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Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a
newly discovered form of cell death, features regulated, iron-dependent accumulation of
lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have
examined the complex relationship between ferroptosis and cancer. Here, starting from
the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell
death induction as a cancer treatment. We review various aspects of the relationship
between ferroptosis and cancer, including the genetic basis, epigenetic modification,
cancer stem cells, and the tumor microenvironment, to provide information and support
for further research on ferroptosis. We also note that exosomes can be applied in
ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to
modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis
occurring in targeted cells is promising for cancer therapy.
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INTRODUCTION

ROS, A Hint for Cancer Therapy
Cancer has become one of the major threats to human health. A report estimated that in 2021 in
the United States, there will be 1,898,160 new cancer cases and 608,570 cancer deaths (Siegel et al.,
2021). Although the cancer mortality rate has decreased in recent years, access to healthcare has
also decreased due to the COVID-19 pandemic, which has led to hampered cancer diagnosis and
treatment (Siegel et al., 2021). As widely applied chemoradiotherapy is showing its drawbacks, such
as frequent resistance and toxic side effects, cell death induction is becoming increasingly popular
for developing novel cancer treatment.

Common forms of cell death, such as apoptosis, autophagy, and necroptosis, are all related
to reactive oxygen species (ROS) and are regulated by ROS. For example, ROS can facilitate the
extrinsic apoptosis pathway through negative regulation of the cellular FLICE-inhibitory protein
(Wang et al., 2008) and can induce intrinsic apoptosis pathways by triggering quick release of
Cyt-c (Madesh and Hajnoczky, 2001) and regulating the Bcl-2 protein family (Burlacu, 2003).
Evidence shows that ROS generated from ETC and NOX can regulate several pathways that mediate
autophagy induction (Li et al., 2011), and AMPK can be activated by AMPK kinase after H2O2
treatment, which also results in autophagy induction (Choi et al., 2001). In addition, ETC- and
NOX-derived ROS are involved in necroptosis facilitation (Dixon and Stockwell, 2014). Evidence
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of cell death regulation, mediated by ROS, can also be found in
ferroptosis and chemosensitization (Galadari et al., 2017).

Given the strong relationship between ROS and cell death,
regulating ROS generation upward or controlling oxidative
defense downward has become central for new cancer treatments,
which have been enhanced by the finding that cancer cells
process a higher level of ROS than do healthy cells (Galadari
et al., 2017). A higher level of ROS, partly attributed to defective
mitochondrial oxidative metabolism (Tafani et al., 2016), can
lead to two opposite outcomes: the promotion of cancer and its
suppression. Cancer suppression occurs because an elevated ROS
level promotes various cell death processes, as mentioned above.
Cancer promotion occurs because an elevated ROS level does the
following:

(a) facilitates tumorigenesis through damaging or modifying
cellular proteins, DNA, and lipids, leading to activation or
inhibition of various tumorigenesis related signaling cascades
(Tafani et al., 2016);

(b) promotes angiogenesis by mediating the proliferation,
migration, and tube formation of endothelial cells (Potente et al.,
2011) or by modulating various vascular endothelial growth
factors;

(c) contributes to invasion and metastasis through active
involvement in essential events including modulating signaling
kinases and the cytoskeleton (Tochhawng et al., 2013); and

(d) participates in chemoresistance (Ledoux et al., 2003).
Cancer cells exhibiting a greater ROS level display increased

activity of antioxidant enzymes, which help create a homeostasis
for cell surviving. Therefore, it would be valuable to develop
therapeutic strategies to break the redox homeostasis in cancer
cells and activate cell death pathways to limit cancer progression.
There are two possible approaches: the first is to decrease
intracellular ROS. This can be done by, for example, hindering
mitochondrial ETC and the activation of NOX, thus inhibiting
ROS generation. This technique has been demonstrated in
several cancer cell lines and has been proven to be beneficial.
A study induced apoptosis in PANC-1 pancreatic cancer cells
using diphenylene iodonium, which suppressed ROS generation
through inhibiting NOX4 (Mochizuki et al., 2006). The opposite
strategy consists of increasing the ROS to a toxic level and
thus triggering cell death pathways. Researchers report that
piperlongumine, a natural small molecule, can selectively induce
ROS-dependent cell death in cancer (Chen et al., 2014).
Moreover, glucose metabolism is thought to be related to ROS
elimination, and a study has shown that glucose deprivation can
induce cytotoxicity in MCF-7/ADR human multidrug-resistant
breast cancer cells (Gupta et al., 1997; Lee et al., 1997).

In This Review
Cancer therapy based on cell death induction has become an
important research topic, and ferroptosis, a newly discovered
form of cell death, has gained general attention. In this paper,
we review the literature on ferroptosis and its relationship with
cancer from different perspectives, including proto-oncogene
and tumor suppressor gene, epigenetics, cancer stem cells (CSCs),
and the tumor microenvironment (TME). Based on the new
insights into cancer treatments using cell death induction, we

believe ferroptosis to be a promising candidate for cancer
treatment. As numerous molecules, ranging from RNAs to plant-
derived natural compounds, have been demonstrated to have a
therapeutic effect on cancer via the induction of ferroptosis-like
cell death, drug delivery, which is a critical step in the application
of ferroptosis as a cancer treatment, is still being discussed.
Given various advantages, such as easy tissue penetration, low
toxicity, and low immunogenicity, exosomes are believed to be
a reliable drug delivery system able to selectively target specific
cells (Figure 1). Here, we provide a simple overview of exosomes
and their potential applications in ferroptosis-based therapy.

FERROPTOSIS AND CANCER

A newly discovered form of cell death, different from apoptosis,
autophagy, and necroptosis, called ferroptosis has recently gained
recognition for use in cancer treatment. Ferroptosis, a word
coined in 2012 (Dixon et al., 2012), is a form of regulated cell
death characterized by iron-dependent accumulation of lipid
hydroperoxides to lethal levels. It was first used to describe a
cell death process induced by a small molecule called erastin,
which inhibits the intake of cystine, resulting in glutathione
depletion and inactivation of the phospholipid potentially toxic
lipid peroxidase 4 (GPX4) (Yang et al., 2014). GPX4 converts
lipid hydroperoxide, which is potentially toxic, to a non-toxic
form of lipid alcohol (Ursini et al., 1982). Therefore, inactivation
or inhibition of the enzyme GPX4 triggers overwhelming lipid
peroxidation that causes iron-dependent cell death. Regulation
of ferroptosis can be achieved generally by interfering with iron
metabolism and ROS metabolism, and the ferroptosis process
can be suppressed by iron chelators, lipophilic antioxidants,
lipid peroxidation, and the depletion of polyunsaturated fatty
acids and correlates with the accumulation of lipid-peroxidation
markers (Stockwell et al., 2017).

For the successful application of ferroptosis in cancer
treatment, a more concrete understanding of ferroptosis and
cancer is needed. The following section contains a review of
recent research on ways in which ferroptosis interacts with
cancer, especially as regards cancer-related genes, epigenetics, the
TME, and so on, and provides a short review of research on
ferroptosis regulation and its application to cancer treatment.

FERROPTOSIS AND CANCER GENES

RAS
The RAS family of small GTPase, including HRAS, NRAS, and
KRAS, is closely related to ferroptosis since the two most well-
known ferroptosis inducers, erastin (eradicator of RAS and ST)
and RSL3 (RAS-selective Lethal 3), are technically oncogenic
RAS-selective lethal small molecules (Yagoda et al., 2007; Yang
and Stockwell, 2008). The relationship between ferroptosis
and RAS has been carefully investigated by numerous studies
(Table 1). For example, researchers have found that HRASV 12

expressing cancer cells are electively sensitive to ferroptosis, and
KRAS silencing in KRAS mutant Calu-1 cells strongly reduces
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FIGURE 1 | The schematic diagram of modulating ferroptosis in cancer inhibition based on an exosome delivery system. Cancer development and treatment
efficacy are impacted by genetic factors, epigenetic modifications, cancer stem cells, and the tumor microenvironment (TME). Ferroptosis is a double-edged sword
in cancer survival because it is regulated by different signaling pathways. Cancer treatment could benefit from using an exosome delivery system to control the onset
of ferroptosis.

erastin sensibility (Yagoda et al., 2007). A possible explanation
might be that constitutive RAS pathway activity promotes TFRC
(a gene related to iron metabolism) expression while suppressing
the expression of iron storage proteins. However, more evidence
for the relation between RAS mutation and erastin sensibility
cannot be found in some cancer cell lines (Yang et al., 2014).
In contrast, RMS13 rhabdomyosarcoma cells that overexpress
HRAS, KRAS, or NRAS are resistant to erastin and RAL3 (Schott
et al., 2015), which means RAS does affect erastin sensitivity,
while the oncogenic RAS pathway is not the sole determinant
of ferroptosis sensitivity (Dixon and Stockwell, 2019). Other
research has shown that, in an NRASQ61L expressing HL-60 cell
line, high mobility group box 1 (HMGB1) is an essential regulator
of erastin-induced ferroptosis (Ye et al., 2019). ADP Ribosylation
Factor 6 (ARF6), a part of the RAS superfamily, facilitates high
sensitivity to RSL3-induced lipid peroxidation (Ye et al., 2020).
Reports have shown that oncogenic RAS induces rapid increase
of ROS partly through upregulating NOX1 (Irani et al., 1997;
Mitsushita et al., 2004). In mice with KRAS-driven pancreatic
ductal adenocarcinoma (PDAC), high iron diets and GPX4
depletion, which results in 8-OHG release, lead to macrophage
infiltration and activation (Dai E. et al., 2020).

p53
Because of its role in cell cycle arrest, senescence, and apoptosis,
as well as for its interesting role in metabolism, oxidative

responses, and ferroptosis, p53 has long been an important focus
of research. p53’s essential function of survival promotion is
confirmed by the fact that cells are more sensitive to ferroptosis
after p53 depletion through CRISPR/Cas9 (Tarangelo et al.,
2018). By antagonizing p53 activity, such as the O-GlcNAcylated
c-Jun (the first discovered oncogenic transcription factor), cell
death can be prevented (Eferl et al., 2003). Recently, p53-related
signal pathways have been shown to modulate ferroptosis in
the following ways.

Research has shown that p53 can suppress the expression of
SLC7A11, a key component of the cystine/glutamate antiporter
(Xc
− system), leading to the inhibition of cystine uptake and

sensitization to ferroptosis. For example, the p53 mutants
p53R237H and p53R175H promote sensitivity to ferroptosis-
like cell death, most likely through the combination of p53
mutants with NRF2 and through the suppression of the
NRF2-dependent transactivation of SLC7A11 together with
other antioxidant genes that oppose ferroptosis (Sasaki et al.,
2002; Habib et al., 2015; Liu D.S. et al., 2017). Moreover,
overexpression of SLA7A11 in human tumor suppresses ROS-
induced ferroptosis and inhibits p533KR-mediated tumor growth
suppression in xenograft models. Though mutant p533KR

effectively downregulates SLC7A11, it does not affect other p53
target genes involved in cell cycle regulation or apoptosis (Jiang
et al., 2015). In contrast, mutant p534KR98 is unable to reduce
SLC7A11 expression (Wang et al., 2016).
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TABLE 1 | Summary of ferroptosis associated oncogenes and tumor suppressors.

Gene Target Regulatory
direction for
target

Effect to ferroptosis (references)

HRASV 12 iron metabolism
related genes

activation reduce erastin sensibility (Yagoda et al., 2007; Yang et al., 2014)

HRASV 12 iron storage
proteins

inhibition enhance ferroptosis (Yagoda et al., 2007; Yang et al., 2014)

HRASV 12 GSH system activation reduce erastin sensibility (Schott et al., 2015)

NRASV 12 GSH system activation reduce erastin sensibility (Schott et al., 2015)

KRASV 12 GSH system activation reduce erastin sensibility (Schott et al., 2015)

ARF6 ACSL4 inhibition enhance RSL3 sensibility (Ye et al., 2020)

p53R237H NRF2/SLC7A11 regulation suppress cystine/glutamate antiporter (Sasaki et al., 2002; Habib et al., 2015;
Liu D.S. et al., 2017)

p53R175H NRF2/SLC7A11 regulation suppress cystine/glutamate antiporter (Sasaki et al., 2002; Habib et al., 2015;
Liu D.S. et al., 2017)

p533KR SLC7A11 inhibition suppress cystine/glutamate antiporter (Jiang et al., 2015)

p53 SLC7A11 inhibition suppress cystine/glutamate antiporter (Sasaki et al., 2002; Habib et al., 2015;
Liu D.S. et al., 2017)

p53 p53-SAT1-ALOX15
axis

activation enhance ferroptosis (Chu et al., 2019)

p53 GLS2 activation enhance GSH generation (Hu et al., 2010)

p53 DPP4 regulate the
localization and
activity

inhibit ferroptosis (Xie et al., 2017)

p53 CDKN1A activation delay the onset of ferroptosis (Tarangelo et al., 2018)

MDM2 and MDMX p53 inhibition enhance ferroptosis (Venkatesh et al., 2020)

Myc EGLN1-HIF-1α-
LSH-WDR76
axis

activation inhibit ferroptosis (Jiang et al., 2017)

Myb CDO1-GPX4 axis suppress CDO1,
and promote GPX4

inhibit ferroptosis (Prouse and Campbell, 2012; Hao et al., 2017)

Src GPXs Src acts as the
target for GPXs

participate in ferroptosis regulation (Wei J. et al., 2020)

Src ACSL4 inhibition inhibit ferroptosis (Brown et al., 2017)

As a transcription target of p53, the activity of
spermidine/spermine N1-acetyltransferase 1 (SAT1), the
rate-limiting enzyme in polyamine catabolism, induces lipid
peroxidation and sensitizes cells to undergo ferroptosis and
the deletion of SAT1 suppresses p53 and p533KR-mediated
ferroptosis. However, while p53 modulates SLC7A11 expression,
the expression and activity of SLC7A11 and GPX4 are not
associated with SAT1, and only ferrostatin-1 can inhibit ROS-
induced ferroptosis in Tet-on cells (Ou et al., 2016). Research has
also found that SAT1 induction is associated with the expression
of arachidonate 15-lipoxygenase (ALOX15), which is essential in
p53-mediated ferroptosis (Chu et al., 2019). Unfortunately, the
p53–SAT1–ALOX15 axis has not been fully explained.

The metabolism of glutamine, one of the essential
components of ferroptosis, is catalyzed by cytosolic glutamine
aminotransferases or by mitochondrial glutaminases (Gao et al.,
2015; Altman et al., 2016). The expression of glutaminase 2
(GLS2), which has been identified as a transcriptional target of
p53, mediates oxygen consumption, mitochondrial respiration,
and ATP generation in cancer cells. Based on the evidence
that GLS2 facilitates GSH production in several cancer cell

lines, GLS2 is recognized as a negative regulator of ferroptosis
(Hu et al., 2010).

Colorectal cancer (CRC) caused by a number of genetic
disorders, including KRAS mutation, p53 mutation, and p53
depletion, which provides additional evidence for the survival-
promoting function of p53. Interestingly, this p53 function
might partly be achieved by modulating ferroptosis. Research
has found that p53 can inhibit ferroptosis by modulating
the localization and activity, but not expression, of dipeptidyl
peptidase-4 (DPP4), leading to survival promoting functions.
This process occurs through a post-translational interaction with
protease DPP4, which strengthens membrane lipid peroxidation
in a protease-independent way via interaction with an ROS-
generating NOX (Xie et al., 2017).

Cyclin dependent kinase inhibitor 1A (CDKN1A/p21), also
known as p21WAF1/Cip1, is a key mediator of p53-dependent cell
cycle arrest after DNA damage (Abbas and Dutta, 2009). A recent
study has shown that the expression of CDKN1A, mediated by
p53, delays the onset of ferroptosis in response to subsequent
cystine deprivation in cancer cells (Tarangelo et al., 2018). As
two negative regulators of p53, MDM2 and MDMX facilitate
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ferroptosis with or without p53, most likely by altering the lipid
profile of cells (Venkatesh et al., 2020), which is confirmed by
evidence that with the treatment of MDM2 inhibitor nutlin-3,
p53 expression increases and leads to the suppression of Xc

−

system inhibitor-induced ferroptosis in HT-1080 cells (Tarangelo
et al., 2018). The function of CDKN1A in cell cycle arrest, which
is unable to trigger ferroptosis, is primarily achieved by binding
to and suppressing the kinase activity of the cyclin-dependent
kinases (CDKs) (Abbas and Dutta, 2009).

Interestingly, a recent study reported that retention of p53
in the nucleus, mediated by the interaction of long non-coding
RNA (lncRNA) P53RRA, and Ras GTPase-activating protein-
binding protein 1 (G3BP1), leads to cell cycle arrest, apoptosis,
and ferroptosis. This is because p53 is displaced from the G3BP1
complex (Mao et al., 2018).

Myc
Studies tend to view Myc proteins as transcriptional factors
that exert tumorigenesis functions by activating and suppressing
target genes (Lutz et al., 2002). Evidence has shown a relationship
between Myc and ferroptosis. A recent study reported that
egl nine homolog 1 (EGLN1) and Myc activate lymphoid-
specific helicase (LSH) expression through HIF-1α, and that
LSH suppresses ferroptosis through the interaction with WDR76,
leading to the activation of lipid metabolism-associated genes
(Jiang et al., 2017). Another study reported that the depletion
of VHL, a major tumor suppressor of clear cell renal cell
carcinoma (ccRCC), leads to the stabilization of the hypoxia
inducible factors HIF-1α and HIF-2α. This paper also found that
exogenous expression of pVHL can revert ccRCC cells to an
oxidative metabolism and a state of insensitivity to ferroptosis
induction. Myc-dependent tumor growth in mouse models can
be inhibited by GSH synthesis suppression (Miess et al., 2018).
A newly identified oncogene, DJ-1, displays ferroptosis resistance
and can synergistically transform mouse NIH3T3 cells together
with activated GTPase HRAS and MYC proto-oncogene (c-Myc)
(Jiang et al., 2020).

Myb
Members of the Myb family are found in all eukaryotic lineages,
the function of which is to regulate fundamental cellular
processes, metabolism, and cellular differentiation (Prouse and
Campbell, 2012). Evidence shows that c-Myb is involved in
ferroptosis through a cysteine dioxygenase 1 (CDO1)–GPX4
axis. Silencing CDO1 leads to suppression of erastin-induced
ferroptosis in vitro and in vivo, and inhibition of CDO1
restores cellular GSA levels, which prevents ROS generation.
This paper demonstrates that c-Myb transcriptionally regulates
CDO1 and inhibition of CDO1 expression upregulates GPX4
(Hao et al., 2017).

SRC
Cellular SRC (c-SRC), the product of the SRC gene, is involved
in tumorigenesis, invasion, and the metastatic phenotype (Alper
and Bowden, 2005). A recent study has found that the SRC gene
is one of the targeting sites of GPX4, the differential expression of
which regulates cell proliferation, cancer progression, apoptosis,

and ferroptosis (Wei J. et al., 2020). Another report demonstrated
that, mediated by α6β4 integrin, the activation of SRC and STAT3
could inhibit ACSL4 expression, leading to the protection of
adherent epithelial and carcinoma cells form erastin-induced
ferroptosis (Brown et al., 2017). This is partly because ferroptosis
cannot be triggered while there is a lack membranes enriched
by ACSL4-mediated long polyunsaturated fatty acids. It was
also proved that matrix-detached epithelial and cancer cells
cluster spontaneously through a pathway involved with Nectin-
4 (also known as cell adhesion protein PVRL4), the process
of which sustains GPX4 expression and buffers against lipid
peroxidation by stimulating the PVRL4/α6β4/Src axis signal
pathway (Brown et al., 2018).

Rb
The retinoblastoma (Rb) protein is the founding member of
a protein family that exerts a strong regulatory function on
the transcription of various genes in eukaryotes (Knudsen and
Knudsen, 2008). Ferroptosis in hepatocellular carcinoma can be
promoted, resulting in two or three times more cell death, by
sorafenib treatment combining with Rb knockdown using RNA
interference (Louandre et al., 2015).

FERROPTOSIS AND EPIGENETICS

Non-coding RNA
Non-coding RNAs (ncRNAs) are RNAs in the transcriptome and
will not be translated into proteins. They are identified as several
subfamilies based on their molecular size and shape, including
long non-coding RNAs (lncRNAs), microRNAs (miRNAs), small
nuclear RNAs (snRNAs), and small interfering RNAs (siRNAs)
(Hombach and Kretz, 2016). Non-coding RNAs are increasingly
regarded as essential regulators of ferroptosis in cancer and
a better understanding of them can provide novel ideas for
cancer treatment.

MiRNAs exhibit functions by binding to the 3′-untranslated
regions of their target mRNAs and thus prevent the expression
process (Majidinia et al., 2020). Studies have demonstrated
that miRNAs regulate ferroptosis through direct and indirect
approaches. For example, miR-7-5p inhibits ferroptosis by
downregulating mitoferrin and reducing iron levels in radio-
resistant cells (Tomita et al., 2019). miR-6852, which is regulated
by lncRNA linc00336, can inhibit lung cancer progression by
promoting ferroptosis. Besides direct regulation, evidence shows
that miRNAs affect the metabolism of GSH, a scavenger of ROS
that protects lipid membrane (Hsu et al., 2019). For instance,
miR-18a and miR-218 downregulate GSH levels in hepatocellular
carcinoma and bladder cancer separately by targeting GCL
(Anderton et al., 2017; Li P. et al., 2017), while miR-152 and miR-
155 decrease GSH levels in hepatocellular carcinoma and lung
cancer separately by targeting GST (Huang et al., 2010; Lv et al.,
2016), the general pathway by which miRNAs modulate GSH
level. GST can be targeted and modulated by various miRNAs,
including miR-92b-3p, miR-124, miR129-5P, miR-130b, miR-
133a/b, miR-144, miR-153-1/2, miR-186, miR-302c-5p, miR-
513a-3p, miR-590-3p/5p, miR-36645p, miR-3714, and let-7a-5p
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(Zhang et al., 2020e). In the meantime, iron metabolism mainly
includes the interaction between transferrin (TF) and TF receptor
(TFR), which can also be regulated by miRNAs. For example, in
CRC and hepatocellular cancer, TFR can be targeted by miRNAs
including miR-22, miR-31, miR-141, miR-145, miR-152, miR-
182, miR-200a, miR-320, miR-758, and miR19463–65, resulting
in a disruption between TF and TFR and the following iron
importing process (Zhang et al., 2020e). Moreover, iron can
regulate miRNA levels. Levels of miR-107 and miR-125b can be
suppressed by iron in hepatocellular carcinoma (Lobello et al.,
2016; Zou et al., 2016), while levels of miR-146a and miR-150
can be increased by iron (Sriramoju et al., 2015; Lobello et al.,
2016), which might be due to iron’s induction of excess ROS
(Zhang et al., 2020e). Moreover, miRNAs regulate the NRF2
pathway through by targeting Kelch-like ECh-Associated Protein
1 (KEAP1) and NRF2 mRNAs (Zhang et al., 2020e).

LncRNAs generally serve as regulators of transcription factors
in the nucleus or as sponges of miRNAs in the cytoplasm
(Wu et al., 2020). The silence of lncRNA ZFAS1, which acts
as a ceRNA and sponge for miR-150-5p, suppresses ferroptosis
by downregulating SLC38A1 (Yang Y.N. et al., 2020). Besides
the relationship between linc00336/miR-6852 and lncRNA
P53rra/G3BP1 mentioned above, lncRNAs modulate ferroptosis
indirectly by targeting ferroptosis-associated factors (Table 2).
A study reported that the reduction of lncRNA ROR leads
to reduced GST expression in breast cancer (Li Y.H. et al.,
2017), and silencing lncRNA Neat1 contributes to an increase
of GST (Wang et al., 2018). Other studies have shown that
lncRNAs are associated with iron metabolism and that silencing
lncRNA PVT1 suppresses TFR expression and obstructs iron
intake via miR-150 (Xu et al., 2018). Evidence also shows
that lncRNAs affect the expression of NRF2 by directly and
indirectly modulating KEAP1 levels, while NRF2 is associated
with lncRNA regulation (Zhang et al., 2020e). Besides the above
factors, ROS levels can be regulated by lncRNAs. For instance,
decreased expression of lncRNA H19 increases ROS via the
MAPK/ERK signaling pathway (Ding et al., 2018), while the
reduction of lncRNA growth arrest specific 5 in melanoma

enhances intracellular ROS (Chen et al., 2019). Increased levels
of lncRNA GABPB1-AS1 downregulate the peroxiredoxin-5
peroxidase gene and ultimately inhibits the antioxidant capacity
of cells (Qi et al., 2019).

Other ncRNAs, such as circRNAs RNAs, rRNAs, piRNAs,
snRNAs, and snoRNAs, also interact with ferroptosis in various
cancer types (Table 3). For circRNAs, circIL4R facilitates
tumorigenesis and prevents ferroptosis by regulating the miR-
541-3p/GPX4 axis (Xu et al., 2020a). The reduction of circ-
TTBK2 delays proliferation and invasion of glioma cells by
regulating the miR-761/ITGB8 axis and triggering ferroptosis
(Zhang et al., 2020b). Another study reports that circRNA clARs
regulate ferroptosis through interacting with the RNA binding
protein ALKBH5 (Liu et al., 2020). A recent study has shown
that reduction of circ0008035 enhances the anticancer effects
of erastin and RSL3 by increasing iron accumulation and lipid
peroxidation (Li C. et al., 2020). Moreover, studies revealed that
tRNA upregulates ferroptosis by suppressing GSH biosynthesis
in a GPX4-independent pattern. However, in contrast, tRNAs
can also downregulate ferroptosis by enhancing the antioxidant
defense system (Zhang et al., 2020e). Moreover, rRNAs, piRNAs,
snRNAs, and snoRNAs were recently found to be involved in
ferroptosis-associated pathways (Zhang et al., 2020e).

Methylation
Various studies have revealed the function of DNA or protein
methylation in tumor progression, ROS metabolism, and
iron metabolism; however, despite being one of the most
common molecular modification in epigenetics, the direct
relationship between methylation and ferroptosis has not been
fully discussed.

Some studies demonstrated the indirect regulation of
ferroptosis via DNA and protein methylation. For example,
lymphoid-specific helicase (LSH), a DNA methylation modifier,
can activate lipid metabolism-associated genes to inhibit
ferroptosis by interacting with WDR76 (Jiang et al., 2017), and
together with another W40 protein DCAF8, they function as a
crucial nexus in epigenetic regulation of ferroptosis, controlling

TABLE 2 | lncRNAs participate in the regulation of ferroptosis.

lncRNA Target Regulatory direction for target Effect to ferroptosis (references)

ZFAS1 SLC38A1 activation enhance ferroptosis (Yang Y.N. et al., 2020)

PVT1 TFR inhibition block iron intake (Xu et al., 2018)

H19 MAPK/ERK signaling regulation modulate ROS production (Ding et al., 2018)

GABPB1AS1 peroxiredoxin-5 peroxidase inhibition decrease antioxidant capacity (Qi et al., 2019)

OIP5-AS1 miR-128-3p/SLC7A11 signaling sponge inhibit ferroptosis (Zhang Y. et al., 2021)

NEAT1 ACSL4 regulation regulate ferroptosis and ferroptosis sensitivity (Wu and
Liu, 2021)

LINC00618 lymphoid-specific helicase (LSH) attenuate LSH to recruit to the
promoter regions of SLC7A11

increase ROS and iron, accelerate ferroptosis (Wang Z.
et al., 2021)

MT1DP miR-365a-3p/NRF2 axis stabilize miR-365a-3p to modulate
NRF2 expression

increase intracellular ferrous iron (Gai et al., 2020)

LINC00336 ELAVL1 binding inhibit ferroptosis (Wang M. et al., 2019)

P53RRA G3BP1 binding cytosolic P53RRA-G3BP1 interaction displaces p53
from a G3BP1 complex, induce ferroptosis (Mao et al.,
2018)
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TABLE 3 | circRNAs modulate the induction of ferroptosis in cancer.

circRNA Target Regulatory direction for target Effect to ferroptosis (references)

IL4R miR-541-3p/GPX4 axis sponge inhibit ferroptosis (Xu et al., 2020a)

TTBK2 miR-761/ITGB8 axis sponge inhibit ferroptosis (Zhang et al., 2020b)

clARs ALKBH5 interaction regulate ferroptosis (Liu et al., 2020)

KIF4A circKIF4A-miR-1231-GPX4 axis sponge inhibit ferroptosis (Chen W. et al., 2021)

circ0097009 circ0097009/miR-1261/SLC7A11 axis sponge regulate ferroptosis (Lyu et al., 2021)

RHOT1 miR-106a-5p/STAT3 axis sponge inhibit ferroptosis (Zhang H. et al., 2020a)

EPSTI1 miR-375/409-3P/515-5p-SLC7A11 axis sponge regulate ferroptosis (Wu et al., 2021)

ABCB10 miR-326/CCL5 axis sponge regulate ferroptosis (Xian et al., 2020)

TTBK2 miR-761/ITGB8 axis sponge regulate ferroptosis (Zhang et al., 2020b)

LSH degradation by adapted oxidative damage sensing through
DNA hydroxymethylation (Huang et al., 2020). The silencing
of the DNA methylation of the elongation of very long-chain
fatty acid protein 5 (ELOVL5) and fatty acid desaturase 1
(FADS1) leads to ferroptosis resistance, and these two enzymes
are usually upregulated in mesenchymal-type gastric cancer
cells (Lee J.-Y. et al., 2020). Besides, GPX4 methylation is
also reported to be related to ferroptosis regulation. For
example, homocysteine (Hcy), an amino acid involved in
DNA methylation, facilitates GPX4 methylation that leads to
upregulation of oxidative stress and ferroptosis in nucleus
pulposus (Zhang et al., 2020c). Another study reported that
the increased expression of GPX4 in cancer tissues might
be partly attributed to a lower level of DNA methylation
and histone acetylation (Zhang et al., 2020d). A report has
shown that KDM3B, a histone H3 lysine 9 demethylase,
can protect against erastin-induced ferroptosis and is thus
considered a potential epigenetic regulator of ferroptosis (Wang
et al., 2020). Meanwhile, the expression of iron metabolism-
associated genes, including TRFC, FTH1, and FTL, can be
modulated by the epigenetic silencing of the iron-responsive
element binding protein 2 (IREB2) (Dixon et al., 2012), while
other perturbations of mechanisms, including acetylation and
methylation, have been observed to regulate iron metabolism
in cancer cells by controlling transcript encoding proteins
(Manz et al., 2016).

Some ferroptosis regulation pathways have been found
recently in which tumor-associated factors are usually
involved. For instance, in head and neck cancer cells,
diminution of the hypermethylation of CDH1 results in
increased E-cadherin expression and decreased ferroptosis
susceptibility (Lee J. et al., 2020); this work also provides
evidence that epithelial–mesenchymal transition (EMT)
promotes ferroptosis via epigenetic regulation pathways.
The lower promoter methylation of GPX1, a member of the
GPX family that interact with oxidative stress, results in high
expression levels of GPX1 in some cancer cell lines (Wei
R. et al., 2020). Another study shows that JQ1 can inhibit
BRD4 expression and ultimately induce ferroptosis through
two pathways, either by inhibiting the histone methylase G9a
or by activating the histone deacetylase SIRT1, which can
recognize the acetylation site and recruit transcriptional factors
(Sui et al., 2019).

Acetylation
A widely occurring post-translational modification, acetylation
plays a role in ferroptosis mainly through direct and indirect
interaction with ferroptosis regulators. The acetylation of genes
and proteins involved in ferroptosis is reported to regulate
iron-dependent cell death. For example, an acetylation defect is
observed in mutant p533KR, which indirectly inhibits cysteine
absorption and reduces GSH consumption, leading to lipid
peroxidation and ferroptosis (Jiang et al., 2015). Acetylation
absence in the mouse p53 K98 site and on other positions
in the DNA-binding domain can result in the loss of tumor
suppression functions in xenografts and ferroptosis (Wang et al.,
2016). Another study reported that RSL3 promotes the protein
expression and acetylation of ALOX12, the key protein in
initiating membrane phospholipid oxidation (Wang Y. et al.,
2021). Indirect regulation is also observable. It has been reported
that suppression of EMT mediated by histone deacetylase
SIRT1 gene silencing or pharmacological inhibition consequently
decreases ferroptosis, which further suggests that EMT promotes
ferroptosis through epigenetic regulation pathways (Lee J. et al.,
2020). Moreover, acetylation of HMGB1, a damage-associated
molecular pattern molecule (DAMP), is released by ferroptosis
cells in an autophagy-dependent manner (Wen et al., 2019).

Ubiquitination
Ubiquitination is a post-translational modification involved
in essential host processes that has been reported to regulate
ferroptosis epigenetically. The most common regulation
pathway involves interaction with SLC7A11, which is essential
in the Xc

− system. Evidence suggests that the deubiquitinase
OTUB1, usually overexpressed in cancers, replicates the
ferroptosis process and promotes tumor development by
stabilizing the cystine transporter SLC7A11 (Gan, 2019). Once
deubiquitinase is suppressed, caspase-dependent apoptosis
and GPX4-degradation-dependent ferroptosis is activated,
contributing to the accumulation of ubiquitination proteins that
facilitates cell death (Yang L. et al., 2020). The tumor suppressor
BAP1, an H2A deubiquitinating enzyme, can reduce SLC7A11
expression by inhibiting H2A ubiquitination (H2Aub) on the
SLC7A11 promoter, thus controlling ferroptosis (Zhang Y.L.
et al., 2019). Another study shows that p53 may also be involved
in ubiquitination-dependent regulation of ferroptosis. For
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example, p53 decreases H2B ubiquitination occupancy in the
SLC7A11 gene regulatory domain and represses its expression
(Wang Y. et al., 2019). Ubiquitination also regulates ferroptosis
by modulating ferritin degradation. In iron deficiency, nuclear
receptor coactivator 4 (NCOA4) specifically binds iron-rich
ferritin to autophagosomes through FTH1 and transports it to
the lysosome for iron release, while NCOA4 can be degraded
through ubiquitination, which affects that stability of ferritin.
Therefore, suppressing NCOA4 can inhibit the degradation of
ferritin and the occurrence of ferroptosis (Capelletti et al., 2020).

FERROPTOSIS AND CANCER STEM
CELLS

Hallmarks of CSCs
CSCs are a small section of tumor cells that possesses the
ability to self-renew, initiate tumors, and cause resistance to
conventional anticancer agents. Different from regular cancer
cells, CSCs have a lower level of ROS, which might contribute
to a slower growth rate, reduced oxidative metabolism, and
elevated expression of the ROS scavenging system (Bystrom
et al., 2014; Ding et al., 2015; Hyewon and Navdeep, 2018).
Lipid intake pathways are upregulated in CSCs, providing energy
essential for survival, which explains why interference with GPX4
pathways seems to render CSCs sensitive to ferroptosis (Recalcati
et al., 2019; Visweswaran et al., 2020). Higher iron levels are
another characteristic of CSCs, such that ferroptosis may be a
good method for eliminating CSCs, which are less susceptible
to classical anticancer apoptosis-inducing agents. Indications of
higher iron levels consist of the expression levels of TFR1 and
its ligand iron-loaded TF is upregulated in glioblastoma CSCs
compared to non-CSCs (David et al., 2015). Furthermore, cellular
iron, TFR1, and TF uptake are more robust in breast CSCs
compared to non-CSCs (Mai et al., 2017). TFR1 and ferritin are
essential for propagation and formation of tumors in vivo. On
the other hand, forced reduction of intracellular iron reduces the
proliferation and tumorigenicity of ovarian CSCs (Basuli et al.,
2017). Evidence points to multiple roles of intracellular iron in
CSC proliferation and stemness maintenance (Recalcati et al.,
2019). For instance, in breast cancer cells, low iron levels are
associated with a lower expression of EMT markers (Guo et al.,
2015). Iron also mediates the downregulation of E-cadherin, a
hallmark of EMT (Brookes et al., 2008).

Ferroptosis-Based Treatment of Cancer
Stem Cells
Higher iron levels do not necessarily relate to ROS levels and
ferroptosis, but it has been proven that CSCs are highly sensitive
to ferroptosis due to increased expression levels of TFR1, and
thus ferroptosis-based treatment and therapeutic interference
of iron homeostasis can have a curing effect on cancer (Mai
et al., 2017). Notably, recent studies indicate that triggering
ferroptosis may specifically kill CSCs; for example, salinomycin
can drive ferroptosis-based cell death in breast CSCs (Zhao
et al., 2019), and ironmycin, a derivative of salinomycin, can

specifically trigger iron accumulation in lysosomes, activating
cell death pathways consistent with ferroptosis (Mai et al.,
2017). Some small-molecule ferroptotic agents also have the
potential to selectively kill breast CSCs (Taylor et al., 2019).
The blocking of the lysosomal iron translocation of CSCs by
inhibiting the divalent metal transporter 1 (DMT1) leads to
iron accumulation and cell death with features of ferroptosis
(Turcu et al., 2020). In colorectal CSCs, knockdown or inhibition
of SLC7A11 significantly and specifically kills cancer cells and
thus attenuates chemoresistance in CRC (Xu et al., 2020c).
Besides, two nitroimidazoles (Koike et al., 2020), itraconazole
(Xu et al., 2021), and dichloroacetate (Sun et al., 2021) are
also proven to have therapeutic potential through promoting
ferroptosis in CSCs.

FERROPTOSIS AND THE TUMOR
MICROENVIRONMENT

The TME functions as a cradle for tumorigenesis and cancer
progression. Understanding the TME and ferroptosis interaction
may provide novel and effective anticancer strategies.

A recent study reports that ferroptosis can promote tumor
growth by driving macrophage polarization in the TME (Dai
E.Y. et al., 2020). Hypoxia is one of the known characteristics
of the TME, which is controlled by the hypoxia-inducible
factor (HIF) (Labiano et al., 2015). Researchers have found that
hypoxia is an essential positive trigger for ferroptosis, and HIF-
2α enhances lipid peroxidation while the depletion of HIF-1α

decreases sensitivity to ferroptosis (Zou et al., 2019). Moreover,
iron metabolism-associated genes, including FTH, TFR1, and
SLC11A2, are regulated by hypoxia-responsive elements (HREs)
in the promotor region (Li et al., 2019).

Antitumor Immunity
Ferroptosis is thought to be linked to antitumor immunity. This
was first proved by the study that immunotherapy-activated
CD8+ T lymphocytes can induce ferroptosis in cancer cells by
downregulating SLC7A11 and SLC3A2, encoding subunits of
system Xc

−. Technically, this study has shown that tumor cell
coculture with IFN-γ-rich supernatant obtained from activated
T cells induces lipid peroxidation and ferroptosis (Wang W.M.
et al., 2019). Overexpression of ferroptosis suppressor protein 1
(FSP1) or cytosolic GPX4 stimulates the genesis of ferroptosis-
resistant CD8+ T cells without compromising their function,
while the depletion of ferroptosis sensitivity-promoting enzyme
acyl-CoA synthetase long-chain family member 4 (ACSL4)
protected CD8+ T cells from ferroptosis but impaired antitumor
CD8+ T cell response (Drijvers et al., 2021).

Other studies have demonstrated that cancer cells that have
undergone ferroptosis can release high mobility group Box 1
(HMGB1) in an autophagy-dependent manner (Yu et al., 2015;
Wen et al., 2019). When HMGB1 is released into the TME
because of cancer cell death, it can stimulate the innate immune
system by interacting with several pattern recognition receptors
(Sims et al., 2010; Yamazaki et al., 2014). Evidence shows
that during ferroptosis, tumor cells supply arachidonic acid for
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eicosanoid synthesis, which can strengthen antitumor immunity
(Angeli et al., 2019). Moreover, ferroptosis induction in tumor
cells is thought to be related to the release of prostaglandin E2
(PGE2), which facilities the evasion from immune surveillance
(Yang et al., 2014).

Nanoparticles and Immunotherapy
The synergism between ferroptosis and immunomodulation in
cancer has been widely investigated in recent decades. On the
one hand, TME immunomodulation can trigger macrophage
polarization from alternately activated macrophages M2 to
classically activated macrophages M1, offering intertumoral
H2O2 for the Fenton reaction (Zanganeh et al., 2016), which
effectively generates ROS and triggers lipid peroxidation (Yang
and Stockwell, 2016; Sun et al., 2017). On the other hand,
ferroptosis in tumor cells can release tumor antigens and generate
an immunogenic TME, thus enhancing the immunomodulation
response (Zhang F. et al., 2019). Nanoparticles (NPs), which
can passively infiltrate tumor tissues because of the enhanced
permeability and retention, act as a drug-loading platform with
high loading efficiency, and release specific cargos in tumor
issues, are gaining recognition in immunotherapy.

Some metal elements are especially popular for their inherent
physicochemical properties, and metal-containing nanomaterials
are designed for ferroptosis-driven therapy. They can function
in different manners, including facilitating Fenton-like reactions,
providing hydrogen peroxide, damaging the reducing system,
and disturbing cellular communication (Fei et al., 2020). For
example, biomimetic magnetosome, composed of an Fe3O4
magnetic nanocluster with a TGF-β inhibitor loaded inside
and a PD-1 antibody anchored on the membrane surface,
was developed to promote ferroptosis/immunomodulation
synergism in cancer (Zhang F. et al., 2019). MnOx nanospikes,
as TME-responsive nano-adjuvants and immunogenic cell
death drugs, were also designed for cancer nanovaccine-based
immunotherapy (Ding et al., 2020). In another study, in which
ultrasmall CaO2 and Fe3O4 were co-loaded on to dendritic
mesoporous silica NPs, researchers showed that these particles
can achieve tumor specialized localization and induction of
Fenton reaction, thus triggering ferroptosis (Li and Rong, 2020).
The Fe3O4-PLGA-Ce6 nanosystem, which dissociates in acidic
TME, and the Fe2+-based metal–organic framework, which
delivers Fe2+ to cancer cells, can also promote the Fenton
reaction and facilitate ferroptosis (Xu et al., 2020b; Chen Q. et al.,
2021).

Although nanotechnology is increasingly used in cancer
treatment, the application of NP-based therapy faces various
issues, such as intrinsic immunogenicity and residual cytotoxicity
(Shen et al., 2018). In a new approach that has high
biocompatibility, low immunogenicity, preferred tumor homing,
and high efficiency in cargo delivery, the 30- to 120-nm endocytic
lipid bilayer membrane-derived vesicles is attracting attention as
a novel drug carrier for ferroptosis induction (Qin and Xu, 2014;
Kibria et al., 2018). Attempts have been made to use exosomes
as carriers for ferroptosis-inducing drugs to trigger cell death
among cancer cells. For example, engineered M1 macrophages,
with CCR2 overexpression, are employed as Fe3O4 NP carriers

(Li et al., 2021). Moreover, a well-known ferroptosis inducer,
erastin, can be loaded into exosomes labeled with folate and
delivered to cancer cells that express the folate receptor to
generate ROS and glutathione depletion (Yu et al., 2019).

EXOSOMES

Generated from the plasma membrane (Simons and
Raposo, 2009), exosomes were first used for carrying
clotting suppressors (Wolf, 1967). Since then, these
extracellular vesicles have been shown to be secreted
by various kinds of cells, including dendritic cells,
macrophages, T cells, B cells, mesenchymal stem cells,
endothelial cells, epithelial cells, and various cancer cells
(Song H. et al., 2021).

Biogenesis and Composition
Exosomes are generated from late endosomes through several
different pathways. Endosomal-sorting complexes required for
transport (ESCRTs), which recognize ubiquitylated proteins,
are the most characterized one among genesis pathways,
while others may involve sphingomyelinases (Trajkovic
et al., 2008), sphingosine-1-phosphate, and tetraspanin-
enriched domains (Brinton et al., 2015). Four ESCRTs,
numbered from 0 to 3, consist of many proteins able to
recognize ubiquitinated cargoes. Technically, ESCRT-0 subunits
recruit proteins for internalization, such as ubiquitinated
proteins and clathrin. ESCRT-1 and ESCRT-2 control the
initiation of the budding process and facilitate the enzymatic
de-ubiquitination of cargo proteins before the formation
of intraluminal vesicles (ILVs). ILVs then gather to form
larger membranous vesicles in the intracellular compartment.
ESCRT-3 drives membrane invagination and separation (Ha
et al., 2016; McGough and Vincent, 2016). According to
the genesis process, the composition pattern of exosomes
faithfully reflects their parent cells. For proteins displayed
on the surface, adhesion molecules, which belong to the
tetraspanin and integrin families, are the most abundant. These
proteins, which are generally membrane crossing, include
CD9, CD63, CD81, and CD82 and regulate processes like
fusion, migration, and adhesion. They usually attach to each
other or associate with nearby proteins, such as integrins,
to form a tetraspanin membrane domain (Farooqi et al.,
2018). The major histocompatibility complex II (MHC-II)
may be present on the surface of exosomes and is involved
in promoting certain T-cell responses (Elena and Myung
Soo, 2015). Moreover, tumor-derived exosomes are able to
promote cancer cell migration and metastasis, containing
various kinds of integrin, such as exosomal integrins αvβ6 for
prostate cancer (Carmine et al., 2015), α6β4 and α6β1 for lung
cancer, and αvβ5 for liver cancer metastasis (Hoshino et al.,
2015). Other protein molecules, such as annexins, flotillin,
and GTPases, are associated with lipid fractions on exosomes
and serve transportation and fusion functions (Colombo et al.,
2014). Besides proteins, lipids are another main component
of exosomes, which depend on the type of parent cell plasma
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membrane. Phosphatidylethanolamines, phosphatidylcholines,
phosphatidylinositols, phosphatidylserines, sphingomyelins,
lysobisphosphatidic acid (bis-monoacylglycerol phosphate),
phosphatidic acid, cholesterol, lysophosphatidylcholines,
ceramide, and phosphoglycerides have been found in these
membranes (Caroline et al., 2007). The intraluminal composition
of the exosomal membrane also depends on the parent cells and
particularly on their cytoplasmatic content. Exosomes shuttle
through the body, allowing the horizontal transfer of their
cargo while fusing with target cells and releasing their content
via an endocytosis process, and thus participate in various
regulation pathways (Escrevente et al., 2011). A wide range of
molecules have been found in different cell-derived exosomes,
such as heat shock proteins, cytoskeletal proteins, lipids, and
enzymes, along with nucleic acid molecules, such as miRNAs,
mRNAs, ncRNAs, mitochondrial DNA, and single-strand DNA
(Farooqi et al., 2018).

Exosomes in Cancer and Ferroptosis
Regulation
Among the numerous biological roles played by exosomes,
their function in cancer is becoming increasingly apparent.
A number of studies have revealed that exosomes can regulate
the function of target cells by secreting their contents into
the TME, using crosstalk, and/or influencing major tumor-
related pathways, including EMT, CSCs, angiogenesis, and
metastasis involving several cell types (Ha et al., 2016; Wu
et al., 2017). Moreover, drug resistance is partly attributed
to exosomes, for cancer cells can encapsulate therapeutic
drugs in exosomes and transport them out of tumor cells
(Arrighetti et al., 2019). Evidence shows that exosomes also
overlap with ferroptosis modulation. For example, mesenchymal
stromal cells (MSCs) derived from human umbilical cord blood
(HUCB-MSCs) tend to significantly inhibit the expression of
DMT1 by miR-23a-3p to inhibit ferroptosis (Song Y. et al.,
2021). The miR-522 inside exosomes, generated from cancer-
associated fibroblasts (CAFs), can block lipid-ROS accumulation
by targeting ALOX15 and thus inhibit ferroptosis (Zhang
H. et al., 2020a). In a recent study, researchers found that
ferroptosis promotes tumor growth by driving macrophage
polarization in the TME. One kind of common KRAS
mutant, KRASG12D, is secreted into the TME from tumor
cells after succumbing to autophagy-dependent ferroptosis.
This extracellular protein is then packaged into tumor-
derived exosomes and is absorbed by macrophages, leading
to the switch from the M1 phenotype to the M2 phenotype
and accelerating cancer progression (Dai E.Y. et al., 2020).
Prominin 2 is a pentaspanin protein involved in lipid dynamics
regulation. It promotes the formation of ferritin-containing
multivesicular bodies (MVBs) and exosomes that transport iron
out of the cell and thus inhibits ferroptosis (Brown et al.,
2019). Exosomes themselves are also proved to have some
curing functions; for instance, rat plasma-derived exosomes
can enhance cell proliferation and radio-resistance-related
genes and yet downregulate ferroptosis in irradiated fibroblasts
(Gan et al., 2021).

Delivery of Protein and Small RNAs
Despite the therapeutic potential of nucleic acid and protein
drugs, their clinical application has been limited partly by a
lack of appropriate delivery systems. Proteins and small RNAs
can be loaded onto exosomes and delivered to target cells,
interfering with various pathways. For example, a research team
engineered human embryonic kidney (HEK) cells to produce
exosomes able to target breast cancer cells overexpressing
epidermal growth factor receptor (EGFR). In order to achieve
elective targeting, researchers have engineered donor HEK
cells to express the transmembrane domain of platelet-derived
growth factor receptors fused to the GE11 peptide. Let-7a
miRNA was introduced into GE11-positive exosomes using
the lipofection method and HEK cells. Results show that
miRNA exosomes have a curing effect on breast cancer (Ohno
et al., 2013). As with ferroptosis, we reviewed a number of
proteins and RNAs regulating ferroptosis-based cell death in
the previous section. These molecules can be easily introduced
to donor cells, and tumor targeting exosomes carrying these
molecules can be used for cancer treatment. However, related
research is lacking. Although the use of exosomes as a delivery
system has its drawback (for example, quickly eliminating by
the reticuloendothelial system, lack of efficient encapsulation
methods, and potential immune responses), exosomes targeted
at tumors may allow systemic administration of miRNA as cancer
treatment and are thus worthy of attention.

Advantages of Exosomes for Drug
Delivery Systems
Nanotechnology has been developed for drug delivery, but
intrinsic immunogenicity and residual cytotoxicity have hindered
its application. During recent decades, researchers turned to
delivery systems based on natural and synthetic polymers
and lipids because such liposomes possess valuable qualities,
such as the incorporation of hydrophilic and hydrophobic
drugs, and membrane penetration (Farooqi et al., 2018).
However, disadvantages, such as lower circulation stability, rapid
clearance by phagocytosis, and increased toxicity, challenge the
application of liposomes (Ha et al., 2016). In this respect,
exosomes display better tolerance and lower toxicity due to their
ubiquitous presence and similarity in structure and composition
to biological membranes (Bang and Thum, 2012). Exosomes
can penetrate through tissues, deliver contents directly into
cellular compartments, and evade the immune system. They
are also able to target specific organs and tissues (Hood et al.,
2011). The application of engineered cell strains with special
plasmid vectors that encode fusion proteins helps to develop
targeted exosome-based delivery systems by achieving amenable
membrane modifications and desirable attributes especially when
targeting a specific cell type (Farooqi et al., 2018).

Application of Exosomes Providing a
Novel View for Ferroptosis-Based
Cancer Treatment
Modified exosomes can be selectively used to deliver drugs to
specific cells and present advantages, such as high effectiveness
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and reduced toxicity. Exosomes generated by genetically
engineered cell stains present designed proteins on the surface,
which can selectively drive exosomes and their contents to
targeted cells. For example, engineered immature dendritic
cells (imDCs) in mice express a well-characterized exosomal
membrane protein (Lamp2b) fused to αv integrin-specific
iRGD peptide (CRGDKGPDC). Doxorubicin (Dox), produced
by engineering imDCs, can be loaded to exosomes through
electroporation. In vivo and in vitro experiments have shown that
the Dox-exosomes process possesses high efficacy in Dox delivery
and targeting to breast cancer, effective cancer suppression,
and low toxicity (Tian et al., 2014). One study showed that
exosomes derived from brain cells that expressed brain specific
surface proteins can cross the blood–brain barrier and deliver
drugs to the other side (Yang et al., 2015). For ferroptosis,
therapeutic drugs, such as erastin and newly recognized natural
ferroptosis-inducing compounds, can be loaded onto tumor
targeting exosomes. This may provide new avenues for cancer
treatment. Attempts have been made and the results are positive.
Nevertheless, challenging issues remain to be solved, such as
poor encapsulation efficiency and the interference form exosomal
endogenous nucleic acids and proteins.

CONCLUSION AND FUTURE PROSPECT

Apoptosis, necroptosis, pyroptosis, and ferroptosis are the
most widely studied types of programmed cell death. These
types of programmed cell death are all involved in cancer
progression and therapy. In our lab, we focus on regulating
the crosstalk among different types of programmed cell death
to broaden the application of anti-tumor drugs (Liu S. et al.,
2017; Huang et al., 2018, 2021a,b; Xiang et al., 2019; Li T.
et al., 2020). Inducing a certain type of programmed cell
death specifically can have profound significance for cancer
treatment. Ferroptosis is an iron-dependent form of programmed

cell death triggered by unrestricted lipid peroxidation and
subsequent plasma membrane rupture. It is well known that
cancer development and treatment can be affected by genetic
factors, epigenetic modifiers, CSCs, and the TME (Xiang et al.,
2019). As mentioned above, ferroptosis could be induced to exert
anti-tumor functions via signaling pathway modulation, non-
coding RNA expression, DNA methylation, histone modification,
CSCs, microenvironment remodeling, and so on. However,
it is not clear how to utilize and manipulate ferroptosis in
cancer treatment, specifically. On the one hand, studies need to
deeply exploit the molecular and cellular mechanisms underlying
ferroptosis; on the other hand, combining ferroptosis with
biological materials is a promising alternative strategy. As
the smallest extracellular vesicles and endogenous source of
nanocarriers, exosomes show great potential for cargo delivery,
including RNA, protein, drugs, and ions. Most importantly,
exosomes have been shown to transport iron out of the cell
to regulate ferroptosis (Brown et al., 2019). In addition, gene
engineered exosomes exhibit promising characteristics in cancer
treatment (Cheng et al., 2021). Therefore, adjusting the cargo
of exosomes and/or engineering their spreading pathways could
target cancer cells (especially CSCs) or the TME in order to
induce ferroptosis, thus achieving a positive therapeutic outcome.
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