervous system.
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