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Mouse embryonic stem cells (mESCs) have the properties of self-renewal and
pluripotency. Various signals and growth factors maintain their undifferentiated state
and also regulate their differentiation. Glycosaminoglycans are present on the cell
surface and in the cell matrix as proteoglycans. Previously, we and other groups
reported that the glycosaminoglycan heparan sulfate contributes to both maintenance
of undifferentiated state and regulation of mESC differentiation. It has been shown
that chondroitin sulfate is needed for pluripotency and differentiation of mESCs, while
keratan sulfate is a known marker of human ESCs or induced pluripotent stem cells. We
also found that DS promotes neuronal differentiation from mESCs and human neural
stem cells; however, the function of DS in the maintenance of mESCs has not yet
been revealed. Here, we investigated the role of DS in mESCs by knockdown (KD) or
overexpression (O/E) of the dermatan-4-O-sulfotransferase-1 (D4ST1) gene. We found
that the activity of the ESC self-renewal marker alkaline phosphatase was reduced
in D4ST1 KD mESCs, but, in contrast, increased in D4ST1 O/E mESCs. D4ST1 KD
promoted endodermal differentiation, as indicated by an increase in Cdx2 expression.
Conversely, Cdx2 expression was decreased by D4ST1 O/E. Wnt signaling, which is
also involved in endodermal differentiation, was activated by D4ST1 KD and suppressed
by D4ST1 O/E. Collectively, these results demonstrate that D4ST1 contributes to the
undifferentiated state of mESCs. Our findings provide new insights into the function of
DS in mESCs.
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INTRODUCTION

Mouse embryonic stem cells (mESCs) are established from the inner cell mass at the blastocyst
stage (Evans and Kaufman, 1981; Martin, 1981). They have the properties of self-renewal and
pluripotency, which means that they are capable of differentiation into the three primary germ
layers, endoderm, mesoderm, and ectoderm, via the epiblast and primitive endoderm. There
are many studies showing that various signals and growth factors contribute to maintenance of
undifferentiated state and regulation of differentiation in mESCs. Because the role of glycans
in these processes has not been fully elucidated, we previously performed an RNA interference
(RNAi) screen to identify glycosyltransferases essential for self-renewal and pluripotency in mESCs.
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To date, we have identified four glycan structures that are
required to maintain the naïve pluripotent state: (1) LacdiNAc
structure (GalNAcβ1-4GlcNAc) (Sasaki et al., 2011), (2) heparan
sulfate (HS) (Sasaki et al., 2008, 2009; Hirano et al., 2012,
2013), (3) O-GlcNAc (Miura and Nishihara, 2016; Miura et al.,
2018; Pecori et al., 2021), and (4) T antigen (Galβ1-3GalNAc)
(Pecori et al., 2020).

Glycosaminoglycans (GAGs) such as HS are present on
the cell surface and in the cell matrix as proteoglycans,
consisting of GAG and a core protein. GAGs show diverse
structures due to sulfation and have a characteristic disaccharide
repeating structure. In addition to HS, keratan sulfate (KS),
and chondroitin sulfate (CS)/dermatan sulfate (DS) are well-
known GAGs. HS and CS/DS bind to the Ser residue of
core proteins through a common linkage region, namely
GlcAβ1-3Galβ1-3Galβ1-4Xylβ-O-ser (Sugahara and Kitagawa,
2000), while KS binds to core proteins via an N-linked or
O-linked oligosaccharide (Funderburgh, 2002). Previously, we
and other groups showed that HS contributes to maintenance of
undifferentiated state and regulation of differentiation in mESCs
by promoting Wnt, BMP, FGF, and Fas signaling (Johnson et al.,
2007; Sasaki et al., 2008, 2009; Kraushaar et al., 2010, 2012;
Lanner et al., 2010; Fico et al., 2012; Hirano et al., 2012, 2013).
In addition, Izumikawa et al. (2014) reported that CS is required
for pluripotency and differentiation of mESCs, while KS is known
as a marker of human ESCs or induced pluripotent stem cells
(Andrews et al., 1984; Pera et al., 1988; Adewumi et al., 2007;
Kawabe et al., 2013). To our knowledge, however, the function
of DS in mESCs has not been revealed yet.

In the synthesis of DS, epimerization from glucuronic
acid (GlcA) to iduronic acid (IdoA) is initially carried out by
dermatan sulfate epimerase (Maccarana et al., 2006) or dermatan
sulfate epimerase-like (Pacheco et al., 2009) after synthesis
of the CS chain (i.e., GlcA-GalNAc repeating disaccharide
structure). Subsequently, dermatan-4-O-sulfotransferase-1
(D4ST1) (Evers et al., 2001) transfers sulfate to the C-4 hydroxyl
group of GalNAc. Lastly, sulfate is transferred to the C-6-
hydroxyl group of GalNAc and the C-2 hydroxyl group of
IdoA by N-acetylgalactosamine-4-sulfate 6-O-sulfotransferase
(GalNAc4S-6ST) (Ito and Habuchi, 2000) and uronyl-2-
sulfotransferase (UST) (Kobayashi et al., 1999), respectively.
While the GalNAc4S-6ST and UST sulfotransferases are common
to both CS and DS, D4ST1 is specific to DS.

We previously reported that DS promotes neuronal
differentiation from mESCs and human neural stem cells
(Ogura et al., 2020). It is also known that D4ST1 is needed for
neuronal differentiation from mouse neural stem cells (Bian
et al., 2011). Moreover, D4ST1 deficiency is the cause of Ehlers-
Danlos syndrome (EDS), a genetic connective tissue disorder
with defects in skin, ligaments, articulation, internal organs, and
blood vessels (Kosho, 2016; Malfait et al., 2017).

Here, therefore, we investigated the role of DS in the
undifferentiated state of mESCs by knockdown or overexpression
of D4ST1. We found that D4ST1 contributes to self-renewal
of mESCs and D4ST1 knockdown induces endodermal
differentiation by activating Wnt signaling. Our results provide
new insights into function of DS in mESCs.

MATERIALS AND METHODS

Cell Culture
The R1 mESC line (Nagy et al., 1993) was cultured on
mouse embryonic fibroblasts (MEFs) in mESC culture medium
[DMEM (Gibco), 15% FBS (Nichirei Bioscience, Inc.), 1%
penicillin/streptomycin (Gibco), 0.1 mM 2-mercaptoethanol
(Gibco), 1 mM non-essential amino acids (Gibco), and 1,000
units/ml of LIF (Oriental Yeast)]. MEFs were isolated from
embryos at E14.5 and inactivated by the addition of 10 µg/ml of
mitomycin C (Sigma).

Transfection
For transient knockdown (KD) of D4ST1 in mESCs, we generated
siRNA expression vectors using pSilencer 3.1-H1 (Ambion). The
siRNA sequences used for RNAi were designed as described
previously (Ui-Tei et al., 2004) by using siDirect1:

Egfp, 5′-GATCCCGCCACAACGTCTATATCATGGGGAAA
ATCCATGATATAGACGTTGTGGCTTTTTTGGAAA-3′; D4S
T1 KD1, 5′-GATCCCCAGCACTACTTCAAGTTCCTGTTTGG
CTTCCTGTCACCAAACAGGAACTTGAAGTAGTGCTGTTT
TTTA-3′; D4ST1 KD2, 5′-GATCCCTCCTCTTGCTAGGTCTGA
ATCATTTGCTTCCTGTCACAAATGATTCAGACCTAGCAAG
AGGATTTTTTA-3′; D4ST1 KD3, 5′-GATCCCCTTCAAGAT
GTGCTACCTAAGGCTTCCTGTCACCTTAGGTAGCACATCT
TGAAGTTTTTTA-3′. Egfp was used as a negative control.

We also generated a D4ST1 overexpression (O/E) vector using
pCAGI-Puro (a kind gift of Professor Kumiko Ui-Tei). The
vector was produced by using the pGEM R©-T Easy Vector Systems
(Promega) as described previously (Kamiyama et al., 2006). We
used an empty vector as a control for the O/E experiments.

Before transfection, we replated the mESCs at 1 × 106 cells
on gelatin-coated 60-mm culture dishes (NIPPON Genetics)
containing LIF. After 16 h, the cells were transfected with
4 µg of siRNA expression vectors targeting D4ST1 (D4ST1
KD1 and D4ST1 KD2) or Egfp, or the D4ST1 O/E vector
by using Lipofectamine 2000 (Invitrogen). At 1 day after
transfection (TF day 1), transfected cells were selected by adding
2 µg/ml of puromycin (Sigma). We harvested the cells at TF
day 2 for the D4ST1 O/E experiments or TF day 4 for the
D4ST1 KD experiments.

Cell Proliferation Assay
D4ST1 KD mESCs at TF day 4 were replated at 8 × 103 cells
per well on gelatin-coated 96-well plates (IWAKI) containing
LIF. After 24 h, we counted the number of viable cells by
using microscopy.

Alkaline Phosphatase Staining
The transfected mESCs were replated at 1.25 × 105 cells per well
on gelatin-coated 24-well plates (NIPPON Genetics) containing
LIF. After 5 days, we carried out ALP staining with a StemTAGTM

Alkaline Phosphatase Staining Kit (Cell Biolabs, Inc.). ALP-
positive colonies were counted by using microscopy.

1http://sidirect2.rnai.jp/
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FIGURE 1 | (Continued)
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FIGURE 1 | D4ST1 contributes to self-renewal of mESCs. (A) Morphological observation of D4ST1 KD mESCs at day 4 after transfection (TF day 4). Scale bar:
200 µm. (B) Real-time PCR analysis of D4ST1 in D4ST1 KD mESCs at TF day 4. The amount of D4ST1 mRNA was normalized to that of β-actin mRNA and is
shown relative to the control (set to 1). (C) Western blotting analysis of D4ST1 in D4ST1 KD mESCs at TF day 4. Histogram shows the mean densitometric readings
of bands, which were normalized to β-actin and are shown relative to the control (set to 1). (D) Alkaline phosphatase (ALP) staining of D4ST1 KD mESCs at TF day 4.
(Left) Representative images of ALP staining. (Right) Histogram showing the ratio of ALP-positive colonies. (E) Real-time PCR analysis of pluripotent markers in
D4ST1 KD mESCs at TF day 4. The amounts of pluripotent marker mRNAs (Oct3/4, Nanog, and Sox2) were normalized to that of β-actin mRNA and are shown
relative to the control (set to 1). (F) Western blotting analysis of Nanog in D4ST1 KD mESCs at TF day 4. Histogram shows the mean densitometric readings of
bands, which were normalized to β-actin and are shown relative to the control (set to 1). The representative bands of the loading control (β-actin) are the same as
those in (C) because the same samples were used for these analyses. (G) ALP staining of D4ST1 O/E mESCs at TF day 2. (Left) Representative images of ALP
staining. (Right) Histogram showing the ratio of ALP-positive colonies. The values shown are means ± SD (N = 3). Those significantly different to the control by
Dunnett test (B–F) or unpaired two-tailed Student’s t-test (G) are indicated as follows: ***p < 0.001; **p < 0.01; *p < 0.05.

Real-Time PCR
Total RNA was extracted from cells by using TRI Reagent R©

(Molecular Research Center, Inc.) and reverse-transcribed by
using SuperScriptTM VILOTM Master Mix (Invitrogen). Real-
time PCR was performed by using Quant Studio 12K Flex
(Applied Biosystems). The relative amount of each mRNA
was normalized against the amount of β-actin mRNA in the
same sample. The primer sets for real-time PCR are listed in
Supplementary Table 1.

Western Blotting Analysis
The transfected mESCs were lysed with lysis buffer (50 mM
Tris–HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 5 mM
EDTA, 1 mM Na3VO4, 10 mM NaF, and protease inhibitors).
The protein samples (5–10 µg) were separated by 8% SDS-
PAGE and transferred to PVDF membranes (Millipore).
After blocking with 1% BSA/TBST, the membranes were
incubated with primary antibodies. The membranes were then
incubated with secondary antibodies and Amersham ECL
Prime Western Blotting Detection Reagent (GE Healthcare Life
Science) was used for detection. The antibodies are listed in
Supplementary Table 2.

Statistical Analysis
Data were compared with unpaired two-tailed Student’s t-test
or Dunnett test. Asterisks denote statistical significance (n.s.,
p> 0.05; ∗p< 0.05; ∗∗p< 0.01; and ∗∗∗p< 0.001).

RESULTS

D4ST1 Contributes to Self-Renewal of
mESCs
To investigate function of DS in mESCs, we performed
knockdown (KD) of D4ST1, which is the first sulfotransferase
in the DS synthesis pathway (Figure 1A). We designed two
constructs (D4ST1 KD1 and D4ST1 KD2), which expressed
different siRNAs targeting D4ST1 mRNA, and one construct
targeting Egfp as a negative control. After transfection of
mESCs with these constructs, the decreased expression of
D4ST1 mRNA and D4ST1 was confirmed by real-time PCR
and western blotting, respectively (Figures 1B,C). Proliferation
in D4ST1 KD mESCs was not changed as compared with
control cells (Supplementary Figure 1). To determine self-
renewal potential, ALP staining was performed for the D4ST1

KD1 and KD2 transfected mESCs. The number of ALP-
positive colonies was reduced by D4ST1 KD, indicating that
D4ST1 contributes to self-renewal of mESCs (Figure 1D).
Furthermore, the expression of three pluripotent markers,
Oct3/4, Nanog and Sox2, were decreased in D4ST1 KD mESCs
(Figure 1E and Supplementary Figure 2). The expression
of Klf2 was decreased, while that of Klf4 and Rex1 did not
change significantly (Supplementary Figure 3). The amount
of Nanog was also significantly decreased in D4ST1 KD
mESCs (Figure 1F).

We also examined the effect of overexpression (O/E) of
D4ST1 in mESCs (Supplementary Figure 4A). The increased
expression of D4ST1 mRNA and D4ST1 after transfection with
the O/E vector was confirmed by real-time PCR and western
blotting, respectively (Supplementary Figures 4B,C). In contrast
to D4ST1 KD, D4ST1 O/E increased the number of ALP-positive
colonies (Figure 1G), confirming that D4ST1 contributes to
self-renewal of mESCs.

Endodermal Differentiation of mESCs Is
Induced by D4ST1 KD
Next, we examined the expression of differentiation markers to
determine which lineages are induced from mESCs by D4ST1
KD (Figure 2A and Supplementary Figure 2). In D4ST1 KD
mESCs, the expression of two epiblast markers, Fgf5 and Otx2,
was decreased. The expression of two mesoderm markers,
T and Mixl, was also significantly decreased. In contrast to
mesodermal markers, the expression of two endoderm markers,
Sox17 and Cdx2, was significantly increased in D4ST1 KD
mESCs, indicating that the endodermal differentiation was
induced in D4ST1 KD mESCs. Expression of the primitive
endoderm marker Gata6 was significantly increased, indicating
that the differentiation to primitive endoderm was also
induced in D4ST1 KD mESCs. However, expression of the
ectoderm marker Mash1 was not changed by D4ST1 KD.
Collectively, these results suggest that D4ST1 contributes to the
pluripotency of mESCs.

We also analyzed the expression of Cdx2, a marker of hindgut
(Beck et al., 1995; Sherwood et al., 2007), in D4ST1 O/E mESCs.
The expression of Cdx2 was significantly decreased in D4ST1 O/E
mESCs (Figure 2B). It has been reported that Cdx2 expression
is required for differentiation of hindgut (Stringer et al., 2008).
Thus, the significantly increased or decreased expression of Cdx2
in the respective D4ST1 KD or D4ST1 O/E mESCs indicates
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FIGURE 2 | Endodermal differentiation of mESCs is induced by D4ST1 KD. (A) Real-time PCR analysis of differentiation markers in D4ST1 KD at TF day 4. The
amounts of differentiation marker mRNAs (Fgf5, Otx2, T, Mixl1, Sox17, Cdx2, Mash1, and Gata6) were normalized to that of β-actin mRNA and are shown relative to
the control (set to 1). (B) Real-time PCR analysis of Cdx2 in D4ST1 O/E at TF day 2. The amount of Cdx2 mRNA was normalized to that of β-actin mRNA and is
shown relative to the control (set to 1). The values shown are means ± SD (N = 3). Those significantly different to the control by Dunnett test (A) or unpaired
two-tailed Student’s t-test (B) are indicated as follows: ***p < 0.001; **p < 0.01; *p < 0.05.

that D4ST1 might regulate endodermal differentiation, including
differentiation to hindgut.

BMP Signaling Is Suppressed and Wnt
Signaling Is Activated by D4ST1 KD
To analyze effect of D4ST1 KD on signaling pathways, we used
western blotting to analyze several signaling components in
D4ST1 KD mESCs. First, we examined the BMP/Smad1/5/8
signal, which contributes to self-renewal in mESCs by
suppressing neural determination (Ying et al., 2003) and
by up-regulating ERK-specific dual-specificity phosphatase
9 to reduce extracellular signal-regulated kinase activity,
which is required for cell fate commitment (Li et al., 2012).
Phosphorylated Smad1/5/8 was significantly decreased by
D4ST1 KD (Figure 3A). Thus, the reduced activity of the
ESC self-renewal marker ALP (Figure 1D) is caused by a
decrease in BMP signal.

Second, we examined the Wnt/β-catenin signal which
induces endodermal differentiation (Zhong et al., 2017) and
subsequently the hindgut domain during primitive gut tube

formation in mouse (Engert et al., 2013). Whereas the
relative amount of Active-β-catenin was significantly decreased
by D4ST1 O/E (Figure 3C), it was significantly increased
(Figure 3B) by D4ST1 KD. We also analyzed the expression
of Wnt signaling target genes in D4ST1 O/E mESCs; Lef1
was significantly decreased, while that of Axin2 and Cdx1
tended to be decreased (Supplementary Figure 5). These results
demonstrate that D4ST1 KD induces endodermal differentiation
and subsequent regionalization of the hindgut domain by
activating Wnt signaling.

DISCUSSION

In this study, we found that self-renewal and the undifferentiated
state of mESCs were compromised by D4ST1 KD. In D4ST1
KD mESCs, self-renewal of mESCs was reduced and endodermal
differentiation was induced. In particular, the expression of Cdx2,
which is a hindgut marker, was significantly increased by D4ST1
KD and significantly decreased by D4ST1 O/E. Similarly, Wnt
signal was activated by D4ST1 KD and suppressed by D4ST1 O/E.
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FIGURE 3 | (Continued)

FIGURE 3 | Wnt signaling is activated by D4ST1 KD. (A,B) Western blotting
analysis of p-Smad1/5/8 and Active-β-catenin in D4ST1 KD mESCs at TF day
4. Histogram shows the mean densitometric readings of bands normalized to
β-actin, and was shown relative to the control (set to 1). The representative
bands of the loading control (β-actin) are the same as those in Figure 1C
because the same samples were used for these analyses. (C) Western
blotting analysis of Active-β-catenin in D4ST1 O/E mESCs at TF day 2.
Histogram shows the mean densitometric readings of bands, which were
normalized to β-catenin and are shown relative to the control (set to 1). The
values shown are means ± SD (N = 3). Those significantly different to the
control by Dunnett test (A,B) or unpaired two-tailed Student’s t-test (C) are
indicated as follows: ***p < 0.001; *p < 0.05.

FIGURE 4 | D4ST1 contributes to the undifferentiated state of mESCs.
D4ST1 contributes to self-renewal and the undifferentiated state of mESCs.
Knockdown of D4ST1 causes promotion of endodermal differentiation by
activation of Wnt signaling.

It has been reported that Cdx2 is essential for determination
of intestinal mesoderm or endoderm differentiation (Stringer
et al., 2008). The endoderm and mesoderm arise from
a transient common precursor cell population referred to
as “mesendoderm.” The specification of endoderm requires
Wnt/β-catenin signaling, which maintains the expression of
Nodal, which in turn promotes the expression of a network of
transcription factors within the endodermal lineage including
Sox17 (Zorn and Wells, 2009). After endodermal linage
determination, the gut tube is formed. The gut tube then
becomes regionalized along the dorsal-ventral and anterior-
posterior axes into broad foregut, midgut, and hindgut domains
(Zorn and Wells, 2009). The Wnt/β-catenin signal also specifies
the hindgut domain by inducing Cdx2 expression, which is
required for both the hindgut and positioning of the foregut-
hindgut boundary in mouse development (Sherwood et al., 2011).
Therefore, our results demonstrate that D4ST1 contributes to
the undifferentiated state of mESCs, and D4ST1 KD induces
endodermal and subsequent hindgut differentiation by activating
Wnt signaling (Figure 4).

CDX2 is also required for intestinal development in human
pluripotent stem cells, and WNT signaling similarly promotes
endoderm-hindgut differentiation (Kumar et al., 2019). Although
further investigation is needed to elucidate the function of
D4ST1 in human development, D4ST1 deficiency is known to be
one of the causes of EDS (Kosho, 2016). D4ST1-deficient EDS
presents characteristic craniofacial features, multiple congenital
contractures, and progressive joint and skin laxity. Of note,
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joints and dermis are tissues derived from mesoderm. In the
present study, in contrast to endodermal markers, mesodermal
markers were suppressed by D4ST1 KD. Thus, D4ST1 may
contribute to mesodermal differentiation in humans. In addition,
it has been reported that skin complaints are caused by
disorganization of collagen networks due to decorin, a dermatan
sulfate proteoglycan (DSPG) (Hirose et al., 2018). There are
several DSPGs, including decorin, biglycan, and fibromodulin.
Determination of the DSPG that contributes to differentiation of
mESCs will be an interesting issue for future study.

Because D4ST1 is a sulfotransferase involved in DS synthesis,
it is possible that DS regulates Wnt signaling. GAGs such as HS
and CS play a key role in signal transduction as co-receptors or
as trappers by binding signal ligands (Wang et al., 2017). For
example, DS has been reported to interact with bFGF, FGF7, and
EGF (Taylor et al., 2005; Bian et al., 2011). To our knowledge,
however, binding of DS to Wnt has not been demonstrated. This
is also an interesting issue for future analysis.

In conclusion, we have shown that D4ST1 is required for
self-renewal and the undifferentiated state in mESCs and D4ST
KD induces endoderm differentiation and subsequent hindgut
differentiation by activating Wnt signals. This study provides new
insights into function of DS in mESCs.
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