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HSP90 is released by cancer cells in the tumor microenvironment where it associates
with different co-chaperones generating complexes with specific functions, ranging
from folding and activation of extracellular clients to the stimulation of cell surface
receptors. Emerging data indicate that these functions are essential for tumor growth
and progression. The understanding of the exact composition of extracellular HSP90
complexes and the molecular mechanisms at the basis of their functions in the tumor
microenvironment may represent the first step to design innovative diagnostic tools and
new effective therapies. Here we review the impact of extracellular HSP90 complexes
on cancer cell signaling and behavior.

Keywords: eHSP90 (Extracellular Heat Shock Protein 90), tumor microenvironment, CDC37, Clusterin, CHORDC1,
Morgana, LRP1, TLR (toll like receptors)

INTRODUCTION

In order to survive and proliferate in a highly stressful environment cancer cells upregulate
chaperone expression and actively release chaperones in the extracellular milieu to guarantee their
survival and sustain their aberrant evolution toward malignancy (Velichko et al., 2013).

The Heat Shock Protein 90 (HSP90) is a highly conserved and ubiquitously expressed
chaperone essential for cell survival. It represents the 1–2% of the total protein content and
plays multiple roles, ranging from protein folding to buffering protein denaturation and assisting
protein conformational changes (Schopf et al., 2017). Overexpression of HSP90 promotes
cell survival, sustains oncogenic signal transduction, cell proliferation and migration (Jaeger
and Whitesell, 2019). High HSP90 levels are frequent in human cancer and correlates with
poor prognosis (Cheng et al., 2012), with the exception of some specific tumor contexts
(Nanbu et al., 1998).

HSP90 comes in two isoforms, the stress-induced HSP90α and the constitutively expressed
HSP90β (Sreedhar et al., 2004). In physiological conditions, normal cells express more HSP90β

than HSP90α (Ullrich et al., 1989) while in cancer cells HSP90α doubles HSP90β expression level
(Zuehlke et al., 2015; Dong et al., 2016). HSP90α underexpression correlates with favorable outcome
in some cancer types (Gallegos Ruiz et al., 2008; Buffart et al., 2012).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2021 | Volume 9 | Article 735529

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.735529
http://creativecommons.org/licenses/by/4.0/
mailto:mara.brancaccio@unito.it
mailto:mara.brancaccio@unito.it
https://doi.org/10.3389/fcell.2021.735529
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.735529&domain=pdf&date_stamp=2021-10-14
https://www.frontiersin.org/articles/10.3389/fcell.2021.735529/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-735529 October 9, 2021 Time: 16:9 # 2

Poggio et al. HSP90 Machineries in Extracellular Spaces

THE INTRACELLULAR HSP90
MACHINERY

HSP90 forms a flexible homodimer and binds to its clients,
promoting modifications in their structure in an ATP
dependent manner. A single monomer of HSP90 is composed
by three domains: an N-terminal ATP-binding domain, a
middle domain and a C-terminal dimerization domain. In
order to fold client proteins, the HSP90 dimer undergoes
conformational rearrangements switching between a closed
N-terminal conformation and an open one (Figure 1A).
Co-chaperones bind sequentially and reversibly to HSP90 to
regulate its conformational changes, its ATPase activity and
to confer specificity to clients. Client proteins are bound by
the HSP70/HSP40 complex, which is stabilized by HSP70-
interacting protein (HIP). The HSP90/HSP70 organizing protein
(HOP) facilitates the interaction between HSP90 and HSP70
and the translocation of the client protein to HSP90 (Schopf
et al., 2017). The HSP70/HOP complex stabilizes HSP90 in the
open conformation and inhibits its ATPase activity. This state
primes the binding of peptidyl-prolyl isomerases (PPIases),
such as FK506 Binding Proteins (FKBP51 and FKBP52), which
support cycle progression. Activator of HSP90 ATPase homolog
1 (AHA1) weakens the interaction between HOP and HSP90,
promoting HOP and HSP70 release and the transition toward
the N-terminal closed state (closed 1). The binding of p23
displaces AHA1, inducing the switch to a completely closed state
(closed 2), which is followed by ATP hydrolysis, the return to
the open conformation and the release of the client together
with p23 and PPIases (Rohl et al., 2013). Cell division cycle
37 homolog (CDC37) is a crucial HSP90 ATPase-inhibiting
co-chaperone which stabilizes the HSP90 open form and recruits
kinase clients (Siligardi et al., 2002; Taipale et al., 2012). The
protein phosphatase and co-chaperone PP5 associates with
HSP90 N-terminal domain and dephosphorylates HSP90 and
CDC37, regulating client protein processing (Li et al., 2012).
The ability to interact with HSP90 N-terminal domain is also
a property of CHORD (Cysteine and Histidine Rich Domain)
containing proteins. Indeed, Morgana and Melusin bind to
HSP90 preferentially when it is in an ADP-bound state (Gano
and Simon, 2010), favoring the protection of cells from different
stress stimuli (Michowski et al., 2010; Ferretti et al., 2011; Sorge
and Brancaccio, 2016).

EXTRACELLULAR HSP90

HSP90 emerged as one of the more abundant secreted chaperones
in normal cells as keratinocytes, dermal fibroblasts and neurons
(Sidera et al., 2004; Sidera and Patsavoudi, 2008; Li et al.,
2012, 2013; Bhatia et al., 2016). The lack of a secretory signal
peptide and experimental data (Santos et al., 2017; Kim et al.,
2018) indicate that chaperone secretion relies on unconventional
mechanisms. HSP90 secretion can be induced by various
environmental stimuli. Hypoxia-inducible factor 1 alpha (HIF-
1α) stabilization in hypoxic conditions (Li et al., 2007; Sahu et al.,
2012) and extracellular signal-regulated kinase (ERK) pathway

activation in response to oxidative stress (Liao et al., 2000)
are both able to stimulate HSP90 secretion. In the extracellular
compartment, HSP90 may exist in a soluble form, but it can be
also found bound to phospholipids on plasma membrane and
even on the surface or inside exosomes (Shevtsov et al., 2020).
eHSP90α promotes cell migration and invasion, crucial processes
in tissue morphogenesis, embryonic development, and wound
healing processes (Wong and Jay, 2016).

eHSP90 IN CANCER PROGRESSION

The release of HSP90, mainly HSP90α, from cancer cells
and its role in promoting cancer cell survival, migration,
invasion, and stemness through autocrine mechanisms is well
established (Liu et al., 2019; Secli et al., 2021). Cells of the
tumor microenvironment also express HSP90 receptors and
several studies reported the binding of HSP90 to their surface
(Calderwood et al., 2016). eHSP90α may mediate fibroblast
migration and conversion to cancer associated fibroblasts
(Bohonowych et al., 2014; Tang et al., 2019) as well as
migration and tubulogenesis in lymphatic endothelial cells
(Hou et al., 2021). By interacting with immune cells in the
tumor microenvironment, HSP90 may also exert anti-tumoral
functions. Indeed, HSP90 is released from cancer cells bound
to oncopeptides and facilitates their presentation to antigen
presenting cells, stimulating anti-cancer immunity and tumor
regression (Calderwood et al., 2016). Nevertheless, the amount of
HSP90α in patient serum correlates with tumor progression and
the presence of distant metastasis (Liu et al., 2019, 2021).

eHSP90 pro-tumoral activity occurs with different
mechanisms. It can activate extracellular clients, promoting
the formation of a favorable milieu for cell migration or it can
bind to surface receptors stimulating cell survival, movement
and aggressiveness (Li et al., 2013).

eHSP90 clients include several proteins involved in
extracellular matrix remodeling, like metalloproteinases
(MMP2 and MMP9) (Song et al., 2010; Stellas et al., 2010; Sims
et al., 2011; Baker-Williams et al., 2019), the pro-form of tissue
plasminogen activator (tPA) (McCready et al., 2010), the lysil
oxidase-like protein 2 (LOXL2), and fibronectin (Boel et al.,
2018; Chakraborty et al., 2020). This suggests that eHSP90 has
the potential to regulate matrix deposition and stiffness, thus
influencing cancer aggressiveness (De Maio and Vazquez, 2013;
Kai et al., 2016; Wong and Jay, 2016).

eHSP90 binds to several cell surface receptors and triggers
signal transduction pathways that contribute to malignancy.
It interacts with Toll-like receptor 4 (TLR4) and signals via
Proto-oncogene tyrosine-protein kinase (SRC) to focal adhesion
kinase (FAK), which is critical for cell motility. eHSP90-mediated
TLR4 activation may also induce the transactivation of the
epithelial growth factor receptor (EGFR), further contributing to
malignancy (Thuringer et al., 2011). Binding to the extracellular
domain of HER2, eHSP90 unleashes SRC, ERK, and RAC-alpha
serine/threonine-protein kinase (AKT) pathways (Belsches-
Jablonski et al., 2001; Sidera et al., 2008). eHSP90 also interacts
with low-density lipoprotein receptor-related protein 1 (LRP1).
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FIGURE 1 | (A) The intracellular HSP90 cycle. The figure highlights the role of co-chaperones that participate to the HSP90 intracellular machinery and that have
been also found to be part of extracellular HSP90 complexes. The client protein is initially bound by the HSP70/HSP40 complex and then stabilized by
HSP70-interacting protein (HIP). The client protein is loaded onto HSP90 from the HSP70/HSP40 protein complex thanks to the adaptor protein HOP
(HSP90–HSP70 organizing protein). The co-chaperone CDC37 (cell-division-cycle 37 homolog) is required by HSP90 to bind client kinases. As the client protein is
loaded, other co-chaperones, peptidyl-prolyl-isomerase and PPIases (FKBP51, FKBP52) join the complex while the HSP70, HIP, and HOP are released. AHA1
(activator of HSP90 ATPase homolog 1) binding induces HSP90 to switch from the open state to the closed 1 state, while p23 induces ATP hydrolysis and the
transition toward the closed 2 conformation. The co-chaperone Morgana interacts with HSP90 in the ADP-bound state. (B,C) Extracellular HSP90 (eHSP90)
complexes promote cancer cell migration. eHSP90 released by cancer cells binds to different secreted co-chaperones in the extracellular milieu. eHSP90 complexes
interact with extracellular client proteins favoring ECM remodeling (B) and with surface receptors (C), triggering intracellular signal transduction (ECM, extracellular
matrix; M, HSP90 Middle domain; C, HSP90 C terminal domain; N, HSP90 N terminal domain).
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LRP1 is a ubiquitous endocytic receptor that recognizes several
ligands and transduces signals, regulating tissue remodeling,
cell survival and inflammatory reactions (Calderwood, 2018).
eHSP90 binding to LRP1 activates ERK, AKT, and NF-κB
pathways and induces ephrin type-A receptor 2 (EPHA2)
recruitment and activation, promoting lamellipodia formation
and cancer cell motility and invasion (Chen et al., 2010; Gopal
et al., 2011; Tsen et al., 2013; Nagaraju et al., 2015).

Interestingly, a small eHSP90α-specific fragment, located at
the boundary between the linker and the M domain, is sufficient
to reproduce the ability of the entire chaperone to induce cell
migration trough LRP1 (Cheng et al., 2011; Zou et al., 2017).
Nevertheless, increasing evidence indicates that eHSP90 pro-
tumorigenic activity is regulated and directed by secreted co-
chaperones (Table 1). This suggests that co-chaperones may
regulate the accessibility of the HSP90 pro-motility fragment,
besides conferring specificity to clients and receptors.

eHSP90 COMPLEXES REMODEL
TUMOR MICROENVIRONMENT

Four co-chaperones, namely HSP70, HSP40, HOP, and p23 were
found in complex with eHSP90α in breast cancer cell conditioned
medium. These factors increase eHSP90α binding to MMP2,
enhancing MMP2 activation and resulting in cancer cell invasion
(Figure 1B). HSP70 depletion from conditioned media or its
pharmacological inhibition impairs eHSP90-mediated MMP2
activation (Sims et al., 2011). Similar multichaperone complexes
have been found also in other contexts. eHSP90α and eHSP70
released on the surface of extracellular vesicles are responsible
for tumor-induced muscle wasting. Both HSP70 and HSP90α

are required to activate TLR4 on muscle cells to induce cachexia
(Zhang et al., 2017), however it is not clear if a direct interaction
occurs. Experiments in neuroblasts demonstrate that eHOP,
eHSP70, and eHSP90 cooperate to influence cell migration,
suggesting the possibility that these chaperones generate a
functional complex (Miyakoshi et al., 2017). In these studies, the
presence of further components has not been investigated.

In fibrosarcoma cell conditioned medium, eHSP90α requires
an articulated competing system between co-chaperones
to induce client maturation (Baker-Williams et al., 2019).
Researchers identified the Tissue inhibitor of metalloproteinase
2 (TIMP2), an endogenous inhibitor of MMPs, as a new
extracellular co-chaperone of eHSP90α. TIMP2 forms a complex
with eHSP90α, PP5 and HOP and inhibits eHSP90α ATPase
activity by binding its middle domain. In this context, TIMP2
functions as a scaffolding co-chaperone that loads MMP2 to
eHSP90α, keeping MMP2 in a transiently inhibited state. AHA1
competes with TIMP2 for the binding to the HSP90α-MMP2
complex (Figure 1B). Indeed, TIMP2, and AHA1 occupy the
same epitope on the M-domain of eHSP90α and AHA1 may
displace TIMP2 from the HSP90α-MMP2 complex, promoting
the full activation of the metalloproteinase and inducing matrix
degradation. The evidence for sequential events influencing
eHSP90 complex composition and client activation suggests the
existence of bona fide eHSP90 machineries. It remains a matter

of debate if HSP90 extracellular functions are dependent on its
ATPase activity. Many studies have proposed and demonstrated
that eHSP90 can chaperone clients in an ATP independent
manner (Cheng et al., 2011; Sims et al., 2011; McCready et al.,
2014), however Baker-Williams et al. (2019) proved that eHSP90
needs ATP hydrolysis to properly fold MMP2. Since cells
can actively secrete ATP in response to a variety of stressful
stimuli (Di Virgilio, 2021), it is possible that, at least in some
contexts, eHSP90 binds, and hydrolases ATP to carry out its
extracellular duties.

eHSP90 COMPLEXES ACTIVATE
CANCER CELL SURFACE RECEPTORS

Several co-chaperones assist and regulate eHSP90 binding to
cell surface receptors, likely conferring binding specificity and/or
promoting specific signaling events.

CDC37 has been found secreted by triple negative breast
cancer cells and localized on the cell surface (El Hamidieh
et al., 2012). Similarly to its intracellular counterpart, eCDC37
acts as a co-factor of eHSP90. The HSP90 isoform involved
in this specific complex has not been investigated. The
eHSP90/eCDC37 complex interacts on the cell surface with
HER2 and EGF receptors allowing breast cancer cell migration
(Figure 1C). Indeed, treatment with anti-CDC37 antibodies
impairs cancer cell migration and in vivo administration of an
HSP90 blocking antibody, able to disrupt the HSP90-CDC37
complex, inhibits metastasis formation (Stellas et al., 2007, 2010;
El Hamidieh et al., 2012).

Clusterin is a secreted glycoprotein that functions as an
ATP-independent extracellular chaperone for several clients in
extracellular fluids, acting by inhibiting amorphous protein
aggregation and contributing to the clearance of unfolded
proteins (Jenne and Tschopp, 1989; Calero et al., 1999; Wyatt
et al., 2011). LDL Receptor Related Protein 2 (LRP2) and Plexin
A4 have been identified as Clusterin receptors in brain (Kang
et al., 2014, 2016). It has been demonstrated that Clusterin
interacts with eHSP90α and increases its ability to associate
with LRP1. The Clusterin/HSP90α complex binds to LRP1 with
higher affinity in respect to eHP90α alone and potentiates the
signal, increasing breast cancer cell migration (Figure 1C).
Clusterin and eHSP90α synergistic signaling induces E-cadherin
downregulation and increases the expression of N-cadherin,
Snail, Slug, and Zeb1, promoting epithelial to mesenchymal
transition. In vivo co-administration of eHSP90α and Clusterin
in mice carrying breast cancer cells derived tumors significantly
increases metastasis (Tian et al., 2019).

Morgana is a HSP90 co-chaperone coded by the CHORDC1
gene. Inside the cells, Morgana regulates signal transduction by
binding and inhibiting Rho kinases I and II (Ferretti et al., 2010;
Fusella et al., 2014) and promotes NF-kB activation (Fusella
et al., 2017). It is also involved in microtubule polymerization
(Palumbo et al., 2020), EGF receptor trafficking (Haag et al.,
2020), and extracellular vesicle secretion (Urabe et al., 2020). We
recently found that Morgana is secreted by several cancer cells
through an unconventional pathway and it associates with HSP90
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TABLE 1 | Roles of extracellular HSP90 co-chaperones.

Co-chaperone Intracellular functions Role of eHSP90 complexes in cancer
progression

References

CDC37 Stabilization of HSP90 open conformation;
presentation of kinases clients to HSP90

Induction of cancer cell migration through
HER2 and EGF receptors

El Hamidieh et al., 2012;
Baker-Williams et al., 2019

AHA1 Induction of HSP90 ATPase activity Competition with TIMP2 for the activation of
the HSP90-MMP2 complex

Baker-Williams et al., 2019

p23 Stabilization of HSP90 closed 2 state MMP2 activation Sims et al., 2011

HOP Stabilization of HSP90 open conformation; transfer
of client proteins from HSP70 to HSP90

MMP2 activation Sims et al., 2011; Hajj et al., 2013;
Baker-Williams et al., 2019

HIP Transfer of client proteins from HSP70 to HSP90 Not investigated Crescitelli et al., 2020

HSP40 Stimulation of the association between HSP70 and
HIP; transfer of client proteins from HSP70 to
HSP90

MMP2 activation Gehrmann et al., 2005;
Sims et al., 2011

HSP70 ATP-dependent molecular chaperone; binding and
transfer of client proteins to HSP90

MMP2 activation; TLR4
Activation

Lee et al., 2006; Sims et al., 2011;
Guzhova et al., 2013; De Maio, 2014

PP5 HSP90 phosphatase Not investigated Baker-Williams et al., 2019

FKBP51/FKBP52 Peptidyl-prolyl-isomerase involved in client protein
maturation

Not investigated Criado-Marrero et al., 2018

Morgana Form a complex with ADP-bound HSP90;
regulation of intracellular signaling pathways

Induction of cancer cell migration through
TLR4, TLR2, and LRP1 receptors

Seclì et al., 2021

Clusterin Mediation of intracellular proteostasis Induction of cancer cell migration through
LRP1 receptor

Tian et al., 2019

in the extracellular milieu. The involvement of a specific HSP90
isoform has not been yet clarified. Cancer cells downregulated
for Morgana migrate less than control cells and the addition of
a recombinant Morgana in the medium totally rescues the defect
in cell migration. HSP90 blocking antibodies revert this ability,
suggesting that the eMorgana works in concert with HSP90 to
promote cell migration. We found that TLR4, TLR2, and LRP1
are all required for eMorgana function (Figure 1C). Indeed,
the impairment of the activity of these receptors by blocking
antibodies or RNA interference makes the cells insensitive to
Morgana pro-migratory signals. The available data indicate that
Morgana binds directly to TLR2, while it requires additional
components, present in the cancer cell conditioned medium,
to bind to LRP1. The interaction between Morgana and TLR4
remains elusive and the possibility that TLR4 may participate
to Morgana signal transduction thank to a cross-talk with TLR2
and LRP1 has to be taken into account. The fact that cancer
cell migration in presence of Morgana blocking antibodies is
not further repressed by inhibiting HSP90 suggests that the
extracellular complex containing HSP90 and Morgana is the
main responsible for migration, at least in a subgroup of cancer
cells (Seclì et al., 2021).

eHSP90 COMPLEXES AS THERAPEUTIC
TARGETS

Eighteen HSP90 inhibitors have entered clinical trials but none
has been approved by the FDA, mainly due to associated
toxicity (Xiao and Liu, 2020). Several pre-clinical trials are now
exploring the possibility to selectively inhibit the extracellular
HSP90 (Tsutsumi et al., 2008; Wang et al., 2009; Song
et al., 2010). However, since eHSP90 may also induce anti-
cancer immunity (Calderwood et al., 2016), the opportunity

to specifically target eHSP90 pro-tumorigenic complexes would
further improve the therapeutic value of these approaches.
This strategy is achievable by targeting co-chaperones present
in pro-tumorigenic complexes (Barrott and Haystead, 2013;
Edkins et al., 2018; D’Annessa et al., 2020). In vitro and
in vivo experiments have proved that targeting extracellular
co-chaperones have the potential to inhibit cancer progression.
Treatments with antibodies against AHA1 or TIMP2 are able
to inhibit MMP2 activity (Baker-Williams et al., 2019). The
use of cell impermeable anti-CDC37 antibody compromises
the invasiveness of breast cancer tumor cells (El Hamidieh
et al., 2012). Similar effects have been described in vitro and in
cancer preclinical models for the monoclonal antibody against
eHSP90 (4C5), able to disrupt the eCDC37/eHSP90/HER2 or
EGFR complex (Stellas et al., 2007, 2010; El Hamidieh et al.,
2012). A monoclonal antibody against Morgana (mAb 5B11B3)
has been recently identified as an inhibitor of cancer cell
migration both in vitro and in pre-clinical models. mAb 5B11B3
systemic treatment in immunocompromised tumor-bearing mice
inhibits cancer cell intravasation and metastasis. In syngeneic
cancer mouse models, in addition to reducing metastases,
mAb 5B11B3 abates tumor growth by promoting anti-cancer
immunity mediated by macrophages and CD8+ T lymphocytes
(Seclì et al., 2021).

DISCUSSION

While the role of eHSP90 as a promoter of cancer progression
is well established, the involvement of its extracellular co-
chaperones remains poorly investigated. Available data suggest
that eHSP90 binds to extracellular co-chaperones, forms different
complexes and generates machineries with specific missions in
the outside. Little is known on the dynamic of eHSP90 complex
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formation and on their possible cooperation in activating
cell surface receptors and extracellular clients. It has been
demonstrated that inside cancer cells, HSP90 can form stable
aberrant multi-chaperone complexes that facilitate cell survival
(Rodina et al., 2016). In the extracellular medium, similar
complexes could work as platforms, clustering surface receptors
and regulating their transactivation, or acting as scaffolds for
extracellular matrix remodeling. A deep understanding of the
eHSP90 interaction network appears a promising starting point
to develop new diagnostics tools and provide potential targets for
drug intervention in cancer.
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