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Extracellular vesicles (EVs) are secreted lipid bilayer vesicles that mediate cell to
cell communication and are effectors of cell therapy. Previous work has shown that
canonical Wnt signaling is necessary for cell and EV therapeutic potency. Tryptophan
2,3-dioxygenase (TDO2) is a target gene of canonical Wnt signaling. Augmenting TDO2
in therapeutically inert fibroblasts endows their EVs with immunomodulatory capacity
including attenuating inflammatory signaling in macrophages. Transcriptomic analysis
showed that macrophages treated with EVs from fibroblasts overexpressing TDO2
had blunted inflammatory response compared to control fibroblast EVs. In vivo, EVs
from TDO2-overexpressing fibroblasts preserved cardiac function. Taken together, these
results describe the role of a major canonical Wnt-target gene (TDO2) in driving the
therapeutic potency of cells and their EVs.
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INTRODUCTION

Extracellular vesicles (EVs) are nano-sized lipid-bilayer vesicles secreted by nearly all cell types
and represent an evolutionarily conserved mechanism of cell–cell communication (Yáñez-Mó
et al., 2015; Zaborowski et al., 2015; Mathieu et al., 2019). EVs are broadly classified by their
biogenesis (Meldolesi, 2018). Exosomes are smaller (30–100 nm) (Raposo and Stoorvogel, 2013)
EVs that arise from the late endosome processed by the endosomal sorting complexes required
for transport (ESCRT) pathway. Ectosomes which include microvesicles and apoptotic bodies,
in contrast, are passively shed from the plasma membrane (ectosomes) (Mathieu et al., 2019;
Sahoo et al., 2021). EVs are laden with potent signaling molecules including lipids, proteins, and
RNA (Yáñez-Mó et al., 2015; Zaborowski et al., 2015; Mathieu et al., 2019). EV signaling plays a
critical role in development, health, and disease (Ibrahim and Marban, 2016; Malloci et al., 2019).
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Emerging evidence also implicates EV secretion and signaling
in the therapeutic effect of cell therapy (Ibrahim and Marban,
2016; Marban, 2018; Yin et al., 2020). Cardiosphere-derived
cells (CDCs) are a population of cardiac stromal progenitors
with demonstrated therapeutic bioactivity in cardiac and skeletal
muscle indications. Early studies implicated CDC-EVs as
mediators of the CDC therapeutic effect (Ibrahim et al., 2014;
Gallet et al., 2017; Rogers et al., 2019). CDCs, through CDC-
EVs, modulate several pathways of tissue healing and repair
(Ibrahim et al., 2014), most notably, immunomodulation (de
Couto et al., 2017, 2019). Furthermore, we and others identified
macrophages as major functional recipients of CDC-EVs and
mediators of therapy (de Couto et al., 2017, 2019). Macrophages
are pivotal players in tissue injury and resolution. Recent
mechanistic investigation by our group further implicated Wnt-
β-catenin signaling activation as necessary for the secretion of
therapeutic EVs by CDCs (Ibrahim et al., 2019, 2021). However,
the specific downstream target genes of β-catenin signaling,
and their effect on EV-cargo, remain poorly described. Here,
we identify a β-catenin-upregulated target gene tryptophan 2,3-
dioxygenase (TDO2). TDO2 is an enzyme involved in the
metabolism of tryptophan into various metabolites including
kynurenine with well-described roles in immunomodulation.
Here we investigate the role of TDO2 activation in modulating
macrophage inflammatory activation.

MATERIALS AND METHODS

Neonatal Human Dermal Fibroblasts
Neonatal human dermal fibroblasts (nHDFs) were sourced
from ATCC (PCS-201-010). Cells were cultured in IMDM
(GIBCO), 10% FBS (Hyclone), 2 mM L-glutamine (GIBCO), and
gentamicin (GIBCO). Cells were maintained at 37◦C 20% O2/5%
CO2 in complete medium with medium exchanges every 3–4 days
as needed. Cells were grown until near confluent and passaged
using TrypLE (GIBCO).

Lentiviral Transduction
Neonatal human dermal fibroblasts were plated in T25 flasks
and transduced with TDO2 activation lentiviral particles (Santa
Cruz Biotech) at MOI:20 in complete medium. After 24 h of
transduction, the virus was removed, and fresh complete medium
was added for cell recovery for a further 24 h. Cells were then
subjected to selection by 5.0 µg/mL puromycin for approximately
3–4 days. Following selection, complete medium was replaced
and cells were grown and passaged.

EV Preparation and Isolation
Extracellular vesicles were harvested from primary nHDFs at
passage 5-7, from normal and transduced cells using a 15-
day serum starvation method previously described (Walravens
et al., 2021). Briefly, cells were grown to near confluence
(∼90%) at 20% O2/5% CO2 at 37◦C. Cell bed was washed
2x with warmed phosphate-buffered saline (PBS) and then
incubated in IMDM without serum supplementation for
15 days in the same environment. Conditioned medium was

collected, centrifuged at 3,000 × g for 10 min to remove
dead cells and debris, then filtered through a 0.45-µm PES
filter to remove apoptotic bodies and protein aggregates, and
frozen for later use at −80◦C. EVs were purified using
centrifugal ultrafiltration with a 100-kDa molecular weight
cutoff filter (Sigma-Millipore). EV preparations, before and
after concentration were analyzed by NTA using the Malvern
Nanosight NS300 Instrument (Malvern Instruments) with the
following acquisition parameters: camera levels of 15, detection
level less than or equal to 5, number of videos taken = 5, and
video length of 30 s.

Size-Exclusion Chromatography
Extracellular vesicles were collected and prepared as described
above. After 100 kDa ultrafiltration, EVs were further purified
using size exclusion chromatography (SEC) columns (SBI).
Briefly, 1.0 mL of concentrated EVs was added to each
chromatographic column and incubated at room temperature
with rotation for 30–35 min. EVs were eluted from the column
by centrifugation at 500 × g. EV size and concentration were
analyzed by NTA as described above. Protein content of EV
preparations was quantified using a BCA assay (Pierce).

Bone Marrow-Derived Macrophages
Bone marrow-derived progenitor cells were collected from 3-
month-old female Wistar Kyoto rats and differentiated into
bone marrow-derived macrophages (BMDMs) by culturing with
20 ng/mL recombinant M-CSF (Life Technologies). Briefly,
whole bone marrow cells were collected via aspiration with ice-
cold PBS. Cells were filtered using a 70-µm cell strainer and
centrifuged at 400 × g for 10 min at 4◦C to pellet. The cell pellet
was resuspended in 10 mL ACK buffer (GIBCO) for 30 s. ACK
was quenched with IMDM+ 10% FBS, and cells were centrifuged
as described above. Cells were resuspended in complete medium;
IMDM + 10% FBS + 20 ng/mL M-CSF and counted. Cells were
seeded into six-well plates at 8.0e104 cells/well, or equivalent.
Cells were incubated at 37◦C with 20% O2 and 5% CO2. Fresh
complete medium was exchanged on day 3 and cells monitored
for confluence. Test compounds were administered once BMDM
cultures reached ∼75% confluence. Serum concentration was
reduced to 1% during assays to facilitate EV uptake.

Bromodeoxyuridine (BrdU) Assay
Primary bone marrow macrophages were collected as previously
described and plated in 96-well plates at a density of 4.0e4

cells/well in complete medium (IMDM + 10% FBS + human
recombinant M-CSF 20 ng/mL). After attachment and
maturation (∼3 days), complete medium was removed and
replaced with IMDM w/1% FBS for all test conditions. 4.0e6

EVs were added ∼1 h after medium change along with
lipopolysaccharide (LPS) (10 ng/mL, Sigma). Control conditions
were cultured in IMDM w/10% and 1% FBS. Cells were grown
overnight after EV & LPS addition and proliferation quantified
using a bromodeoxyuridine (BrdU) Cell Proliferation ELISA
(Abcam, ab126556).
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Cell Migration (Modified Boyden
Chamber Assay)
Bone marrow-derived monocytes were seeded onto 100 mm
cell culture dishes and differentiated into mature macrophages
using IMDM + 10% FBS + 20 ng/mL human recombinant
M-CSF (Life Technologies). Upon reaching 75% confluence,
BMDMs were lifted using ice-cold PBS + 2 mM EDTA. Cells
were quantified and re-seeded onto 8.0-µM pore size transwells
(Costar). Cells were recovered overnight at 37◦C, 5% CO2
with complete medium (IMDM + 10% FBS). One hour before
EV administration, complete medium was removed, cells were
gently washed 1x with serum-free IMDM, and medium was
replaced with IMDM + 1% FBS. Cells were incubated with
EVs overnight and then fixed with 4.0% PFA. Cells were gently
removed from the upper side of the transwell using a cotton
swab. The underside of the transwell was stained for 20 min
at RT using Crystal Violet. After staining, cells were gently
washed several times with PBS until the wash ran clear. Ten
images were captured of each transwell at 10x magnification
(three per condition). Quantification of cell migration was
done using ImageJ.

RNA Isolation and RT-qPCR
Total cell RNA was isolated using the RNeasy Plus Mini Kit
(Qiagen) according to the manufacturer’s protocol. Total EV
RNA was isolated using the miRNeasy Advanced Serum Plasma
Kit (Qiagen). Total cell RNA was quantified using NanoDrop and
diluted using diH2O. Total EV RNA was quantified by Qubit
(Thermo Fisher Scientific). Cellular RNA Reverse Transcription
was performed using the High-Capacity RNA-to-cDNA kit (Life
Technologies) with 1 µg RNA per reaction. PCR reactions were
performed on the QuantStudio 7 Flex Real-Time PCR System
(Applied Biosystems) using TaqMan Fast Advanced Master Mix
(Life Technologies, 4444556) and TaqMan primers. Each reaction
was performed in triplicate. The gene expression assays used for
this study are summarized in Supplementary Table 1.

Cell Lysate and Protein Assay
Cell lysates were collected for ELISA and western blot from six-
well plates. Cells were washed 1x with ice-cold PBS. Cells were
lysed in-well with 75 µL 1 × lysis buffer with phospo/protease
inhibitors (Thermo Fisher Scientific). The cell lysate was
incubated on ice for 15 min, sonicated twice for 10 s each, and
centrifuged at 15,000 × g for 15 min at 4◦C. The supernatant
was collected and frozen for later use at −80◦C. Protein lysates
were quantified using a Pierce BCA Protein Assay kit (Thermo
Fisher Scientific).

Electrophoresis and Western Blot
Electrophoresis was conducted using NuPage 4–12% Bis-Tris
protein gels (Life Technologies) using 25 µg protein per well.
HPVD Membrane transfer was performed using the Turbo
Transfer System (BIO-RAD) after gel electrophoresis. Blocking
was performed using 5% non-fat milk in TBS + 20% Teen, 1 h
at RT. Primary antibody staining was done overnight at 4◦C.
Secondary HRP antibody staining was done for 90 min at RT and

then detected by SuperSignal West Pico PLUS Chemiluminescent
Substrate (Thermo Fisher Scientific). Antibodies used in this
study are summarized in Supplementary Table 2.

ELISA
Interleukin-6 ELISA (R&D Systems, Quantikine ELISA) was
performed according to the manufacturer’s protocol. Samples
concentration for testing was 1.5 mg mL−1.

RNA and miRNA Sequencing
Cell and EV RNA samples were sequenced at the Cedars-Sinai
Genomics Core. Total RNA and Small RNA were analyzed
using an Illumina NextSeq 500 platform for cell and EV
samples, respectively.

Proteomic Analysis of Extracellular
Vesicles
Proteomics of nHDF-EV and nHDFTDO2-EV was conducted by
Creative Proteomics (Shirley, NY, United States) using 200 µg
protein per sample. Data analysis and processing were done using
FunRich (Pathan et al., 2015).

Animal Study
All animal studies were conducted under approved
protocols from the Institutional Animal Care and Use
Committee protocols.

Mouse Acute Myocardial Infarction
Model
Acute myocardial infarction was induced in 3-month-old male
C57/B-L6 mice as described previously (Ibrahim et al., 2014).
Within 10 min of left anterior descending artery ligation, a total
of 1 × 105 cells (or vehicle) were administered via 3 × 8µL
injections intramyocardially.

Echocardiography
Echocardiography was performed in the mouse model of acute
myocardial infarction at 1 day (baseline) and 21 days after surgery
using Vevo 3100 Imaging System (Visual Sonics) as described
(Ibrahim et al., 2019). The average of the left ventricular ejection
fraction was analyzed from multiple left ventricular end-diastolic
and left ventricular end-systolic measurements.

Statistics
GraphPad Prism 9.0 (GraphPad Software) was used to analyze
the data. A comparison of three or more groups was performed
using two-way or one-way ANOVA followed by Sidek’s
post hoc multiple comparison test for paired groups. Two-group
comparisons were analyzed using two-tailed unpaired t-tests with
a confidence interval of 95%. RNA sequencing data were analyzed
for differential expression, fold change, and unsupervised PCA
using DESeq2 (Anders and Huber, 2010; Love et al., 2014).
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RESULTS

TDO2 Augmentation Results in Broad
Gene Expression Changes in Fibroblasts
Normal human dermal fibroblasts (HDFs) treated with
the beta-catenin activator 6-bromoindirubin-3’-oxime
(BIO) lead to upregulation of TDO2 more than any
other gene (Supplementary Figure 1A). Therefore, to
examine the role of TDO2, we transduced neonatal human
fibroblasts (nHDFs) with lentivirus containing the TDO2
transgene under the control of a constitutive promoter.
Upon transduction and subsequent selection by puromycin,
expression of TDO2 was 50-fold higher than non-transduced
cells (Supplementary Figure 1B). TDO2 activation had a
significant impact on the nHDF transcriptome. Transcriptomic
sequencing identified 3,000 differentially expressed genes
and over 400 unique genes in TDO2 transduced cells
(Supplementary Figures 1D–E). Increased expression of
TDO2 was further confirmed by the sequencing data as well
(Supplementary Figure 1F).

TDO2-Expressing Fibroblasts Attenuate
Macrophage Activation
To explore the effect of TDO2 activation on the
immunomodulatory capacity of nHDFs, rat BMDMs were
co-cultured with TDO2-transduced nHDFs (nHDFTDO2),
un-transduced nHDFs (nHDFUNT), or LPS as an activation
control. Examination of macrophage polarization and
inflammatory markers showed no changes in arginase 1,
IL-6, and IL-1B expression following co-culture (Figures 1A–
C). Nos2 expression was significantly decreased compared

to both LPS- and nHDF-co-cultured BMDMs (Figure 1D).
Decreased expression of the protein, iNOS, was further
confirmed by western blot (Figures 1E,F). Interestingly,
while no changes were observed in IL-6 transcription
(Figure 1B), secreted IL-6 in the conditioned culture
medium was lower as observed by ELISA which suggests
potential post-translational regulation (Figure 1G). To
investigate the potential mediator of the immunoregulatory
effect of TDO2-activated nHDFs, we assessed the levels
of secreted kynurenine. TDO2 is a rate-limiting enzyme
in the conversion of L-tryptophan to N-formyl-L-
kynurenine. Kynurenine and its downstream metabolites
play roles in anti-inflammation and vascular relaxation
(Nguyen et al., 2010; Wang et al., 2010). However,
subsequent analysis of conditioned medium by ELISA
revealed no increase in kynurenine (Supplementary
Figure 1C). Therefore, TDO2 activation endows nHDFs
with immunomodulatory capacities as shown by their
ability to blunt IL-6 and Nos2 expression in co-cultured
macrophages. Furthermore, this effect is not driven by the
synthesis of kynurenine.

TDO2-Augmented Fibroblasts EVs Are
Enriched in Small Non-coding RNA
Having ruled out the role of kynurenine, we investigated
changes in EV payload post TDO2 activation in nHDFs.
nHDFTDO2 (nHDFTDO2-EVs) and control nHDF EVs (nHDF-
EVs) were conditioned using a 15-day serum-starvation
protocol described by us previously (Ibrahim et al., 2014).
EVs were isolated using ultrafiltration with 100 kDa molecular
weight cut-off followed by buffer exchange with PBS. The

FIGURE 1 | Transwell co-culture of bone marrow-derived macrophages. (A–D) Gene expression of inflammatory genes after co-culturing of cells with nHDF or
nHDFTDO2 cells (n = 3 triplicates from three independent experiments). (E) Representative image of western blot detection of iNOS in BMDM lysates after overnight
co-culture with nHDF or nHDFTDO2 cells and pooled data (n = 2 biological replicates). (F) Analysis was done using one-way ANOVA with Sidak’s multiple comparison
test. Error bars represent standard deviation. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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size and concentration of EVs were similar between the
nHDF and nHDFTDO2 groups (Figures 2A–C). Further
characterization was completed demonstrating the presence
of conserved EV markers such as HSP70, CD81, and CD63
(Figure 2D). The absence of the endoplasmic reticulum
(ER) protein Calnexin in both preparations demonstrates
equivalent purification during EV concentration (Figure 2D).
Total RNA and protein content were comparable in both
groups (Figures 2E,F). Subsequent RNA sequencing of
the vesicles revealed a slight enrichment of total small
RNAs in the TDO2 group (Figure 2G). This increase
appeared to be primarily driven by increases in piRNA and
tRNA (Figure 2H).

EVs From TDO2-Augmented Fibroblasts
Attenuate Macrophage Activation
To investigate the function of EVs from nHDFTDO2, BMDMs
were treated directly with EVs from each group and assayed for
the same markers of macrophage and inflammatory markers
described earlier. Significant reductions were observed in the
expression of Arg-1, Nos2, IL-1B, and Nos2, and ADAM17 was
observed after overnight treatment with EVs (Figures 3A–D and
Supplementary Figure 4A). Additional inflammation markers
were investigated but were not observed to have significantly
changed expression levels (Supplementary Figure 4B). Reduced

iNOS levels in BMDM were confirmed by western blot
(Figures 3E,F). Reductions in IL-6 secretion were observed
by ELISA (Figure 3G). Both EV groups also stimulated
BMDM proliferation equally as shown by BrdU incorporation
(Figure 3H). The effect of EVs on migration was also evaluated
using a modified Bowden’s Chamber assay. Interestingly,
nHDFTDO2-EVs enhanced macrophage migration compared
to other groups (Figure 3I). Taken together, these data
demonstrate a potent immunomodulatory effect of nHDFTDO2

in macrophages. This effect was reflected by inherent changes
in the inflammatory profile of the cells rather than impairing
proliferation or infiltration. To rule out bioactivity from
extra-vesicle proteins, EV preparations were further purified
using SEC. SEC purification yielded preparations with nearly
10-fold less protein compared to the ultrafiltration only
preparation (Supplementary Figure 2A). Particle numbers
were equivalent between both groups (Supplementary
Figures 2B,C). Equivalently to the ultrafiltration product,
SEC-purified EVs attenuated Nos2 and IL6 (Supplementary
Figures 2E,F) which suggests that the immunomodulatory
effects on macrophages are mediated by the EVs. Additionally,
very few differences were observed when comparing the
proteomic composition of nHDF and nHDFTDO2 derived EVs
(Supplementary Figure 3). These data suggest that EV-associated
proteins are not responsible for the immunomodulatory
effects observed.

FIGURE 2 | nHDF and nHDFTDO2 derived extracellular vesicles share a similar phenotype. (A) Nanosight NS300 analysis of 15-day, serum-starved, conditioned
medium, from nHDF and nHDFTDO2 cultures (n = 3 technical replicates). (B,C) Particle concentration and particle diameter as observed by NTA (n = 3 triplicates from
three independent experiments). (D) Western blot of common EV markers. (E) Total RNA was extracted from 1.0e10 EVs and quantified using Qubit (n = 4 from two
biological replicates). (F) EV protein content was analyzed by micro-BCA from 1.0e10 particles per sample (n = 4 from two biological replicates). (G) miRNA
sequencing aligned 2,169 miRNA sequences with annotated miRNA. (H) Ratio of RNA species found during sequencing. Sequencing data were derived from three
biological replicates from each nHDF and nHDFTDO2 derived EV.
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FIGURE 3 | nHDFTDO2-EVs show anti-inflammatory function in bone marrow-derived macrophages. (A–D) Gene expression of inflammatory genes in BMDM cells
after overnight treatment with nHDF or nHDFTDO2 EVs results graphed as log2 fold change versus untreated cells (not shown) (n = 3 triplicates from three
independent experiments). (E) Representative image of western blot detection of iNOS in BMDM cell lysates (n = 2 from biological replicates). (F) Quantification of
iNOS western blot images. (G) ELISA quantification of IL-6 in the cell culture conditioned medium of BMDMs treated overnight with nHDF-EV or nHDFTDO2-EVs
(n = 3 triplicates from three independent experiments). (H) Proliferation of BMDM cells analyzed by colorimetric BrdU incorporation assay (n = 8 technical replicates
from a single experiment). (I) Results of modified Bowden-chamber assay for cell migration (n = 3, 10 technical replicates; images from three independent
experiments). (A–H) Analysis was done using one-way ANOVA with Sidek’s multiple comparisons test. (I) Analysis was done using an unpaired, two-tailed, t-test. All
error bars represent standard deviation. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

EVs From TDO2-Augmented Fibroblasts
Induce Macrophage “Anergy” via
Suppression of NFκB
To investigate the mechanism by which EVs from nHDFTDO2

regulate macrophage activation, we performed transcriptomic
analysis on macrophages treated with nHDFTDO2-EVs and
nHDF-EVs. Macrophages treated with nHDF-EVs had
significant transcriptomic changes including the activation
of several pro-inflammatory genes (Figure 4A). In contrast,
macrophages treated with nHDFTDO2-EVs had a much more
muted effect (Figure 4B). This is further reflected using principle
component analysis where nHDFTDO2-EV-treated groups are
more proximal to the untreated group than the nHDF-EV-treated
group (Figure 4C). Indeed, nHDFTDO2-EVs nearly reverse the
inflammatory effects of nHDF-EV treatment (Figure 4D).
Given this major reversal of inflammatory phenotype, we
interrogated nuclear factor-kappa b (NFκB) genes as it is a
central regulator of inflammation (Taniguchi and Karin, 2018).
Analysis of the NFκB inflammatory complex shows potent
abatement compared to the nHDF-EV-treated group and

equivalent to the untreated group (Supplementary Figure 4G).
Direct comparison of canonical inflammatory markers and
pathways shows universal upregulation in macrophages treated
with nHDF-EVs versus those treated with nHDFTDO2-EVs
(Figures 4E–J) including decreased expression of all constituents
of the NFκB complex (Figure 4I). This led us to suspect
whether the nHDFTDO2-EVs might be inert and incapable of
signaling to macrophages. To test this hypothesis, we performed
a sequential exposure experiment whereby macrophages were
treated first with nHDFTDO2-EVs followed by exposure to
nHDF-EVs. If the nHDFTDO2-EVs are truly inert, then the
nHDF-EVs should still induce inflammatory activation. If the
nHDFTDO2-EVs induce anergic modulation in macrophages,
then macrophage activation by nHDF-EVs will be attenuated.
Indeed, pre-treating macrophages with nHDFTDO2-EVs blunted
their ability toward inflammatory activation by nHDF-EVs. This
is shown by decreased levels of Arg-1, Nos2, and IL-6, and a
significant increase in IL-10 expression after treatment with
nHDF-EVs (Supplementary Figures 4C–F). Taken together,
these data demonstrate a unique ability of nHDFTDO2-EVs
to induce immunomodulation through inducing anergia in
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FIGURE 4 | RNA sequencing of EV-treated bone marrow-derived macrophages (BMDMs) reveals activation of inflammatory pathways by nHDF-EV. Differential
expression analysis was calculated from n = 3 from two biological replicates. (A) Volcano plot visualizing the changes in gene expression in BMDM cells after
treatment with nHDF-EVs compared to the untreated group. (B) Volcano plot visualizing the changes in gene expression in BMDM cells after treatment with
nHDFTDO2-EVs compared to the untreated group. (C) Principal component plot of the top 300 differentially expressed genes (p < 0.001). (D) Volcano plot visualizing
the changes in gene expression in BMDM cells after treatment with nHDFTDO2-EVs compared to the nHDF-EV treated group. All volcano plots use −log10 adjusted
p-values and log2 fold-changes. Genes with adjusted p-values less than 0.001 and fold-changes greater than twofold are highlighted. (E–J) Log2 fold change gene
expression changes in inflammatory markers when BMDMs are treated with nHDF-EV vs nHDFTDO2-EV. Log2FC values calculated from FPKM count values, n = 3,
error bars represent standard deviation, and starred plots indicate p < 0.001.

macrophages. This effect is mediated in part through blunting
NFκB activation.

TDO2-Augmented Fibroblasts Are
Cardioprotective in Acute Myocardial
Infarction
Having observed these profound effects in macrophages, we
sought to investigate the effect of nHDFTDO2 in a cardiac
injury model where macrophages play an active role in
injury and resolution. We investigated the therapeutic
capacity of these cells in a well-established mouse model of
acute myocardial infarction used by our group to establish
therapeutic potency of cells and EVs (Figure 5A). Results
showed significant improvement of cardiac function at 21-
day post-injury in nHDFTDO2-treated hearts (compared
to nHDF-treated hearts; Figure 5B). Observation of both
B-mode M-mode images reveals an observable difference
in left ventricular wall contractility (Figure 5C). Changes
in end-diastolic and systolic volumes were decreased in the
nHDF-TDO2-EV treated hearts, indicating preservation of
end-systolic volumes and maintenance of ejection fraction
(Figures 5D,E).

DISCUSSION

Understanding the mechanism of action of cell therapy is a
cornerstone of regenerative medicine. Previous work by us and
others suggests that cell therapy functions primarily through
the secretion of EVs (Barile et al., 2014; Ibrahim et al., 2014;
Hirai et al., 2020) which deliver molecules like small RNAs with
salutary effects that modulate the transcriptome of the injured
microenvironment, notably macrophages (de Couto et al., 2017,
2019). The further mechanistic investigation implicated the Wnt-
β catenin pathway in driving the therapeutic effect of CDCs
and their EVs (Ibrahim et al., 2014, 2021). The work presented
here represents a continuation of this mechanistic dissection. We
show that TDO2 is a major target gene of β catenin activation.
Indeed, it was the single highest upregulated gene in fibroblasts
with augmented β catenin activation. TDO2 activation in
otherwise therapeutically negative cells (skin fibroblasts) resulted
in a secretome capable of regulating macrophage inflammatory
activation. This effect was independent of kynurenine synthesis
and secretion but instead was mediated by changes in the
cargo of EVs. EVs isolated from the conditioned medium of
TDO2-augmented cells were potently immunomodulatory in
macrophages. Deeper transcriptomic analysis of macrophages
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FIGURE 5 | Neonatal human fibroblasts transduced to overexpress TDO2 increase ejection fraction in a 3-week mouse model of MI. (A) In an acute model of MI,
BL6 mice underwent MI and hearts were injected with nHDF cells (n = 10) and nHDFTDO2 cells (n = 8). (B) Treatment with nHDFTDO2 cells increased ejection fraction
in mice 21-day post-infarct. (C) Representative B-mode images of systole and diastole illustrating the ventricular-volume tracing method used to measure ejection
fraction. M-mode images of left ventricular contraction. Improved contraction in the left ventricular wall after treatment with nHDFTDO2 cells is observed by the inward
contraction of the left ventricular wall (yellow arrow). (D) Average change in left ventricular end-diastolic volumes. (E) Average change in left ventricular end-systolic
volume. Statistical analysis was done using an unpaired t-test. **p < 0.01.

treated with nHDFTDO2-EVs revealed potent silencing of pro-
inflammatory properties of nHDF EVs including activation of a
master regulator of inflammatory signaling NFκB. This effect was
not due to rendering EVs non-reactive but rather an active anti-
inflammatory signaling process. Finally, we show that fibroblasts
augmented with TDO2 were therapeutically bioactive in a model
of cardiac injury. In conclusion, these results shed light on one
target gene (TDO2) of β catenin activation and its role in the
therapeutic effect. Future work will focus on changes in the
cargo of EVs upon TDO2 activation that endow them with
immunomodulatory capacity. For instance, it will be important
to interrogate changes in the non-coding RNA including micro
RNAs (miRs) and their immune-relevant targets. This includes
members of the NFκB pathway. This investigation would not be
confined to miRs but rather other RNA classes with less described
mechanisms that may contribute significantly to the observed
effects. Of note are the Piwi-RNAs (piRNAs) which increased
in EVs following TDO2 activation. Furthermore, the effect of
these EVs on the adaptive immune response was not evaluated
here and merits investigation as TDO2 activation has been
shown to induce immunological tolerance. Understanding the
comprehensive effect of EVs from TDO2-activated cells further
advances our growing knowledge of therapeutic signaling by cells
and the EVs and more broadly, the relevant mechanisms in tissue
healing and repair.
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Supplementary Figure 1 | Augmented expression of TDO2 has a global effect on
the gene expression profile of neonatal human fibroblasts. (A) Sequencing of
cardiosphere-derived cells (CDCs) treated with BIO revealed TDO2 to be the gene
most upregulated. (B) TDO2 expression 2 passages after lentiviral transduction
and selection by puromycin. (C) Secreted kynurenine levels from nHDF versus
nHDFTDO2 cell cultures as tested by ELISA (n = 5). (D) Visualization of mRNA
sequencing data showing global gene expression in nHDFs before and after
transduction. Including significantly (p ≤ 0.001) differentially expressed genes
(direction delineated by colored arrows). (E) Heat map visualizing differentially
expressed genes (p < 0.001) post TDO2 augmentation. (F) Volcano plot
visualizing the expression of TDO2 in the group of genes upregulated

post-transduction. Unpaired, two-tailed t-test used for analysis. Error bars
represent standard deviation. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

Supplementary Figure 2 | Removal of extra-vesicle protein does not change
inhibit immunomodulatory function in BMDM. (A) Total protein concentration of
ultrafiltration and SEC purified EV preparations. (B) EV concentrations normalized
by volume. (C) EVs particle per µg of protein. (D–F) Arg1, Nos2, and IL-6
expression in BMDMs treated with different preparations of TDO2 and HDF EVs.
Two-group comparisons were analyzed using an unpaired, two-tailed t-test.
Multiple comparisons were tested by one-way ANOVA with Sidek’s multiple
comparison test. Error bars indicate standard deviation. ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001.

Supplementary Figure 3 | Proteomic analysis of nHDF and nHDFTDO2 derived
extracellular vesicles. (A) Visualization of the ratio of differentially expressed
proteins (576) and the number of proteins mapped from each EV type, including
unique sequences from nHDF (32) and nHDFTDO2 (13). (B) Comparison of the
ratio of proteins based on their biological processes and molecular function. (C)
Proteins significantly up- or downregulated in the TDO2-EV population delineated
by their biological processes.

Supplementary Figure 4 | Pre-treatment with nDHFTDO2-EVs reduces the
inflammatory reaction in BMDM. (A) Gene expression of ADAM17 in macrophages
after treatment with EVs. (B) Expression of genes indicating M1 and M2
polarization. Fold change calculated versus untreated cells. (C–F) Gene
expression of inflammatory markers after standard treatment with EVs or
nHDFTDO2-EV (n = 3). (G) Heat map illustrating the gene expression of the NFκB
inflammatory complex and TLR adapter proteins MyD88 and TRIF after EV
treatment versus controls (n = 3 triplicates from two independent experiments).
Two-group comparisons were analyzed using an unpaired, two-tailed t-test.
Multiple comparisons were tested by one-way ANOVA with Sidek’s multiple
comparison test. Error bars indicate standard deviation. ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001.
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