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Acute myeloid leukemias (AMLs) are a group of hematologic malignancies that are
heterogeneous in their molecular and immunophenotypic profiles. Identification of the
immunophenotypic differences between AML blasts and normal myeloid hematopoietic
precursors (myHPCs) is a prerequisite to achieving better performance in AML
measurable residual disease follow-ups. In the present study, we applied high-
dimensional analysis algorithms provided by the Infinicyt 2.0 and Cytobank software
to evaluate the efficacy of antibody combinations of the EuroFlow AML/myelodysplastic
syndrome panel to distinguish AML blasts with recurrent genetic abnormalities (n = 39
AML samples) from normal CD45low CD117+ myHPCs (n = 23 normal bone marrow
samples). Two types of scores were established to evaluate the abilities of the various
methods to identify the most useful parameters/markers for distinguishing between AML
blasts and normal myHPCs, as well as to distinguish between different AML groups. The
Infinicyt Compass database-guided analysis was found to be a more user-friendly tool
than other analysis methods implemented in the Cytobank software. According to the
developed scoring systems, the principal component analysis based algorithms resulted
in better discrimination between AML blasts and myHPCs, as well as between blasts
from different AML groups. The most informative markers for the discrimination between
myHPCs and AML blasts were CD34, CD36, human leukocyte antigen-DR (HLA-DR),
CD13, CD105, CD71, and SSC, which were highly rated by all evaluated analysis
algorithms. The HLA-DR, CD34, CD13, CD64, CD33, CD117, CD71, CD36, CD11b,
SSC, and FSC were found to be useful for the distinction between blasts from different
AML groups associated with recurrent genetic abnormalities. This study identified both
benefits and the drawbacks of integrating multiple high-dimensional algorithms to gain
complementary insights into the flow-cytometry data.
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INTRODUCTION

The application of flow cytometry in the clinical evaluation
of hematological diseases has undergone a constant evolution
over time. Flow cytometric immunophenotyping is widely
accepted as an indispensable method for the diagnosis
and monitoring of lymphoid pathologies. In contrast, for
hematological pathologies characterized by a wide heterogeneity
of neoplastic cell population, such as the acute myeloid leukemias
(AMLs), multicolor flow cytometry (MFC) is still considered
a complementary tool in diagnosis and follow-up. Multicenter
studies have reported relatively high numbers of false-positive
cases when measurable residual disease (MRD) in AML was
examined, resulting in a low specificity of 71%, even when using
standardized protocols, likely due to differences in subjective
interpretation (Brooimansa et al., 2019). The European
LeukemiaNet Minimal Residual Disease Working Party has
recommended the different-from-normal (DfN) approach and
automated data analysis testing for optimization of MFC to
establish MRD in AML (Schuurhuis et al., 2018).

The manual processing based on Boolean gating of the high-
dimensional dataset obtained in AML immunophenotyping is
highly subjective, time-consuming, not easily scalable to a high
number of dimensions, and is inherently inaccurate because it
does not account for cell population overlap (Lo et al., 2009;
O’Donnell, 2013; Pedreira et al., 2019). Therefore, new algorithms
for MFC data gating have been developed, including principal
component analysis (PCA), which draws out the underlying
variance within a dataset and is a widely used tool for visualizing
multidimensional data (Matos et al., 2017). For visualization of
common patterns within datasets, clustering algorithms have also
been developed (Matos et al., 2017).

The automatic population separator (APS), canonical
correlation analysis (CCA), neighbor-APS (NAPS) diagrams
based on PCA algorithm and t-distributed stochastic neighbor
embedding (t-SNE) based on K-means clustering algorithm are
implemented in the Infinicyt software developed by EuroFlow
(EF) to allow comparison of cell populations from different case
groups with a database (Pedreira et al., 2019).

Citrus software also allows detection of differences between
groups and correlate or predict experimental outcomes (Mair
et al., 2016). In addition, Citrus is the only algorithm
that automatically identifies statistically significant differences
between groups of cases (Kimball et al., 2018).

Other algorithms for automatic gating and 2D mapping
of high-dimensional datasets have been developed, such as
spanning-tree progression analysis of density-normalized events
(SPADE; Qiu et al., 2011) and t-SNE–based algoritm (viSNE)
(Amir el et al., 2013).

The identification of algorithms useful for the unsupervised
analysis of MFC data in AML is the first step in developing
automated data analysis tools. This retrospective study aimed
to evaluate the usefulness of novel MFC data analysis software
for comparing the immunophenotypic profile of myeloid
hematopoietic precursors (myHPCs) from normal bone
marrow (NBM) samples with that of leukemic blasts from
AML cases carrying recurrent genetic abnormalities, such as

t(8;21), t(15;17), inv(16), and MLL (KMT2A) gene alterations.
Data were acquired in a standardized manner and were
analyzed using the Compass algorithm in the Infinicyt software
and the Citrus, viSNE, and SPADE algorithms from the
Cytobank software.

Here, we present some advantages and disadvantages of
different unsupervised MFC analysis tools for evaluating the
performance of the EF AML/myelodysplastic syndrome (MDS)
antibody panel for (EF AML/MDS panel), for the identification
of the most useful markers for separating AML blasts from their
nearest normal myHPCs counterpart, and for the identification
of the AML group-specific phenotypic imprints.

MATERIALS AND METHODS

Study Groups
Samples from 39 AML patients, comprised of seven patients
with t(8;21)(q22;q22) RUNX1/RUNX1T1 AML, 13 patients
with t(15;17)(q24;q21) PML/RARα AML, eight patients with
inv(16)(p13;q22) or t(16;16)(p13;q22) CBFB/MYH11 AML, and
11 patients with MLL/KMT2A gene-altered AML (MLL AML),
diagnosed at the Institut de Cancérologie Lucien Neuwirth
(Saint-Priest-en-Jarez, France) between 2013 and 2017, were
analyzed and compared with data from 23 NBM samples (14
healthy donors, nine patients undergoing sternotomy for cardiac
surgery) from the University Hospitals of Saint-Étienne and
Clermont-Ferrand, France.

Written informed consent was obtained from each patient and
healthy donor, as approved by the institutional procedures of the
independent Ethics Committee and the Comité de Protection des
Personnes – Île-de-France (NCT03233074/17.07.2017).

The patients’ characteristics are summarized in
Supplementary Table 1. The diagnosis of AML was established
according to the current World Health Organization (WHO)
criteria (Swerdlow et al., 2016). Healthy donors and cardiac
surgery patients included in the study had normal blood counts
and without any evidence of a hematopoietic disease.

Flow Cytometry
Bone marrow aspirates were collected on K2-EDTA
anticoagulant and 3 × 106 cells (106 per tube) were stained
with the first three EF AML/MDS panel antibody combinations
(van Dongen et al., 2012), which allow evaluation of the three
main bone marrow (BM) myeloid lineages: neutrophilic (Tube 1),
monocytic (Tube 2), and erythroid (Tube 3) (see Supplementary
Table 2). Sample preparation and acquisition were performed
according to the EF standard operating procedure (Kalina et al.,
2012). In order to avoid that the measurements may be hampered
by the background fluorescence of antigen-negative cells and
other particles (i.e., debris) the cytometer setup [including
photomultiplier tube (PMT) voltage gains and compensation]
was performed according EF instrument settings procedure
(Kalina et al., 2012). Appropriate instrument performance and
laboratory procedures were confirmed by the results obtained in
the FranceFlow and EF quality assessment rounds (Kalina et al.,
2015; Solly et al., 2019).
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At least 500,000 total events were acquired by tube using
three FACS Canto II cytometers (Becton–Dickinson, San Jose,
CA, United States) in two university-affiliated hospitals in France
(Saint-Étienne and Clermont-Ferrand). Data were analyzed
using Infinicyt 2.0 software (Cytognos, Salamanca, Spain) and
the software packages including the algorithms Citrus, viSNE,
and SPADE from the Cytobank (Cytobank, Santa Clara, CA,
United States; downloaded from http://cytobank.org).

Flow Cytometry Data Analysis
Pre-gating for intact singlets followed by discrimination of
normal myHPCs and AML blasts was performed in Infinicyt 2.0
software primarily using the backbone markers CD117, human
leukocyte antigen-DR (HLA-DR), and CD45 (Supplementary
Figures 1C, 2C, 3C, 4C) in line with EuroFlow recommandations
(van Dongen et al., 2012). Several exclusion gates were used to
avoid inclusion of undesirable events that may fall into the “blast
gate,” such as CD11b+ hypogranular neutrophils and basophils
(Tube 1), CD14low granulocytes and CD14+ CD300e (IREM-
2)+ monocytes (Tube 2), and CD10+ hematogones (Tube 1)
(Supplementary Figures 1C,D, 2C, 3C, 4C).

Using this strategy, the initial bulk of myHPCs included
the very immature CD117+ CD34+ precursors and the more
mature CD117+ CD34− myHPCs from each of the three
myeloid lineages.

Regarding AML cases, this strategy allowed discrimination
of both immature blasts (CD34+ CD117+), and those more
matures (CD34− CD117+); the percentages of the blasts
identified by MFC based on this strategy corresponded to those
identified in morphology (see Supplementary Table 1).

Subsequently, events corresponding to myHPCs and AML
blasts were exported to new FCS files and analyzed using the
Compass tool from the Infinicyt 2.0 and in Citrus, viSNE,
and SPADE from Cytobank software. The ArcSinh-hyperbolic
transformed data using a co-factor of 150 were subjected to
analysis with the three listed algorithms from Cytobank for
the following markers (FSC-A, SSC-A, CD45, CD34, HLA-DR,
CD117, CD16, CD13, CD10, and CD11b for the neutrophilic
lineage, Tube 1; FSC-A, SSC-A, CD45, CD34, HLA-DR, CD117,
CD64, CD35, CD300e, and CD14 for the monocytic lineage, Tube
2; and FSC-A, SSC-A, CD45, CD34, HLA-DR, CD117, CD36,
CD33, CD105, and CD71 for the erythroid lineage, Tube 3). In
Infinicyt software, the negative visibility is by default corrected
when the Logical scales are used.

The all markers from the tubes, including the three markers
of the backbone used for the pre-gating of AML blasts and
myHPCs, have been used in analysis in order to identify potential
differences in their intensity of expression.

Construction of Infinicyt Databases
In the Infinicyt software, a database was built for each of
the three myeloid lineages: neutrophilic (Tube 1 database),
monocytic (Tube 2 database), and erythroid (Tube 3 database).
The final databases for neutrophil, monocytic, and erythroid
lineages contained cases belonging to five groups: NBM (normal
myHPCs), t(8;21) AML, t(15;17) AML, inv(16) AML, and
MLL AML.

In accordance with EuroFlow recommendations (Kalina et al.,
2012), the files were verified for the appropriate staining of
backbone markers, which are essential for appropriate gating of
the cells of interest.

Four FCS files from samples stained with Tube 1 and Tube
2 antibody combinations and three FCS files for Tube 3 were
excluded from the databases for the NBM group. These files
showed >2.5 SD discordances compared with the group median
for the markers used to select myHPCs and for the side scatter
(SSC) values of the internal control populations, lymphocytes,
neutrophils, and NRCs (Supplementary Figure 1A).

In the AML files, the inadequate staining of markers used
for AML blast gating, such as CD117 and HLA-DR, was also
observed for the control populations (lymphocytes and NRCs;
>2.5 SD of the group mean). Therefore, one FCS file was
excluded from the neutrophil lineage database for the t(8;21)
AML group, one FCS file was excluded from all databases for
the t(15;17) AML group, and one FCS file was excluded from the
neutrophil and monocytic lineage databases for the MLL AML
group (Supplementary Figures 2A,B, 3A,B, 4A,B).

Each group of cases was subsequently plotted in a balanced
principal component analysis (PCA) plot with medians for each
patient and SD curves for each group of cases to compare each
case with each of the five groups and for each of three myeloid
lineages. The markers that received a weight over 10% in the
first or second principal component in an APS view of the
AML blasts and the nearest normal myHPCs were considered
useful for distinguishing between groups (Figures 2–5A). These
results have been compared with data showed by Parameter Band
Histograms (Supplementary Figure 5).

For the configuration of Cytobank analysis software (Citrus,
viSNE, SPADE) and data interpretation, we used the practical
guide published by Kimball et al. (2018).

Citrus Algorithm Settings
The FCS files containing the manually gated myHPCs and AML
blasts were imported into Cytobank and then subjected to Citrus
analysis using the following settings: (1) singlet, non-debris cell
as input; (2) hierarchical clustering in order to group cells into
populations; (3) analysis of 10 out of 12 possible parameters
per tube (antibodies outlined in Supplementary Table 2 and
mentioned in the previous section “Flow Cytometry Data
Analysis”); (4) files assigned to appropriate experimental groups
[e.g., AML t(8;21) vs. NBM]; (5) nearest shrunken centroid (R
package PAMR)1 association model; (6) cluster characterization
of medians; (7) equal event sampling; (8) 5,000 events sampled
per file; (9) 5% minimum cluster size (Cytobank default); (10)
five-fold cross-validation (Cytobank default); and (11) 1% false
discovery rate (Cytobank default).

Spanning-Tree Progression Analysis of
Density-Normalized Events Algorithm
Settings
Manually gated singlet events corresponding to myHPCs
in NBM and for the AML blasts were imported into

1https://cran.r-project.org/web/packages/pamr
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Cytobank and then subjected to SPADE analysis using
the following settings: (1) target number of nodes = 20;
and (2) 100% percent downsampling. Analysis was
performed using 10 of 12 possible parameters per tube
(as mentioned in the previous section “Flow Cytometry
Data Analysis”), and no fold change calculations were made
for this data set.

Cellular Abundance Evaluation Using the
R SPADE Package
Spanning-tree progression analysis of density-normalized events
trees were initially visually investigated to identify nodes
that were potentially different in cellular abundance between
conditions. Two SPADE runs of datasets were performed.
Clusters organization by analyzed group (AML or NBM)
were not conserved between runs, resulting in considerable
differences between the SPADE tree from the two runs
(Supplementary Figure 6), and rendering SPADE inappropriate
for this analysis.

viSNE Algorithm Settings
Manually gated singlet events corresponding to myHPCs in NBM
and to AML blasts were imported into Cytobank2 and then
subjected to viSNE analysis.

According to previously published data (Byford et al., 2018;
Kimball et al., 2018; Gonder et al., 2020), viSNE was used as
a non-linear technique to reduce dimensionality, but also to
identify the phenotypically related cell cluster as assigned by the
parameters tSNE1 and tSNE2.

viSNE clustering analysis was performed on 10 of 12
possible parameters (as mentioned in the previous section “Flow
Cytometry Data Analysis”). Equal event sampling was selected at
100,000 events per individual (the lowest common denominator
across all samples). The advanced settings were set as per
the Cytobank default settings: random seed, 1,000 iterations,
perplexity = 30, theta = 0.5.

Data accompanying each viSNE node were downloaded from
Cytobank to calculate the frequency of events in each node,
followed by testing for statistical significance.

Characterization and Comparison of
Normal Myeloid Hematopoietic
Precursors and Acute Myeloid Leukemia
Blasts Using Spanning-Tree Progression
Analysis of Density-Normalized Events
and viSNE Algorithms From Cytobank
The nodes that showed the most statistically significant
differences in the cellular abundance between groups
(indicated by blue circles; Figures 1–4) were then evaluated
in viSNE: the relative expression of the markers was
evaluated in dot plots and the intensity of the expression
of markers in heat maps (Supplementary Figures 7–10).
The multiple comparative tests were performed to identify

2www.cytobank.org

significant differences in markers expression between the
different study groups.

Statistical Analysis
Statistical comparisons were performed using a two-tailed t-test.
The fcs data were arcsine transformed before analysis, therefore
we assume that they follow a Gaussian distribution.

The distribution of variables was measured using one-tailed
paired and unpaired t-tests for single comparisons and one-
way analysis of variance (ANOVA) and Kruskal–Wallis tests for
multiple comparisons.

The identification of significant nodes in the cellular
abundance between groups was determined using Microsoft
Excel 2019 (Microsoft Office, Las Vegas, NV, United States). The
Kruskal–Wallis multiple comparative test from GraphPad Prism
5TM (GraphPad Software, San Diego, CA, United States) was
used to compare the differences in markers expression between
AML blasts from different groups and myHPCs as reflected by
viSNE algorithms.

Scoring System for Identification of the
Most Informative Markers to Distinguish
Between Acute Myeloid Leukemia Blasts
and Normal Hematopoietic Progenitor
Cells and to Evaluate the Analysis
Algorithms
A scoring system was developed for identification of the
most useful markers for discrimination between the AML
blasts and the normal myHPCs and for testing the capacity
of different methods for their identification (Table 1). The
assignment of the score weight was based on measurement of
the intensity of expression of the antigen-positive cells by flow
cytometry. Internal negative controls to set the positive/negative
threshold have been used to reliably distinguish between a
positive and a negative population of cells in accordance with
previously published recommendations (Hulspas et al., 2009).
For each backbone and additional markers from EF AML/MDS
panel a score between 0 and 2 was attributed to denote
differences between AML blasts and the normal MyHPCs as was
reflected by each method.

In Infinicyt software, the differences between AML blasts and
normal hematopoietic progenitor cells (HPCs) were visualized
in separate, non-fixed APS plots using all eight markers and the
FSC and SSC parameters of each tube in line with previously
published studies (Costa et al., 2010; Flores-Montero et al., 2016;
Theunissen et al., 2017). The relative contribution that each
marker or parameter made to distinguish between the blasts of
different AML groups and normal myHPCs was scored based on
weights of over 20% in the first or second principal component in
an Automatic Population Separator (APS) (2 points), between 10
and 20% (1 point), or under 10% (0 points).

For the other software, the differences in the intensity of
markers on the populations of interest was assessed on the
scales of the plots provided by the different software, after
the arcsine transformation of the data, which allow a normal
distribution of the data and improves the representation of
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TABLE 1 | Scoring system for identification of the most informative markers to distinguish between AML blasts and normal HPCs and to evaluate the analysis algorithms.

t(8;21) AML vs. NBM
myHPCs

t(15;17) AML vs. NBM
myHPCs

inv(16) AML vs. NBM
myHPCs

MLL AML vs. NBM
myHPCs

Score/
marker

Infinicyt Citrus ViSNE Infinicyt Citrus ViSNE Infinicyt Citrus ViSNE Infinicyt Citrus ViSNE

FSC 1 2 2 1 1 1 1 9

SSC 2 1 2 2 2 1 2 12

Backbone CD34 1 1 1 2 1 2 2 1 1 2 1 2 17

CD117 1 1 1 1 1 1 2 8

HLADR 2 1 2 2 2 1 2 1 13

CD45 1 1 1 3

Tube 1 CD16 1 1 2

CD13 1 1 1 1 1 1 2 1 1 1 1 1 13

CD11b 1 1

CD10 0

Tube 2 CD35 1 1

CD64 1 1 1 1 1 5

CD300e 2 2

CD14 1 1

Tube 3 CD36 1 2 2 1 1 1 1 2 1 1 1 14

CD105 1 1 1 1 1 1 1 1 2 1 1 1 13

CD33 1 1 1 2 1 6

CD71 1 2 2 1 2 2 1 2 13

Score/algorithm 13 10 13 15 7 8 18 8 11 13 6 11

Infinicyt Citrus viSNE

2 >20% >0.5 >1 log

1 10–20% <0.5 0.5–1 log

0 <10% 0 <0.5 log

Orange = score 2, yellow = score 1, dark green, green, and light green represent the highest values obtained for the sum of the scores (in descending order). The total
score to evaluate the discriminative capacity of each marker to distinguish between AML blasts and normal myHPCs was obtained by adding all values obtained by the
respective marker or parameter for distinguishing between each AML group and normal HPCs and for each analysis method. The threshold score for marker relevance
was >10. The bold values highlight the highest values obtained for the sum of the scores.

cells with minimal fluorescence, as it was demonstrated by
Herzenberg et al. (2006).

Citrus boxplots were used to evaluate differences between
the analyzed markers and parameters. Differences in markers
expression and FSC, SSC between AML blasts and normal
HPCs > 0.5 between AML blasts and normal HPCs received 2
points, those inferior to 0.5 received 1 point and the absence of
difference was noted with 0 points.

Logarithmic differences were used to interpret markers
and parameter differences with viSNE. Differences in markers
expression and FSC, SSC between AML blasts and normal
HPCs > 1 log received 2 points; those between 0.5 and 1 log, 1
point and the absence of difference was noted with 0 points.

The total score to evaluate the discriminative capacity of each
marker to distinguish between AML blasts and normal myHPCs
was obtained by adding all values obtained by the respective
marker or parameter for distinguish between each AML group
and normal HPCs and for each analysis method. The threshold
score for marker relevance was >10.

The total score used to evaluate the effectiveness of each
algorithm for the ability to distinguish AML blasts from normal
myHPCs was obtained by summing the values obtained of each

two-by-two paired group [t(8;21) AML versus normal myHPCs,
t(15;17) AML versus normal my HPCs, inv(16) AML versus
normal myHPCs, and MLL AML versus normal myHPCs].

Scoring System to Evaluate the Most
Informative Markers/Parameters to
Distinguish the Blasts From Different
Acute Myeloid Leukemia Groups With
Tubes 1–3 of the EuroFlow Acute Myeloid
Leukemia/Myelodysplastic Syndrome
Panel When Using the Principal
Component Analysis-Based Analysis
The separation between different AML groups was scored based
on an overlap of the 2 SD curves: no overlap between 2 SD curves
(2 points); overlap of the 2 SD and the 1 SD curve: 1 point; overlap
of both 1 SD curves: 0 points.

The total score to evaluate the discriminative capacity between
the AML blasts from different AML groups was obtained by
summing the values obtained in tubes 1–3 EF AML/MDS for each
two-by-two paired group [t(8;21) AML versus t(15;17) AML,
t(8;21) AML versus inv(16) AML, t(8;21) AML versus MLL AML,
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t(15;17) AML versus inv(16) AML, t(15;17) AML versus MLL
AML, and inv(16) AML versus MLL AML] (Figure 5).

RESULTS

We sought to evaluate whether the selection of myHPCs
and AML blasts using primarily the backbone markers
present in Tubes 1–3 of EF AML/MDS panel would allow
appropriate gating and discrimination between normal myHPCs
and AML blasts, as well as between blasts from different
groups of AML cases.

The most common subtypes of AML with recurrent genetic
abnormalities – AML t(8;21), AML t(15;17), AML inv(16),
and MLL AML – were used in this study on assumption
that they might constitute homogeneous groups in terms of
immunophenotype.

We used two clustering algorithms, Citrus and SPADE,
and two dimensionality-reduction methods, viSNE, and a
PCA-based algorithm (Compass, Infinicyt) to explore the
immunophenotypic features associated with AML blasts
compared with those associated with normal myHPCs.

Citrus, Spanning-Tree Progression
Analysis of Density-Normalized Events,
viSNE, and Compass-Based Analyses Do
Not Allow for Clear Distinctions to Be
Made Between Acute Myeloid Leukemia
Blasts and Normal Myeloid
Hematopoietic Precursors When
Selected Primarily by Backbone Markers
but Can Improve the Identification of
Phenotypic Differences
Generalized reduction in markers expression heterogeneity was
observed on the cells of the nodes containing a significantly
increased number of events in AML cases compared to normal
myHPCs when viSNE algorithms were used, as reflected in
dot plots (Figures 1–4B–D). However, no clear separation was
observed between the AML blasts and normal myHPCs with
any of these algorithms when using the chosen gating strategy
(Figures 6A,B, 1–4A–D).

In line with previously published studies (Kotecha et al., 2010;
Abel et al., 2018) we used CITRUS algorithms because allow
an automated discovery of statistically significant differences
between phenotypic profiles of different groups of cases. By
unsupervised hierarchical clustering, cell clusters are identified,
phenotypes of the cells are characterized, and differences between
groups are determined. The association model PAMR with
cv_1se was used to defines cross validation rate and feature
false discovery rate. The error rate models chosen by the
Citrus software showed that the minimum prediction error
reflecting the percentage of misclassified cases was around 20%
for the neutrophil lineage database (Tube 1), around 40% for
the monocytic lineage database (Tube 2), and around 25% for
the erythroid lineage database (Tube 3) (Figure 6C).

However, these algorithms can help to identify which are the
most informative markers in distinguishing AML blasts from
their nearest normal myHPCs counterparts. This step is useful
for improving the antibody combinations and the gating strategy
for myHPCs or AML blasts.

Principal Component Analysis and Citrus
Algorithms Indicate That Side Scatter
Parameters Contribute to Distinguishing
Between Acute Myeloid Leukemia Blasts
and Normal Myeloid Hematopoietic
Precursors
Based on the PCA analysis (Infinicyt software) and the analysis
of clusters with the minimum prediction error (Citrus software),
the FSC and SSC parameters may be useful for distinguishing
between AML blasts and normal myHPCs. SSC seemed to be
more useful for this purpose, and both algorithms highlighted the
SSC increase in t(15;17) AML blasts (Figures 2A, 6B), although
differences were observed for the other AML groups as well.

Although included in the analysis, the viSNE algorithm did
not indicate that FSC and SSC parameters could be useful
for separating AML blasts and normal myHPCs (see heatmaps
Supplementary Figures 7–10).

CD34 and HLA-DR Were Useful
Backbone Markers for the Distinction
Between Acute Myeloid Leukemia Blasts
and Normal Myeloid Hematopoietic
Precursors
Citrus boxplots corresponding to the parent nodes from the
hierarchy (Figures 6A,B), the parameter band histograms from
Infinicyt (Supplementary Figure 5), and the viSNE dot plots
(Figures 1B,D, 2C,D, 3B,D, 4B,C) indicated that the CD34
expression was increased in t(8;21) AML and inv(16) AML, but
decreased in t(15;17) AML and MLL AML. When comparing
the CD34 MFI data of AML blasts with the normal myHPCs
on the viSNE nodes containing a significantly increased number
of events, we noticed a statistical significant increase in t(8;21)
AML blasts vs. myHPCs (P = 0.0196) and in inv(16) AML blasts
vs. myHPCs (P = 0.0205), but a significant decrease in t(15;17)
AML blasts vs. myHPCs (P = 0.0152) and in MLL AML blasts vs.
myHPCs (P = 0.0102).

The power of discrimination of CD34 seemed to be
potentiated by an association with other antibodies, nearly always
resulting in much better discrimination in two of the three tubes
(Tubes 1 and 2), as reflected by the Compass algorithm (Infinicyt)
(Figures 1–4A). Absence or decrease of the discrimination
capacity of this marker between the different groups of cases in
the case of Tube 3 could not have been due to other factors such
as the order of addition of antibodies during cell staining because
an initial premix of the backbone markers was made, thereafter
was distributed in all tubes and only then were the cells added.
All other steps during cell staining were performed in the same
time and in identical conditions.
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FIGURE 1 | Phenotypic differences between t(8;21) AML blasts and the normal myHPCs using Tubes 1–3 of the EF AML/MDS panel and analysis with viSNE
algorithms or Infinicyt analysis. (A) Tube 1 (T1) of the EuroFlow (EF) acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) panel. Tube 2 (T2), EF AML/MDS
panel. Tube 3 (T3), EF AML/MDS panel. Automated population separator (APS) views of illustrating principal component analyses (PCA; using Infinicyt software) of
t(8;21) AML (green) and normal myeloid hematopoietic precursor (myHPCs, orange) samples, based on the expression of the eight markers included in the T1, and
FSC, SSC parameters (left panel), T2 (middle panel), and T3 (right panel). Tube 1: 6 t(8;21) AML, 19 normal myHPCs; Tube 2: 7 t(8;21) AML, 19 normal myHPCs;
Tube 3: 7 t(8;21) AML, 21 normal myHPCs. Dots represent the median values of individual cases, the dotted line represents the 1 SD curve of the group and the
solid line represents the 2 SD curve. The table shows the contribution of each parameter to the first (PC1, x-axis) or second (PC2, y-axis) principal component
reflected as percent values. (B–D left panel) Representative viSNE diagrams showing the nodes with a significant difference between t(8;21) AML and normal bone
marrow (NBM) cases (node 9 T1, node 8 T2, and node 5 T3 are indicated by blue circles on the plot, and highlighted in yellow with significance level). (B–D right
panel) Dot plots also show significant differences in the expression of markers on myHPCs from NBM versus t(8;21) AML blasts.
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FIGURE 2 | Phenotypic differences between t(15;17) AML blasts and the normal myHPCs using Tubes 1–3 of the EF AML/MDS panel and analysis with viSNE
algorithms or Infinicyt analysis. (A) Tube 1 (T1) of the EuroFlow (EF) acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) panel. Tube 2 (T2), EF AML/MDS
panel. Tube 3 (T3), EF AML/MDS panel. Automated population separator (APS) views of illustrating principal component analyses (PCA; using Infinicyt software) of
t(15;17) AML (blue) and normal myeloid hematopoietic precursor (myHPCs, orange) samples, based on the expression of the eight markers included in the T1, and
FSC, SSC parameters (left panel), T2 (middle panel), and T3 (right panel). Tube 1: 12 t(15;17) AML, 19 normal myHPCs; Tube 2: 12 t(15;17) AML, 19 normal
myHPCs; Tube 3: 12 t(15;17) AML, 21 normal myHPCs. Dots represent the median values of individual cases, the dotted line represents the 1 SD curve of the group
and the solid line represents the 2 SD curve. The table shows the contribution of each parameter to the first (PC1, x-axis) or second (PC2, y-axis) principal
component reflected as percent values. (B–D left panel) Representative viSNE diagrams showing the nodes with a significant difference between t(15;17) AML and
normal bone marrow (NBM) cases (node 9 T1, node 3 T2, and node 5 T3 are indicated by blue circles on the plot, and highlighted in yellow with significance level).
(B–D right panel) Dot plots also show significant differences in the expression of markers on myHPCs from NBM versus t(15;17) AML blasts.
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FIGURE 3 | Phenotypic differences between inv(16) AML blasts and the normal myHPCs using tubes 1–3 of the EF AML/MDS panel and analysis with viSNE
algorithms or Infinicyt analysis. (A) Tube 1 (T1) of the EuroFlow (EF) acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) panel. Tube 2 (T2), EF AML/MDS
panel. Tube 3 (T3), EF AML/MDS panel. Automated population separator (APS) views of illustrating principal component analyses (PCA; using Infinicyt software) of
inv(16) AML (violet) and normal myeloid hematopoietic precursor (myHPCs, orange) samples, based on the expression of the eight markers included in the T1, and
FSC, SSC parameters (left panel), T2 (middle panel), and T3 (right panel). Tube 1: 8 inv(16) AML, 19 normal myHPCs; Tube 2: 8 inv(16) AML, 19 normal myHPCs;
Tube 3: 8 inv(16) AML, 21 normal myHPCs. Dots represent the median values of individual cases, the dotted line represents the 1 SD curve of the group and the
solid line represents the 2 SD curve. The table shows the contribution of each parameter to the first (PC1, x-axis) or second (PC2, y-axis) principal component
reflected as percent values. (B–D left panel) Representative viSNE diagrams showing the nodes with a significant difference between inv(16) AML and normal bone
marrow (NBM) cases (node 2 T1, node 10 T2, and node 1 T3 are indicated by blue circles on the plot, and highlighted in yellow with significance level). (B–D right
panel) Dot plots also show significant differences in the expression of markers on myHPCs from NBM versus inv(16) AML blasts.
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FIGURE 4 | Phenotypic differences between MLL AML blasts and the normal myHPCs using Tubes 1–3 of the EF AML/MDS panel and analysis with viSNE
algorithms or Infinicyt analysis. (A) Tube 1 (T1) of the EuroFlow (EF) acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) panel. Tube 2 (T2), EF AML/MDS
panel. Tube 3 (T3), EF AML/MDS panel. Automated population separator (APS) views of illustrating principal component analyses (PCA; using Infinicyt software) of
MLL AML (turquoise) and normal myeloid hematopoietic precursor (myHPCs, orange) samples, based on the expression of the eight markers included in the T1, and
FSC, SSC parameters (left panel), T2 (middle panel), and T3 (right panel). Tube 1: 10 MLL AML, 19 normal myHPCs; Tube 2: 10 MLL AML, 19 normal myHPCs;
Tube 3: 11 MLL AML, 21 normal myHPCs. Dots represent the median values of individual cases, the dotted line represents the 1 SD curve of the group and the solid
line represents the 2 SD curve. The table shows the contribution of each parameter to the first (PC1, x-axis) or second (PC2, y-axis) principal component reflected as
percent values. (B–D left panel) Representative viSNE diagrams showing the nodes with a significant difference between MLL AML and normal bone marrow (NBM)
cases (node 7 T1, node 7 T2, and node 2 T3 are indicated by blue circles on the plot, and highlighted in yellow with significance level). (B–D right panel) Dot plots
also show significant differences in the expression of markers on myHPCs from NBM versus MLL AML blasts.

HLA-DR was another discriminating parameter among the
backbone markers, as reflected by Infinicyt and viSNE diagrams.
Similar to CD34, low expression of HLA-DR was detected on
t(15;17) AML (Supplementary Figures 5, 3B–D) and MLL

AML blasts (Figures 4B,D), with increased expression on t(8;21)
AML (Supplementary Figures 5, 2C) and inv(16) AML blasts
(Supplementary Figures 5, 4B). When comparing the HLA-DR
MFI of AML blasts with the normal myHPCs on the viSNE
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FIGURE 5 | Infinicyt database-guided analyses aid identification of phenotypic differences between AML groups with different genetic abnormalities. Samples were
stained with antibodies from Tube 1–3 of the EuroFlow (EF) acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) panel. Sample groups: t(8;21) acute
myeloid leukemia (green), t(15;17) AML (blue), inv(16) AML (violet), MLL AML (turquoise). Dots represent the median values of individual cases; the dotted line
represents the 1 SD curve of the group and the solid line represents the 2 SD curve. The tables show the contribution of each parameter to the first (PC1, x-axis) or
second (PC2, y-axis) principal component reflected as percent values. The separation between different AML groups was scored based on an overlap of the 2 SD
curves: no overlap between 2 SD curves (2 points); overlap of the 2 SD and the 1 SD curve: 1 point; overlap of both 1 SD curves: 0 points. The total score to
evaluate the discriminative capacity between the AML blasts from different AML groups was obtained by summing the values obtained in tubes 1–3 EF AML/MDS
for each two-by-two paired group [t(8;21) AML versus t(15;17) AML, t(8;21) AML versus inv(16) AML, t(8;21) AML versus MLL AML, t(15;17) AML versus inv(16)
AML, t(15;17) AML versus MLL AML, and inv(16) AML versus MLL AML]. (A) Phenotypic differences between AML groups with different genetic abnormalities
observed with Tube 1 EF AML/MDS panel. (B) Phenotypic differences between AML groups with different genetic abnormalities observed with Tube 2 EF AML/MDS
panel. (C) Phenotypic differences between AML groups with different genetic abnormalities observed with Tube 3 EF AML/MDS panel.

nodes containing a significantly increased number of events, we
noticed a statistical significant increase in t(8;21) AML blasts vs.
myHPCs (P = 0.0439) and in inv(16) AML blasts vs. myHPCs
(P = 0.0405), and a significant decrease in t(15;17) AML blasts
vs. myHPCs (P = 0.0352), but not in MLL AML blasts vs.
myHPCs (P = 0.0697). A possible explanation that no statistical
significance was obtained for the intensity of expression of HLA-
DR between MLL AML blasts and normal myHPCs is likely
related to the important heterogeneity of expression of this
marker between the different MLL AML cases, as reflected by
Infinicyt histograms (Supplementary Figure 5).

The intensity of expression of CD117 contributed little to the
ability to discriminate between AML blasts and normal myHPCs.
According to the Citrus algorithms, CD117 was slightly increased
on the t(8;21) AML, inv(16) AML blasts and slightly decreased
on the t(15;17) AML, MLL AML blasts compared with normal
HPCs with the combination of markers from the third tube of EF
AML/MDS panel (Figure 6B). This observation was confirmed
in the Infinicyt histograms [for t(8;21) AML, inv(16) AML
blasts in all three tubes of EF AML/MDS panel (Supplementary
Figures 5A,C)].

In addition, the Infinicyt histograms revealed that
CD117 could be increased also in some cases of MLL AML
(Supplementary Figure 5D) and by the viSNE (for MLL AML)
(Figure 4D). However, CD117 expression did not significantly
increase on MLL AML blasts from the viSNE nodes containing a
significantly increased number of events compared to the normal
myHPCs (P = 0.1990).

CD45 was the least discriminant of the backbone markers and
was slightly more intensely expressed by the t(8;21) AML and
inv(16) AML blasts compared to normal myHPCs, as highlighted
especially by Citrus algorithms in Tube 3 (Figures 6A,B).

All Algorithms Used Showed That CD13
Could Contribute to Discrimination
Between Acute Myeloid Leukemia Blasts
and Normal Myeloid Hematopoietic
Precursors Among the Additional
Markers in Tube 1
The tables showing the contribution of each parameter to the
first (PC1, x-axis) or second (PC2, y-axis) principal component
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FIGURE 6 | Phenotypic differences identified by the Citrus algorithms between AML blasts and normal myHPCs using Tubes 1–3 of the EF AML/MDS panel.
Citrus-defined radial hierarchical plots (A) colored by FSC, SSC, CD34, CD117, CD45, and CD13 expression (Tube 1 of the EF AML/MDS panel), and (B) colored by
SSC, CD34, CD117, CD45, CD36, and CD105 expression (Tube 3 of the EF AML/MDS panel). CITRUS trees in which each node denotes different cell clusters. The
red arrow illustrate cell clusters were the median marker intensities differed statistically significantly between the five groups [NBM, MLL AML, t(8;21) AML, t(15;17)
AML, and inv(16) AML] as determined by PAMR analysis (R implementation of Prediction Analysis for Microarrays). No clusters were identified in the Citrus trees
when using the markers form the Tube 2 of the EF AML/MDS panel and the software default settings. Boxplots below Citrus-defined radial hierarchical plots reveals
the differences of parameter expression among the different groups of cases. Box plots shows the median marker intensities for the various markers [expressing
interquartile range (IQR) and median values] and values for each individual within the groups of cases. The nodes chosen to be shown in boxplots represent the
parent clusters (the “highest in the hierarchy” significant node). CITRUS histograms for the parent clusters are illustrated on the top of each marker. For each marker,
the histogram shows the marker expression on the cells of interest in the specific cluster (red) against the marker expression on all other cells (blue).
(C) Citrus-generated model error rate plots. Cv_1se was used with a 5 fold cross validation and a false discovery rate of 0.01 was applied. Each plot displays the
cross-validation (CV) error rate (red line) and the false discovery rate (blue line) for the CV constrained models corresponding to each tube (from left to right: Tubes 1
to 3 of EF AML/MDS panel). Vertical arrows indicate the features of two predictive CV-constrained models with varying stringency: 1 standard error CV (cv_1se),
yellow arrow; minimum CV (cv.min), green arrow.

generated by the Infinicyt algorithms (Table T1 from Figures 1A,
2A, 3A) showed that CD13 contributes to the discrimination
between inv(16) AML, t(15;17) AML and t(8;21) AML blasts
and the normal my HPCs. The largest differences compared to
normal myHPCs were recorded for this marker in the inv(16)
AML group (higher intensity of expression) as revealed by the
viSNE dot plots on the nodes containing a significantly increased
number of events in inv(16) AML (Figure 3B; P = 0.0217), but
also between MLL AML blasts (decreased expression) compared
with their nearest normal myHPCs (Figure 4B; P = 0.0429).

Concerning other neutrophil-related markers evaluated in
Tube 1, viSNE dot plots showed that CD16 was weakly
discriminant between t(8;21) AML and t(15;17) AML blasts
(decreased expression) and normal myHPCs (Figures 1B, 2B),

and CD11b between t(8;21) AML blasts (increased expression)
and normal myHPCs (Figure 1B), but these differences did not
reach statistical significance. These slight differences for CD16
and CD11b reflected by viSNE dot plots were not seen using
other algorithms.

CD64 Was Slightly More Intensely
Expressed by t(15;17) Acute Myeloid
Leukemia and MLL AML Blasts Than by
Normal Myeloid Hematopoietic
Precursors
Compared with the performance of Tubes 1 and 3, the
combination of antibodies used in Tube 2 was less able to
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discriminate between AML blasts and normal myHPCs. Among
the markers included in this tube, the Compass algorithm
(Infinicyt) showed that CD64 was somewhat discriminant,
identified as being slightly more intensely expressed by
t(15;17) AML and MLL AML blasts than by normal myHPCs
(Supplementary Figure 5).

According to analysis with the viSNE algorithm, the CD300e
(IREM2) marker showed increased expression on t(8;21) AML
blasts, and the CD14 and CD35 markers showed decreased
expression on the leukemic blasts from the AML inv(16) group,
compared to the normal myHPCs in the nodes with statistically
significant increased numbers of events in AML cases. However,
the parameter band histogram from Infinicyt did not show a
notable difference for CD300e on t(8;21) AML blasts, nor for
CD14 on inv(16) AML blasts compared to normal myHPCs
(Supplementary Figures 5A,C).

CD36, CD105, and CD71 Were
Discriminating Markers Between Acute
Myeloid Leukemia Blasts and Normal
Myeloid Hematopoietic Precursors
The CD36, CD105, and CD71 from Tube 3 were ranked by
Compass-based analysis (Infinicyt) among the discriminating
markers between AML blasts and normal myHPCs (Figures 1–
4A). viSNE algorithms showed also that these markers were
able to discriminate between AML blasts and normal myHPCs
(Figures 1–4D). However, a statistically significant model
from Citrus confirmed that only two of these markers,
CD36 and CD105, were helpful in distinguishing the two
groups (Figure 6B).

Overall, the erythroid lineage-associated antigens CD36,
CD105, and CD71 have a reduced expression on the AML
blasts compared to normal myHPCs (Figures 1–5D, 6B and
Supplementary Figure 5 row T3). Although the PCA analysis
(Infinicyt software) indicated a contribution of CD33 to
discriminating between AML blasts and normal myHPCs, the
parameter band histograms and viSNE algorithms supported this
only for t(8;21) AML blasts (Supplementary Figure 5A and
Figure 1D). This difference is most likely due to the number
of parameters considered by each type of algorithm used to
distinguish between the groups.

Compass-Based Analysis (Infinicyt) Was
the Best Tool for the Identification of
Those Markers or Parameters With the
Best Potential to Distinguish Between
Acute Myeloid Leukemia Blasts and
Normal Myeloid Hematopoietic
Precursors
The relative contribution that each marker or parameter
to distinguish between the blasts of different AML groups
and normal myHPCs was scored based on weights in the
first or second principal component in an APS diagram in
Compass (Infinicyt), on Citrus boxplots (Cytobank) and based
on logarithmic differences observed for median fluorescence

intensity (MFI) with viSNE (Cytobank). The total score to
evaluate the discriminative capacity of each marker to distinguish
between AML blasts and normal myHPCs was obtained by
adding all values on each line. The threshold score for marker
relevance was >10. Compass-guided analysis showed that
the best separation capacity was achieved between inv(16)
AML blasts and normal myHPCs (score = 18), thereafter the
separation between by t(15;17) AML blasts and normal myHPCs
(score = 15), followed by the separation between t(8;21) AML and
MLL AML blasts and normal myHPCs (score = 13).

The total score used to evaluate the effectiveness of each
algorithm for the ability to distinguish AML blasts from normal
myHPCs was obtained by summing the columns values.

Based on this score (Table 1), the Compass-based analysis
(Infinicyt) was found to identify most of the differences in marker
expression between AML blasts from different groups and their
nearest normal myHPCs counterpart, receiving the highest rating
compared with the other analyzed algorithms (59 points were
assigned to Compass compared with 31 points for Citrus and 43
points for viSNE).

As revealed by all analysis algorithms, in descending order, the
following seven parameters were the most useful to distinguish
between AML blasts and normal myHPCs: CD34; CD36; then
with equal weight HLA-DR, CD13, CD105, and CD71; and finally
SSC (Table 1).

Compass Database (Infinicyt)-Guided
Analysis Allows for the Identification of
Phenotypic Differences Between Acute
Myeloid Leukemia Groups With Different
Genetic Abnormalities
We sought to evaluate the performance of the Infinicyt software
and the antibody combinations from the first three tubes of the
EF AML/MDS panel for the discrimination of the blasts from
different AML groups. To this end, we used a new score that
evaluates the APS capacity to separate the blasts from different
AML groups and to rank the different parameters and markers
according to their contribution to discrimination. Details of
the score calculation are presented in Figure 5. Relatively good
discrimination was obtained between the leukemic cells from
t(15;17) AML and the other AML groups [in descending order
of degree of separation: inv(16) AML, t(8;21) AML, and MLL
AML], and weak discrimination between inv(16) AML and MLL
AML blasts with the markers from the Tubes 1 and 2. The
most useful markers in separating the blasts from t(15;17) AML
and inv(16) AML groups were CD34, HLA-DR, and the SSC
parameter, followed by FSC and the markers CD64, CD71, CD36,
and CD33 (Figure 5). The best-ranked markers that allowed
separation between t(15;17) AML blasts and those from t(8;21)
AML group were HLA-DR, CD34, SSC, FSC, followed by CD13,
CD33, and CD71 (Figure 5). HLA-DR and SSC were also useful
to distinguish between the t(15;17) AML blasts and those from
the MLL AML group, followed by FSC, CD11b, CD13, CD64, and
CD117 (Figure 5).

HLA-DR, CD34, and CD117 also contributed to the
separation of leukemic cells from inv(16) AML from those of the
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MLL AML group, followed by CD64, CD13, and CD11b markers
and SSC, FSC parameters (Figure 5).

Database-guided analysis in the Infinicyt software allowed a
rapid analysis of the phenotypic differences between the blasts
from different AML groups.

DISCUSSION

The immunophenotypic characterization of AML blasts by MFC
is standard of care in AML diagnosis and follow-up. However,
there is no broad consensus on the panel of antibodies to be
used or on the algorithms of analysis that would allow for the
standardization of practices at the international level.

The EuroFlow Consortium, a European collaborative research
group has developed and validated a eight-color EF AML/MDS
panel that allows the detection of AML blasts, their lineage
assignment, and the accurate evaluation of the maturation
profiles of myeloid lineages (van Dongen et al., 2012; Matarraz
et al., 2017; Orfao et al., 2019). However, the discriminatory
potential between myHPCs and AML blasts using this panel or
its utility for AML blast classification in different cytogenetic
groups is not known.

This preliminary, retrospective study was performed to
evaluate the different tools provided by different software for
data analysis to evaluate whether the first three tubes of the
EF AML/MDS panel could be used for discrimination between
myHPCs and AML blasts using this panel or its utility for AML
blast classification in different cytogenetic groups.

The different methods analysis had a range of advantages
and disadvantages.

The major advantage of the Citrus algorithm (Cytobank)
is the capacity to build predictive models that allows
identification of the minimum set of biomarkers necessary
to discriminate effectively between the groups and estimation
of the accuracy with which these biomarkers can do this
(Polikowsky and Drake, 2019).

Of the others Cytobank algorithms, the SPADE analysis
provides information about the population structure and the
heterogeneity of population events, and the viSNE tool aids
with the identification of distinct phenotypes between the
groups of cases.

However, the software on the Cytobank platform is less
practical for multicenter studies because it does not allow
overlapping data with different nomenclature for antibodies
or fluorochromes which is frequently observed in these
types of studies.

The SPADE software allows the creation of population
trees reflecting the size of cell clusters and the relationships
between them. In agreement with other published data, a major
drawback of the SPADE interface is the loss of single-cell
resolution (Chester and Maecker, 2015), but also the considerable
differences observed between the SPADE tree from the different
runs when applied SPADE to the same datasets (Amir el et al.,
2013). In our opinion, another major drawback of SPADE
is the inability to directly perform statistical analyses on the
frequency of events; instead, data must be exported to external

software to perform these operations, which can be a time-
consuming process.

The viSNE software from Cytobank has also a disadvantage;
the configuration of this software is operator-dependent. In
particular, the operator sets the number of iterations, which
specifies the number of runs of the algorithm, and the perplexity
parameter, which influences the results.

Another limitation of the viSNE tool was the difficulty we
encountered when attempting to compare groups of cases, for
example in visualization of differences of markers’ expression
using heatmaps. When the number of parameters to be analyzed
is great or the number of cases to compare is increased, the
heatmap visualization and interpretation are difficult.

Infinicyt 2.0 also allows the evaluation of the relationship
between different cell clusters from a sample, or between
different groups based on two new diagrams, the robust curve
and population burst (Pedreira et al., 2019). However, the
distinct benefit of this software is offered by the PCA-based
diagrams, which allows automatic n-dimensional separation of
the events in clusters based on the expression of all markers used
for cell staining.

In Infinicyt 2.0, several new diagrams have been recently
developed, such as t-SNE, Canonical Correlation Analysis (CA),
Neighborhood Automatic Population Separator (NAPS), and
Compass VI (CVI 1) diagrams, that also allow exploration of
population heterogeneity. These are not expert-based decisions,
and are therefore not associated with a significant component of
individual subjectivity (Pedreira et al., 2019).

The major advantage of the Infinicyt software is the
possibility to perform the database-guided analysis. Compass-
guided method is a rapid analysis tool, allowing comparison
of the data acquired across different flow cytometry platforms,
which was specially designed for a better visualization when
comparing groups of cases. This method gives information about
the parameters that are useful for separation of the groups, and
therefore, can help to improve the combinations of antibodies.
The Compass database-guided analysis based on PCA algorithm
has proven its advantage in various studies, such as for acute
leukemia orientation (Lhermitte et al., 2018), B cell chronic
lymphoproliferative disorders classification (Costa et al., 2010),
multiple myeloma diagnosis and monitoring (Flores-Montero
et al., 2016), and B-cell acute lymphoblastic leukemia follow-up
(Theunissen et al., 2017).

Our preliminary data show that the Compass database-guided
analysis is a helpful tool for the identification of DfN patterns
that may advance actual methods of minimal residual disease
evaluation by MFC in AML, which are frequently based on the
detection of leukemia-associated immunophenotypes (LAIPs)
identified at diagnosis.

Based on EF experience, the unequivocal identification of
blast cells in BM samples is possible using solely the backbone
markers from the EF AML/MDS panel (van Dongen et al., 2012).
The use of a backbone consisting of four combined markers
can be a good strategy if the differences in the prevalence of
individual antigen expression in AML blasts are taken into
consideration. The prevalence of marker expression in AML
blasts [after the exclusion of t(15;17) AML blasts] was 76.5%
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for CD34, 79.78% for CD117, and 90.12% for HLA-DR, as
reported by Webber et al. (2008).

However, our data revealed that a strategy based solely on
the expression of these markers cannot be used to clearly isolate
the AML blasts with recurrent genetic abnormalities or normal
myHPCs, due to the inability to avoid the contamination of the
CD45low CD117+ CD34± HLA-DRvariable(lowtohigh) population
with undesirable mature cells.

Sandes et al. (2013) showed that the evaluation of blasts by
MFC using the “CD34+ or CD117+ HLA-DR+” phenotypic
profile cannot replace morphological blast count evaluation
in MDS; instead, the combined use of both evaluation
methods may provide complementary information, increasing
the accuracy and reproducibility of bone marrow blast cell counts
in these patients.

Therefore, evaluating the capability of other markers
for the distinction of AML blasts from normal myHPCs
counterparts may be useful.

CD38 appears to be a very useful marker, as the 92% of AML
blasts express this protein, as reported by Webber et al. (2008).

The data from our current study showed that the inclusion
of myeloid lineage-associated markers, such as CD13, CD64,
CD36, CD105, CD71, and CD33, in the gating strategy can
increase the discriminatory power for distinguishing between
AML blasts and normal HPCs that are committed toward
different myeloid lineages.

In line with this observation, Webber et al., noticed that
second to CD38 expression, AML blasts most frequently
expressed the myeloid lineage markers CD13 (91%) and CD33
(87%) (Webber et al., 2008).

The CD64 is an useful marker for the distinction of early
monocytic precursors, whereas CD105, CD36, and CD71 are
useful for the identification of myeloid precursors that have
committed to the erythroid lineage (Kalina et al., 2012).

The Compass database-guided AML analysis (Infinicyt) is
a user-friendly interface, facilitating the rapid evaluation of
differences between blasts from different types of AML. The
identification of phenotypic imprints associated with AML
groups with recurrent genetic abnormalities may allow for the
detection of residual leukemic blasts, even in the absence of
phenotypic identification at diagnosis.

In our study, except for the t(15;17) AML group, PCA
did not result in the clear distinction between AML blasts
from varying groups, primarily due to the heterogeneity
of marker expression across blasts harboring the same
recurrent genetic abnormality. For example, the t(8;21)
AML group displayed large variability in the expression of
CD34, HLA-DR, and CD13, whereas, for MLL AML blasts,
the most important differences were observed for CD34,
CD117, HLA-DR, CD13, CD11b, CD64, CD36, CD105,
CD71, and CD33, in addition to the FSC and SSC parameters
(Supplementary Figure 5).

The reduced number of cases included in the t(8;21)
AML and MLL AML groups represents the primary limitation
of this study because these small sample sizes did not
allow for the identification of possible subtypes inside these
immunophenotypic heterogenous groups.

However, this preliminary study has allowed re-designing
a 12-color panel combining backbone markers from the
EF AML/MDS panel with the myeloid lineage-associated
markers, such as CD13, CD64, CD36, CD105, CD71, and
CD33 that could improve the discriminatory potential between
myHPCs and AML blasts. This 12-color panel should be
initially tested on homogenous phenotypic groups of AMLs
(as is expected in the case of AML with recurrent genetic
abnormalities) or AMLs having a well-established molecular
target to be able to compare MFC data with molecular
biology results in different time points of AML follow-
up. Multicenter studies using the Compass database-guided
analysis based on PCA algorithm is required for its validation.
To this end, the following steps should be followed: the
use of standardized protocols for sample preparation, and
data acquisition, effective harmonization of the instruments
between different centers, intra-center normalization of the
instrument(s) using the daily 8 Peak Beads QC, correction of
the compensations for the data files, correction of the mean
fluorescence intensities of the cell surface markers to adjust the
median values and eliminate the antibody batches variations
between instruments [i.e., using a Python script, as previously
described by Le Lann et al. (2020)], together with robust expertise
in data analysis.

Differences observed in the results obtained with these two
types of software, Infinicyt and Cytobank maybe are related to the
different development directions of the two packages. Cytognos
strive efforts in the clinical classification functions, whereas
Cytobank is focused on development of multidimensional
analysis tools like tSNE and SPADE.

The PCA-based algorithms can be efficiently used to analyze
data with low dimensionality, but heterogenous. However, the
results obtained depends on the discriminatory capacity of the
antibody combinations used.

In addition, high-dimensional analysis algorithms may help
visualizing the phenotypic changes of the AML blasts under
the pressure of microenvironmental factors and to explore the
immune system disorders contributing to the AML onset and
progression. Recent studies bring to front also the role of the
interaction between bone, immune and cancer cells in protecting
the latter from immune system attack (Gnoni et al., 2020). Data
generated in this type of studies requires the design of robust
data analysis algorithms to overcome the difficulties raised by big
data volumes, heterogeneous data distributions, and complex and
dynamic data characteristics, and these new tools of MFC data
analysis may contribute to the definition of the role of these cells
in the of disease pathogenesis and to the identification of the new
therapeutic targets.

In conclusion, the new tools of data analysis in MFC:
(1) avoid data misinterpretations; (2) allow study of well-
defined population groups; (3) highlight useful markers for
better discrimination between different clinical groups; and (4)
enhance our understanding of the utility of the panels used in
routine practice.

The benefits of using these analysis tools are becoming
increasingly evident, as evidenced by the growing number of
studies that use them.
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Supplementary Figure 1 | Study design and the strategy of analysis for the
identification of normal myHPCs in NBM samples using the Tubes 1–3 of EF
AML/MDS panel. (A) Schematic overview of the normal bone marrow (NBM) files
included in the databases. FCS files corresponding to the healthy donor (HD) and
cardiac surgery (CS) bone marrow (BM) samples stained with antibodies from the
EuroFlow (EF) acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS)
panel Tube 1 (T1), Tube 2 (T2), and Tube 3 (T3). (B) Multidimensional (2 SD
principal component-based) views from Tubes 1 to 3 showing homogenous
staining for the backbone markers on the internal control populations

(lymphocytes, Ly; neutrophils; and nucleated red cells, NRC) from the NBM files
included in the databases. (C) Analysis strategy for HPC selection in Tubes 1, 2,
and 3 of the EF AML/MDS panel. (D) Mature cell populations that may
contaminate the blast’s gate when the gating strategy is based only on backbone
markers. T1, Tube 1; T2, Tube 2.

Supplementary Figure 2 | Study design and the strategy of analysis for the
identification of AML blasts using Tube 1 of the EF AML/MDS panel. (A)
Schematic overview showing the AML files included in the Tube 1 AML database.
(B) Multidimensional (2 SD principal component-based) views showing
homogenous staining for the backbone markers on the internal control
populations (lymphocytes, Ly; nucleated red cells, NRC) from the AML FCS files
included in the Tube 1 AML database. (C) Analysis strategy for selection of AML
blast in Tube 1 of the EF AML/MDS panel: t(8;21) AML blasts, yellow-green;
t(15;17) AML blasts, light blue; inv(16) AML blasts, violet; MLL AML blasts,
turquoise; neutrophils, pink; NRC, dark red; lymphocytes,
green.

Supplementary Figure 3 | Study design and the strategy of analysis for the
identification of AML blasts using Tube 2 of the EF AML/MDS panel. (A)
Schematic overview showing the AML files included in the Tube 2 AML database.
(B) Multidimensional (2 SD principal component-based) views showing
homogenous staining for the backbone markers on the internal control
populations (lymphocytes, Ly; nucleated red cells, NRC) from the AML FCS files
included in the Tube 2 AML databases. (C) Analysis strategy for selection of AML
blast in Tube 2 of the EF AML/MDS panel: t(8;21) AML blasts, yellow-green;
t(15;17) AML blasts, light blue; inv(16) AML blasts, violet; t(9;11) AML blasts,
turquoise; neutrophils, pink; NRC, dark red; lymphocytes, green.

Supplementary Figure 4 | Study design and the strategy of analysis for the
identification of AML blasts using Tube 3 of the EF AML/MDS panel. (A)
Schematic overview showing the AML files included in the Tube 3 AML database.
(B) Multidimensional (2 SD principal component-based) views showing
homogenous staining for the backbone markers on the internal control
populations (lymphocytes, Ly; nucleated red cells, NRC) from the AML FCS files
included in the Tube 3 AML databases. (C) Analysis strategy for selection of AML
blast in the Tube 3 of the EF AML/MDS panel: t(8;21) AML blasts, yellow-green;
t(15;17) AML blasts, light blue; inv(16) AML blasts, violet; t(9;11) AML blasts,
turquoise; neutrophils, pink; NRC, dark red; lymphocytes, green.

Supplementary Figure 5 | Parameter Band Histograms showing markers
expression on AML blasts versus normal myHPCs. Columns display the
phenotype of acute myeloid leukemia (AML) blasts: (A) t(8;21) AML blasts, green;
(B) t(15;17) AML blasts, blue; (C) inv(16) AML blasts, violet; (D) MLL AML blasts,
turquoise. Normal myeloid hematopoietic precursor (myHPC) reference images:
orange discontinuous line. T1–3 rows correspond to each of Tubes 1–3 of the
EuroFlow (EF) AML/myelodysplastic syndrome (MDS) panel. Histograms show the
relative expression of each analyzed marker on different groups of AML blasts;
circles represent the mean of an individual case.

Supplementary Figure 6 | Two SPADE runs of pre-gated AML blasts stained
with antibody combinations from Tube 1 EF AML/MDS panel from five t(8;21) AML
cases were visually investigated to identify nodes that were potentially different in
cellular abundance compared with myHPCs from NBM samples. In these plots
each node comprises a group of phenotypically related cells. The size and the
color of the nodes indicate the abundance and the expression, respectively. Each
row represents one of the two SPADE runs and each column represents the
SPADE tree obtained for one t(8;21) AML case. Clusters group by AML case are
not conserved between runs, resulting in considerable differences between the
SPADE tree from the two runs.

Supplementary Figure 7 | viSNE cluster heatmaps colored by expression level of
indicated markers for AML blasts from a representative t(8;21) AML case (top
panel) compared with myHPCs from a NBM sample (bottom panel). Green boxes
highlights the nodes containing significantly more events in t(8;21) AML case
compared with NBM setting. (A) Tube 1 panel EF AML/MDS. (B) Tube 2 panel EF
AML/MDS. (C) Tube 3 panel EF AML/MDS.

Supplementary Figure 8 | viSNE cluster heatmaps colored by expression level of

indicated markers for AML blasts from a representative t(15;17) AML case (top
panel) compared with myHPCs from a NBM sample (bottom panel). Green boxes
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highlights the nodes containing significantly more events in t(15;17) AML case
compared with NBM setting. (A) Tube 1 panel EF AML/MDS. (B) Tube 2 panel EF
AML/MDS. (C) Tube 3 panel EF AML/MDS.

Supplementary Figure 9 | viSNE cluster heatmaps colored by expression level of

indicated markers for AML blasts from a representative inv(16) AML case (top
panel) compared with myHPCs from a NBM sample (bottom panel). Violet boxes

highlights the nodes containing significantly more events in inv(16) AML case

compared with NBM setting. (A) Tube 1 panel EF AML/MDS. (B) Tube 2 panel EF
AML/MDS. (C) Tube 3 panel EF AML/MDS.

Supplementary Figure 10 | viSNE cluster heatmaps colored by expression level
of indicated markers for AML blasts from a representative MLL AML case (top
panel) compared with myHPCs from a NBM sample (bottom panel). Turquoise
boxes highlights the nodes containing significantly more events in MLL AML case
compared with NBM setting. (A) Tube 1 panel EF AML/MDS. (B) Tube 2 panel EF
AML/MDS. (C) Tube 3 panel EF AML/MDS.

Supplementary Table 1 | Patients’ characteristics.

Supplementary Table 2 | Antibody combination used for evaluation of the three
main BM myeloid lineages.
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