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Immunotherapy is a novel clinical approach that has shown clinical efficacy in
multiple cancers. However, only a fraction of patients respond well to immunotherapy.
Immuno-oncological studies have identified the type of tumors that are sensitive
to immunotherapy, the so-called hot tumors, while unresponsive tumors, known as
“cold tumors,” have the potential to turn into hot ones. Therefore, the mechanisms
underlying cold tumor formation must be elucidated, and efforts should be made to
turn cold tumors into hot tumors. N6-methyladenosine (m6A) RNA modification affects
the maturation and function of immune cells by controlling mRNA immunogenicity
and innate immune components in the tumor microenvironment (TME), suggesting its
predominant role in the development of tumors and its potential use as a target to
improve cancer immunotherapy. In this review, we first describe the TME, cold and
hot tumors, and m6A RNA modification. Then, we focus on the role of m6A RNA
modification in cold tumor formation and regulation. Finally, we discuss the potential
clinical implications and immunotherapeutic approaches of m6A RNA modification in
cancer patients. In conclusion, m6A RNA modification is involved in cold tumor formation
by regulating immunity, tumor-cell-intrinsic pathways, soluble inhibitory mediators in the
TME, increasing metabolic competition, and affecting the tumor mutational burden.
Furthermore, m6A RNA modification regulators may potentially be used as diagnostic
and prognostic biomarkers for different types of cancer. In addition, targeting m6A
RNA modification may sensitize cancers to immunotherapy, making it a promising
immunotherapeutic approach for turning cold tumors into hot ones.

Keywords: N6-methyladenosine RNA modification, tumor microenvironment, cold tumors, hot tumors, biomarker,
prognosis, immunotherapy
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INTRODUCTION

Cancer currently ranks as one of the leading causes of
death worldwide, and the latest reports indicate that the
number of cancer patients is expected to rise by 70% in
the next two decades (World Health Organization, 2014).
Tumor development depends on the sophisticated tumor
microenvironment (TME), which includes tumor, stromal, and
immune cells as well as non-cellular components, such as vascular
structure (Duan et al., 2020). Traditional chemoradiotherapy
focuses on targeting tumor cells; in contrast, immunotherapy
aims to activate immune cells and has emerged as an approach
capable of achieving remarkable advances in cancer treatment
(Lohmueller and Finn, 2017; Simone, 2020). Currently, immune
checkpoint inhibitors targeting cytotoxic T-cell lymphocyte-
associated protein 4 (CTLA-4), programmed death receptor
1 (PD-1), and the ligand PD-L1 have been approved by the
Food and Drug Administration (FDA) (Rotte, 2019; Aggen
et al., 2020; Vaddepally et al., 2020). Furthermore, other
kinds of immune checkpoint inhibitors are currently under
investigation, such as lymphocyte activation gene-3 (LAG-3),
T-cell immunoglobulin and mucin-domain containing-3 (TIM-
3), T-cell immunoglobulin and ITIM domain (TIGIT), and
V-domain Ig suppressor of T-cell activation (VISTA) (Qin et al.,
2019). Nevertheless, a large fraction of patients do not respond
to immunotherapy. Importantly, studies exploring the TME
have identified the kind of patients that are more sensitive to

Abbreviations: 3′-UTR, 3′-untranslated region; αKG, α-ketoglutarate; A,
adenosine; ALDOA, abnormal expression of aldolase A; ALKBH5, ALKB
homolog 5; C, cytidine; CCR4-NOT, carbon catabolite repressor 4-negative on
TATA; circRNAs, circular RNAs; CSF-1R, colony stimulating factor-1 receptor;
CTLA-4, cytotoxic T-cell lymphocyte-associated protein 4; DCs, dendritic cells;
ECM, extracellular matrix; eIF, eukaryotic translation initiation factor; EMT,
epithelial-mesenchymal transition; f6A, N6-formyladenosine; FDA, Food and
Drug Administration; FTO, fat mass and obesity-associated protein; G, guanosine;
H3K36me3, histone H3 lysine 36 trimethylation; HCC, hepatocellular carcinoma;
HDGF, hepatoma-derived growth factor; HER2, human epidermal growth factor
receptor 2; HIF, hypoxia-inducible factor; hm6A, N6-hydroxymethyladenosine;
HNRNP, heterogeneous nuclear ribonucleoprotein; IDO1, indoleamine-pyrrole
2,3-dioxygenase 1; IFN-γ, interferon γ; IGF2BP, insulin-like growth factor-
2 mRNA-binding protein; IL, interleukin; IRAK3, IL-1 receptor-associated
kinase 3; LAG-3, lymphocyte activation gene-3; lncRNAs, long non-coding
RNAs; m1A, N1-methyladenosine; m6A, N6-methyladenosine; m6Am, N6, 2′-O-
dimethyladenosine; MDSCs, myeloid-derived suppressor cells; MEIOC, meiosis-
specific coiled-coil domain; METTL, methyltransferase-like; mRNA, messenger
RNA; MHC I, major histocompatibility complex class I; mRNP, messenger
ribonucleoprotein; MTC, methyltransferase complex; NF-κB, nuclear factor
kappa-B; NGS, next-generation sequencing; OS, overall survival; PABP, poly(A)
binding protein; PD-1, programmed death receptor 1; PD-L1, programmed
death receptor ligand 1; RBM 4, RNA-binding motif 4; PFS, progression-free
survival; ROC, receiver operating characteristic curve; rRNAs, ribosomal RNAs;
SAH, S-adenosyl homocysteine; SAM, S-adenosylmethionine; SASP, senescence-
associated secretory phenotype; snRNAs, small nuclear RNAs; snoRNAs, small
nucleolar RNAs; SRSF, splicing factor serine- and arginine-rich splicing factor;
TAMs, tumor-associated macrophages; TEK, tyrosine kinase endothelial; TGF-β,
transforming growth factor-β; TIGIT, T-cell immunoglobulin and ITIM domain;
TILs, tumor-infiltrating lymphocytes; TIM-3, T-cell immunoglobulin and mucin-
domain containing-3; TLR4, toll-like receptors 4; TME, tumor microenvironment;
Tregs, regulatory T cells; U, uridine; VEGF, vascular endothelial growth factor;
VHL, von Hippel-Lindau; VIRMA, vir-like m6A methyltransferase associated;
VISTA, V-domain Ig suppressor of T cell activation; WTAP, Wilms’ tumor 1-
associated protein; YTH, YT521-B homology; YTHDC2, YTH domain-containing
protein 2; YTHDFs, YTH domain-containing family; ZC3H13, zinc finger CCCH-
type containing 13; ZCCHC4, zinc finger CCHC-type containing 4.

immunotherapy (Galon and Bruni, 2019). Briefly, depending on
the response rates to immunotherapy, tumors are commonly
divided into “hot tumors,” whose TME is characterized by the
presence of tumor-infiltrating lymphocytes (TILs) and molecular
signatures of immune activation, and “cold tumors,” whose TME
is characterized by the absence of TILs and neoantigens (Galon
et al., 2007; Camus et al., 2009; Van Allen et al., 2015; Gajewski
et al., 2017; Huang et al., 2017). Consequently, numerous studies
have aimed to turn cold tumors into hot ones (Rosenberg
and Restifo, 2015; Sharma and Allison, 2015). For instance,
recruitment of CD8+ T cells into cold tumors by rescuing
interferon γ (IFN-γ) improves the immunopotentiating effect
of dendritic cells (DCs) (Li X. et al., 2021). Several strategies
have been proposed to turn cold tumors into hot tumors:
enhancing inflammation in the TME of cold tumors, inhibiting
the peritumoral immunosuppressive state, targeting aberrant
tumor vasculature, attenuating tumor-cell-intrinsic pathways,
and increasing TILs (Ochoa et al., 2020). Nevertheless, the
underlying mechanisms whereby cold tumors are formed have
yet to be determined.

N6-Methyladenosine (m6A) modification, which was first
discovered in the 1970s, has gained increasing attention for its
important role in eukaryotic epigenetic regulation (Desrosiers
et al., 1974; Huang et al., 2020a). Indeed, eukaryotic m6A
messenger RNA (mRNA) modification is intimately related with
almost all cellular and biological processes (Roignant and Soller,
2017). Recently, it was shown that m6A RNA modification has
a close relationship with the immune response in the TME,
suggesting its potential molecular role in the formation of cold
tumors and use as a target to improve anticancer immunotherapy
(Han D. et al., 2019). However, the researches focus on m6A
RNA modification in tumor immunology is a novel frontier in
cancer research, which not only reveals a new layer of epigenetic
regulation in cancer by regulating immune response but can
also lead to the development of effective novel therapeutics. In
this review, we first describe the TME, cold and hot tumors,
and m6A RNA modification. Then, we focus on the underlying
mechanisms whereby m6A RNA modification may be implicated
in cold tumor formation. Finally, we discuss the potential clinical
implications of m6A RNA modification in cancer, and the
immunotherapeutic strategies available for its targeting.

TME IN HOT AND COLD TUMORS

Hot, Altered, and Cold Tumors
In 1863, Rudolf Virchow first observed that tumor tissues
contain leukocytes, indicating an intimate correlation between
inflammation and cancer (Balkwill and Mantovani, 2001).
Over the past decades, studies involved in elucidating cancer-
associated mechanisms have increased our understanding
of the complex TME, which is composed of cellular and
non-cellular components. The cellular components include
fibroblasts and tumor cells, vascular endothelial cells, and
immunosuppressive and antitumor immune cells; extracellular
matrix (ECM), oxygen, and metabolites constitute the non-
cellular components (Binnewies et al., 2018). The composition
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of the TME explains why traditional chemoradiotherapeutic
approaches directly targeting tumor cells are often non-effective.
Immunotherapy is an emerging clinical therapeutic approach
that focuses on targeting immune cells. It is worth noting
that a wide range of tumor patients exhibit resistance to
immunotherapy. It is generally accepted that the efficacy of
immunotherapeutic approaches and prognosis depend on the
density and diversity of immune cells within the tumor site
(Fridman et al., 2012). Accordingly, tumors are classified
into hot (highly infiltrated) and cold (non-infiltrated) tumors
based on the presence and absence of TILs, respectively. Hot
tumors appear to have an effective response to anti-CTLA-
4, anti-PD-1, and anti-PD-L1 immunotherapies, while cold
tumors do not respond to these immunotherapies (Gajewski,
2015). Hot tumors are characterized by high levels of TILs,
accumulation of proinflammatory cytokines such as IFN-γ,
activation of inhibitory checkpoints (CTLA-4, PD-L1, etc.),
genomic instability, presence of immunosuppressive factors
such as indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1), and the
activation of major histocompatibility complex class I (MHC I).
In contrast, cold tumors are characterized by poor lymphocyte
infiltration inside the tumor and tumor stroma, absence of PD-
L1, low mutational burden, and poor antigen presentation (loss of
MHC I, IFN-γ defects, etc.) (Hegde et al., 2016). In 2009, Camus
et al. (2009) described another type of tumors known as “altered
tumors,” which contain stromal T cells, prevent T-cell infiltration
inside of tumors, and present phenotypes that are between
those of hot and cold tumors. Altered tumors are characterized
by the activation of tumor-cell-intrinsic oncogene pathways
such as Wnt/β-catenin and nuclear factor kappa-B (NF-κB);
presence of tumor-soluble inhibitory mediators such as vascular
endothelial growth factor (VEGF) and transforming growth
factor-β (TGF-β); increased levels of immunosuppressive cells
such as myeloid-derived suppressor cells (MDSCs), regulatory
T cells (Tregs), and tumor-associated macrophages (TAMs);
epigenetic changes in the TME; and metabolic competition
(hypoxia, overconsumption of glucose, etc.) (Galon and Bruni,
2019). Both cold and altered tumors are derived from tumor-cell-
intrinsic immunosuppression and impede effective antitumor
immunity. Thus, in order for immunotherapies to have more
impact, cold/altered tumors must be turned into hot tumors
(Galon and Bruni, 2019; Ochoa et al., 2020).

Strategies to Turn Cold Tumors Into Hot
Tumors
Based on the classification into hot, altered, and cold tumors,
researchers have explored different strategies to turn cold
tumors into hot tumors. For example, the colony-stimulating
factor-1 receptor (CSF-1R) is an attractive combination
immunotherapeutic agent for tumor treatment by targeting
TAMs (Mok et al., 2014; Cannarile et al., 2017; Razak et al.,
2020). Furthermore, combined intratumoral interleukin (IL)-12
application with CTLA-4 was shown to lead to glioblastoma
eradication through the elevation of CD4+ T-cell counts and
Treg attenuation (Vom et al., 2013). As our understanding of
cold and hot tumors expanded, strategies to turn cold tumors
into hot tumors have been reported including creating local

inflammation in the TME, increasing the levels of TILs, and
decreasing levels of immunosuppressive cells by neutralizing
immunosuppressive factors, targeting cellular metabolic and
epigenetic reprogramming, normalizing tumor vasculature, and
targeting tumor-cell-intrinsic oncogene pathways (Duan et al.,
2020; Ochoa et al., 2020). An overview of the characteristics of
hot, altered, and cold tumors as well as the strategies to turn cold
tumors into hot ones is presented in Figure 1.

m6A RNA MODIFICATION

Discovery and Characteristics of m6A
RNA Modification
Epigenetic events are implicated in almost all major bioprocesses.
These epigenetic events, which consist of DNA methylation,
histone modification, and RNA-mediated processes, are
reversible and dynamic chemical modifications (Ling and Ronn,
2019). These modifications are cooperatively interpreted by a
multitude of guiding enzymes that can be classified into “writer,”
“eraser,” and “reader” proteins. Disruption of any of these
proteins contributes to disease development, including cancer
(Dawson, 2017). DNA methylation and histone modification
are essential for controlling chromatin remodeling and gene
expression epigenetically. Nevertheless, the field of RNA-
mediated processes has not moved forward very much (Deng
et al., 2018; Jung et al., 2020). There is still a lot to uncover in
terms of RNA-mediated processes, their regulation, and effects,
etc., but more than 160 chemical RNA modifications have been
identified since the 1950s, advancing our understanding of the
biogenesis and function of RNA (Saletore et al., 2012). m6A, the
methylation of adenosine (A) at the N6 position, was the first
identified RNA modification and has been defined as the most
widespread internal chemical modification in eukaryotic mRNA.
Furthermore, m6A has also been identified in non-coding RNAs,
such as ribosomal (rRNAs), small nuclear (snRNAs), small
nucleolar (snoRNAs), micro- (microRNAs), long non-coding
(lncRNAs), and circular (circRNAs) RNAs (Dominissini et al.,
2012). Next-generation sequencing (NGS) studies have shown
that m6A RNA modification sites in mRNA, microRNAs,
lncRNAs, and circRNAs are non-randomly distributed but
have the DRACH consensus sequence (D = G/A/U; R = G/A;
H = A/C/U; G/C/U: guanosine/cytidine/uridine) and are highly
enriched in the coding sequence, 3′-untranslated region (3′-
UTR), and around stop codons (Meyer et al., 2012). Notably,
the development of NGS-based approaches for m6A sequencing
promises to delineate the landscape of the m6A epitranscriptome
in various cellular contexts (Garcia-Campos et al., 2019;
Huang et al., 2020b). In line with DNA methylation and histone
modification, m6A RNA modification is a reversible and dynamic
process that can be installed, removed, and recognized by its
writers, erasers, and readers, respectively (Wang et al., 2020d;
Figure 2).

m6A Writers
m6A writers install m6A through a methyltransferase complex
(MTC) composed of several components. Methyltransferase-like
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FIGURE 1 | Schematic representation of TME-dependent hot, altered, and cold tumors and strategies to turn up cold tumors into hot tumors. (A) TME consist of
cellular components: tumor cells, fibroblast cells, DC, immunosuppressive cells [MDSCs, regulatory T cells (TAMs)], and lymphocyte (mainly T cell). Non-cellular
components: tumor vasculature, ECM, oxygen, and metabolites. (B) Based on the TILs within the tumor site and response to immune checkpoint blockade, the
tumors are classified into cold, altered, and cold tumors. Cold tumors are non-effective to immune checkpoint blockade and characterized with absence of TILs,
PD-L1, MHC I, IFN-γ, and DC, which are all essential for neoantigen presentation. Furthermore, cold tumors are presented as low mutational burden in tumor cells.
Altered tumors are represented with stromal T cells as well as the factors which prevent infiltration of T cells into the tumors, such as activation of tumor-cell-intrinsic
oncogene pathways, upregulation of soluble inhibitory mediators (VEGF and TGF-β), and presence of immunosuppressive cells (MDSCs, TAMs, and regulator T cell).
Moreover, epigenetic changes and metabolic competition (hypoxia and overconsumption of glucose) in tumor microenvironment are presented in the altered tumors.
Hot tumors are represented with high degree of TILs and sensitive to immune checkpoint blockade. Additionally, hot tumors are characterized with accumulation of
proinflammatory cytokines (IFN-γ, etc.), inhibitory checkpoints (CTLA-4, PD-L1, etc.), IDO1, MHC I, and genomic instability (high tumors mutation burden).
(C) Strategies to turn up cold tumors into hot tumors including creating local inflammation in TME, increasing TILs, and decreasing immunosuppressive cells by
neutralizing immunosuppressive factors, targeting cellular metabolic reprogramming, targeting epigenetic reprogramming, targeting tumor-cell-intrinsic oncogene
pathways, and normalizing tumor vasculature. CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; DC, dendritic cell; ECM, extracellular matrix; IDO1,
indoleamine 2,3-dioxygenase 1; IFN-γ, interferon gamma; TME, tumor microenvironment; MDSCs, myeloid derived suppressor cells; MHC I, major histocompatibility
complex class I; PD-L1, programmed death-ligand 1; TAMs, tumor-associated macrophage; TGF-β, transforming growth factor-beta; TILs, tumor-infiltrating
lymphocytes; VEGF, vascular endothelial growth factor.

3 (METTL3), METTL14, and Wilms’ tumor 1-associated protein
(WTAP) are core components of the m6A MTC (Bokar et al.,
1997). METTL3 is the only catalytic subunit, which installs
m6A by binding to the methyl donor, S-adenosylmethionine

(SAM), and transferring the methyl groups to adenine in the
RNA molecule, producing S-adenosyl homocysteine (SAH).
METTL3 and METTL14 are co-localized in nuclear speckles
and form METTL3-METTL14 heterodimer complexes in a 1:1
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FIGURE 2 | Overview RNA m6A modification by its “writers,” “erasers,” and “readers.” The RNA m6A have a consensus sequence DRACH sites and methylated A at
the N6 position. In nucleus, m6A methylation in RNA can be installed by m6A writers complex, including METTL3, METTL14, WTAP, RBM15, RBM15B, and
ZC3H13. RNA m6A methylation also can be installed by several writers independently, including METTL16, METTL5, and ZCCHC4. The initiate of RNA m6A
modification is dependent on methyl donor SAM and terminate in SAH production. The RNA m6A can be reversibly and dynamically removed by m6A erasers in
nucleus composed of FTO, ALKBH5, and ALKBH3. FTO-mediated RNA m6A demethylation is αKG dependent, and ALKBH5-mediated RNA m6A demethylation is
Fe(II) dependent. The RNA m6A can be recognized by m6A readers both in the nucleus and cytoplasm. Cytoplasmic m6A readers include YTHDF1, YTHDF2,
YTHDF3, IGF2BP1, IGF2BP2, IGF2BP3, and YTHDC2. YTHDF1 and YTHDC2 promote RNA translation. YTHDF2 facilitates RNA degradation. YTHDF3 cooperates
with YTHDF1 to promote RNA translation and synergy with YTHDF2 to facilitate RNA degradation. IGF2BP1, IGF2BP2, and IGF2BP3 are essential for promoting the
stability and translation of RNA. Nuclear m6A readers consist of YTHDC1, HNRNPA2B1, HNRNPC, and HNRNPG. YTHDC1 contributes to RNA splicing and RNA
export from nucleus to cytoplasm. HNRNPA2B1 causes primary microRNA processing. HNRNPC and HNRNPG RNA end with structure switching. m6A,
N6-methyladenosine; A, adenosine; C, cytidine; METTL, methyltransferase-like; WTAP, Wilms’ tumor 1-associated protein; RBM, RNA-binding motif; ZC3H13, zinc
finger CCCH-type containing 13; ZCCHC4, zinc finger CCHC-type containing 4; SAM, S-adenosylmethionine; SAH, S-adenosyl homocysteine; FTO, fat mass and
obesity-associated protein; ALKBH, ALKB homolog; αKG, α-ketoglutarate; YTHDF, YT521-B homology domain-containing family; YTHDC, YT521-B homology
domain-containing protein; IGF2BP, insulin-like growth factor-2 mRNA-binding protein; HNRNP, heterogeneous nuclear ribonucleoprotein.

ratio. METTL14 also contains the catalytic donor; however,
METTL14 itself is not a catalytic subunit but maintains METTL3
conformation and identifies catalytic substrates (Wang P. et al.,
2016; Wang X. et al., 2016). Moreover, METTL14 cooperates
with the histone mark, histone H3 lysine 36 trimethylation
(H3K36me3), to carry out m6A RNA methylation, suggesting a
co-transcriptional mechanism underlying histone modification
and RNA methylation in mammalian transcriptomes (Huang
et al., 2019). WTAP does not have catalytic function but facilitates
m6A deposition through recruitment of METTL3-METTL14
heterodimer complexes as well as localization to nuclear speckles
(Ping et al., 2014). RNA-binding motif protein 15 (RBM15)

and RBM15B, which have no catalytic function, interacts with
METTL3 and WTAP and assists these two core components
to reach their target RNA sites for m6A RNA modification in
nuclear speckles (Knuckles et al., 2018). Zinc finger CCCH-type
containing 13 (ZC3H13) controls the MTC by binding to WTAP
and is required for the nuclear localization of the ZC3H13-
WTAP-Virilizer-Hakai complex, which is essential for facilitating
m6A methylation and mouse embryonic stem cell pluripotency
(Wen et al., 2018). Vir-like m6A methyltransferase associated
(VIRMA), also called KIAA1429, mediates preferential m6A
mRNA methylation in the 3′-UTR and near stop codon (Yue
et al., 2018). Furthermore, the MTC contains other components,
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such as METTL16 and METTL5. METTL16 has been suggested
to function alone in catalyzing m6A modification on the U6
snRNA (Warda et al., 2017), whereas METTL5 acts as an
independent RNA methyltransferase and is required for 18S
rRNA m6A modification (Leismann et al., 2020). Moreover,
zinc finger CCHC-type containing 4 (ZCCHC4) was identified
as an RNA methyltransferase in 2019 and is essential for the
independent methylation of 28S rRNA (Ma et al., 2019).

m6A Erasers
m6A RNA modification can be removed by a handful of
specific demethylases known as erasers. The fat mass and
obesity-associated protein (FTO) was identified as the first m6A
demethylase in 2011 (Jia et al., 2011). FTO is an α-ketoglutarate
(αKG)-dependent demethylase located in both the cell nucleus
and cytoplasm (Gulati et al., 2014). FTO first oxidizes m6A
to form N6-hydroxymethyladenosine (hm6A). Then, hm6A is
converted to N6-formyladenosine (f6A). Lastly, f6A is converted
to adenosine, thus removing the m6A RNA modification in
the nucleus (Wang et al., 2020d). Furthermore, FTO also
demethylates N6,2′-O-dimethyladenosine (m6Am) in snRNA
and N1-methyladenosine (m1A) in tRNA in the nucleus (Wei
et al., 2018). It is worth mentioning that FTO can mediate
mRNA and cap m6Am demethylation as well as tRNA m1A
demethylation in the cytoplasm (Wei et al., 2018). Moreover,
ALKB homolog 5 (ALKBH5) is another vital m6A eraser, which is
Fe(II) dependent, locates in the nucleus, and seems to be an m6A-
specific demethylase involved in m6A RNA modification (Zheng
et al., 2013). Moreover, Ueda et al. (2017) recently identified
ALKBH3, an m6A eraser suggested to be present in both, in
the cytoplasm and nucleus, promoting the demethylation of
target mammalian tRNA.

m6A Readers
The reversible processes of m6A RNA installation and removal
occur through the alteration of the RNA structure. RNA-
mediated biological functions are also regulated by m6A-binding
proteins, which are called m6A readers (Li A. et al., 2017).
On the one hand, cytoplasmic mRNA is decoded in the
ribosome to produce a protein. On the other hand, messenger
ribonucleoprotein (mRNP) foci are essential for the storage
or degradation of cytoplasmic RNA. The YT521-B homology
(YTH) domain-containing proteins (YTHDFs) and insulin-like
growth factor-2 mRNA-binding proteins (IGF2BPs) play crucial
roles in RNA-mediated biological functions by binding to m6A
domains in the cytoplasm. YTHDFs include YTHDF1, YTHDF2,
and YTHDF3. YTHDF1 selectively binds to m6A and recruits
translation initiation factors, including the eukaryotic translation
initiation factors (eIFs) 3/4E/4G, poly(A) binding protein
(PABP), and 40S ribosomal subunit, to magnify RNA translation
(Wang et al., 2015). The first identified m6A reader was YTHDF2,
which recognizes m6A-modified RNA degradation sites via its
C-terminal region and recruits the carbon catabolite repressor 4-
negative on TATA (CCR4-NOT) deadenylase complex through
its N-terminal region (Du et al., 2016; Zhang C. et al., 2020).
YTHDF3 has overlapping roles in RNA fate through augmenting
RNA translation in cooperation with YTHDF1 and promoting

RNA degradation via synergy with YTHDF2 (Li A. et al., 2017;
Shi et al., 2017). Cytoplasmic IGF2BPs, including IGF2BP1,
IGF2BP2, and IGF2BP3, bind directly to m6A-modified RNA
through its K homology domains and promote the stability
and translation of RNA (Kataoka, 2019). Cytoplasmic YTH
domain-containing protein 2 (YTHDC2) is another m6A reader
that can recognize m6A and bind to meiosis-specific coiled-coil
domain (MEIOC) and 5′-3′exoribonuclease 1, further increasing
m6A-modified RNA translation (Hsu et al., 2017). Notably,
m6A readers can also bind m6A in the nucleus. For example,
YTHDC1 promotes exon inclusion in RNA by amplifying serine-
and arginine-rich splicing factor 3 (SRSF3) or blocking serine-
and arginine-rich splicing factor 10 (SRSF10) in the nucleus
(Xiao et al., 2016). Furthermore, YTHDC1 plays a role in
facilitating m6A-methylated RNA export from the nucleus to the
cytoplasm (Roundtree et al., 2017). Additionally, heterogeneous
nuclear ribonucleoproteins (hnRNPs), including HNRNPA2B1,
HNRNPC, and HNRNPG, recognize m6A and act as “m6A
switches” that accelerate RNA and primary microRNA processing
by changing the RNA structure (Alarcon et al., 2015; Liu et al.,
2015; Zhou et al., 2019).

In summary, studies have shown that m6A RNA modifications
are implicated in a wide range of biological processes.
Nevertheless, structural and biochemical data on m6A writers,
erasers, and readers need to be further verified, and the detailed
mechanisms regulated by these proteins remain undetermined.
It is reasonable to believe that there are more m6A writer,
eraser, and reader components, and that the mechanism
underlying these protein-mediated RNA modifications will
be elucidated with the development of quantification and
sequencing methodologies (Bodi and Fray, 2017; Chen et al.,
2019). A summary of the currently known m6A writers, erasers,
and readers is presented in Table 1.

ABERRANT m6A RNA MODIFICATION IN
COLD TUMORS

With the breakthrough in the field of m6A RNA modification
research during the past decade, reversible and dynamic m6A
RNA modifications have been reported in almost all normal
physiological processes. Comprehensive studies have shown that
the regulators of m6A RNA modification are systematically
implicated in the formation of complex TMEs, affecting
the immune microenvironment, tumor mutational burden,
neoantigen load, immunotherapy response, and even survival
(Zhang B. et al., 2020; He et al., 2021; Wu et al., 2021; Xu
et al., 2021b). Recently, studies have demonstrated that the
aberration/imbalance of m6A RNA modification has a close
relationship with immune disorders in cancer (Li H. B. et al.,
2017; Su et al., 2020; Kim et al., 2021). These findings suggest a
role of m6A RNA modification in cold tumors.

m6A RNA Modification and Immunity in
the TME
In colorectal cancers with low mutational burden, which
are resistant to immunotherapy, depletion of METTL3 and
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TABLE 1 | The locations and mechanisms of RNA m6A modification regulators.

Categories Regulators Locations Mechanisms References

m6A “writers” METTL3 Nucleus The only catalytic subunit that installs m6A methylation by binding to
SAM and producing SAH

Wang P. et al., 2016; Wang X.
et al., 2016

METTL14 Nucleus Forming METTL3-METTL14 heterodimer and steadies METTL3
conformation and identifies catalytic substrates; cooperates with the
H3K36me3 to install RNA m6A methylation

Wang P. et al., 2016; Wang X.
et al., 2016; Huang et al., 2019

WTAP Nucleus Facilitating m6A deposition by recruiting METTL3-METTL14
heterodimer complex localization to nuclear speckles

Ping et al., 2014

RBM15/15B Nucleus Assisting METTL3 and WTAP to their target RNA sites for RNA m6A
modification in nuclear speckles

Knuckles et al., 2018

ZC3H13 Nucleus Binding to WTAP and induces the nuclear localization of
ZC3H13-WTAP-Virilizer-Hakai complex

Wen et al., 2018

VIRMA Nucleus Guiding region-selective mRNA m6A modification in 3′-UTR and near
stop codon

Yue et al., 2018

METTL16 Nucleus Functioning alone in catalyzing m6A modification on U6 snRNA Warda et al., 2017

METTL5 Nucleus Acting alone in catalyzing 18S rRNA m6A modification Leismann et al., 2020

ZCCHC4 Nucleus Functioning alone in catalyzing 28S rRNA m6A modification Ma et al., 2019

m6A “erasers” FTO Nucleus Promoting m6A modification in RNA removed dependent on αKG;
inducing RNA demethylation of m6Am in snRNA and m1A in tRNA

Gulati et al., 2014; Wei et al.,
2018

FTO Cytoplasm Promoting m6Am demethylation as well as tRNA m1A demethylation Wei et al., 2018

ALKBH5 Nucleus Inducing m6A demethylation dependent on Fe (II) Zheng et al., 2013

ALKBH3 Nucleus/cytoplasm Promoting demethylation of target mammalian tRNA Ueda et al., 2017

m6A “readers” YTHDF1 Cytoplasm Recruiting eIF3/ 4E/4G, PABP, and 40S ribosomal subunit to magnify
RNA translation

Wang et al., 2015

YTHDF2 Cytoplasm Recognizing m6A-modified RNA degradation sites by its C-terminal
region, and recruiting carbon CCR4-NOT deadenylase complex by its
N-terminal region

Du et al., 2016; Zhang C. et al.,
2020

YTHDF3 Cytoplasm Increasing RNA translation in cooperation with YTHDF1 and promoting
RNA degradation by synergy with YTHDF2

Li A. et al., 2017; Shi et al., 2017

IGF2BP1/ 2/ 3 Cytoplasm Promoting the stability and translation of RNA by binding to
m6A-modified RNA through its K homology domains

Kataoka, 2019

YTHDC2 Cytoplasm Increasing m6A-modified RNA translation by binding to MEIOC and
5′-3′exoribonuclease 1

Hsu et al., 2017

YTHDC1 Nucleus Promoting RNA splicing and facilitating m6A-methylated RNA
exportation from nucleus to cytoplasm

Xiao et al., 2016; Roundtree
et al., 2017

HNRNPA2B1 Nucleus Acting as “m6A switch” to accelerate primary microRNA processing Alarcon et al., 2015

HNRNPC/ G Nucleus Acting as “m6A switch” to change the structure of RNA Liu et al., 2015; Zhou et al., 2019

Abbreviations: 3′-UTR: 3′ untranslated region; αKG: α-ketoglutarate; ALKBH: ALKB homolog; CCR4-NOT: carbon catabolite repressor 4-negative on TATA; eIF:
eukaryotic translation initiation factor; FTO: fat mass and obesity-associated protein; H3K36me3: histone H3 lysine 36 trimethylation; HNRNP: heterogeneous nuclear
ribonucleoprotein; IGF2BP: insulin-like growth factor-2 mRNA-binding protein; m1A: N1-methyladenosine; m6A: N6-methyladenosine; m6Am: N6, 2′-O-dimethyladenosine;
METTL: methyltransferase-like; MEIOC: meiosis-specific coiled-coil domain; PABP: poly(A) binding protein; PD-1: programmed death receptor 1; RBM: RNA-binding
motif; rRNA: ribosomal RNAs; SAH: S-adenosyl homocysteine; SAM: S-adenosylmethionine; SnRNA: small nuclear RNAs; tRNA: transfer RNA; VIRMA: vir-like m6A
methyltransferase associated; WTAP: Wilms’ tumor 1-associated protein; YTHDC: YTH domain-containing protein; YTHDF: YTH domain-containing family; ZC3H13: zinc
finger CCCH-type containing 13; ZCCHC4: zinc finger CCHC-type containing 4.

METTL14 increases the expression of CD8+ T cells and the
secretion of IFN-γ via the m6A reader YTHDF2 (Wang et al.,
2020b). Another study showed that tumors with decreased levels
of METTL3 have increased DC infiltration, MHC expression, and
levels of costimulatory and adhesion molecules in the TME (Shen
et al., 2021a). On the contrary, loss of METTL3 has also been
shown to promote tumor growth and metastasis. For example,
METTL3-deficient mice show increased immunosuppressive
cell (TAMs, Tregs) infiltration into tumors (Yin et al., 2021).
Yao et al. (2021) showed that METTL3 is responsible for the
expression of T follicular helper cells, which are specialized
effector CD4+ T cells. Loss of METTL3 results in inactivation of
T follicular helper cell differentiation by promoting the decay of

T follicular helper cell signature genes, including Tcf7 transcripts.
Using CRISPR-Cas9 screening, Tong et al. (2021) demonstrated
that loss of METTL3 leads to the removal of m6A RNA
modification on Irakm IL-1 receptor-associated kinase 3 (IRAK3)
mRNA, slowing down its degradation and ultimately attenuating
toll-like receptor 4 (TLR4) signaling-mediated macrophage
activation. Particularly, the authors suggested that METTL3
augments the tumoricidal ability of macrophages by promoting
the polarization bias of TAMs toward the M1 macrophage
phenotype and rescuing infiltrating CD4+ and CD8+ T cells
(Tong et al., 2021). Recently, mechanistic investigations found
a positive role of ALKBH5 in Tregs and MDSCs by targeting
Mct4/Slc16a3. Notably, low levels of ALKBH5 in clinical settings
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are correlated with low Treg cell numbers (Li et al., 2020c).
However, another study by Tang et al. (2020) showed that
deletion of ALKBH5 decreases the infiltration of CD8+ T cells
in pancreatic adenocarcinoma.

Lysosomal proteases are responsible for antigen degradation
in DCs (Cebrian et al., 2011). In a study by Han D. et al. (2019),
YTHDF1 was shown to have a negative correlation with CD8+

T-cell infiltration in colon cancer patients. Mechanistically,
YTHDF1 in DCs can recognize lysosomal proteases, leading to
the inactivation of cross-presentation. Loss of YTHDF1 promotes
DC-mediated cross-presentation of tumor antigens and cross-
priming of CD8+ T cells in vitro and in vivo (Han D. et al.,
2019). Additionally, other m6A RNA modification regulators
have also been found to have a close relationship with immune
cells in tumors. For instance, the expression of METTL14 and
ZC3H13 is positively correlated with infiltrating levels of CD4+

T cells, CD8+ T cells, and DCs, but negatively correlated with
those of Tregs in breast cancer (Gong et al., 2020). In head
and neck squamous cell carcinoma, low expression of YTHDC2
is positively correlated with the low levels of B cells, CD8+

T cells, CD4+ T cells, neutrophils, and infiltrating DCs (Li
et al., 2020d). IFN-γ is the main proinflammatory cytokine
produced by cytotoxic T cells, enhancing antigen presentation to
cytotoxic T cells by facilitating MHC I and immunoproteasome
expression in tumor cells (Cheon et al., 2014). YTHDF2
is responsible for RNA-binding motif 4 (RBM4)-mediated
suppression of IFN-γ-induced M1 macrophage polarization
and glycolysis (Huangfu et al., 2020). In a recent study by
Shen et al. (2021a), downregulation of METTL3 was shown to
contribute to increasing the levels of MHC molecules (Shen
et al., 2021a). More recently, the levels of YTHDC2, HNRNPC,
and VIRMA were suggested to be negatively correlated, whereas
WTAP was positively correlated, with MHC molecules in
endometrial cancer (Zhao et al., 2021). A comprehensive
study showed that a low risk score of m6A signature is
significantly correlated with a high expression of immune cell
checkpoint molecules, such as PD-1, PD-L1, and CTLA-4 (Mo
et al., 2020). Nevertheless, the mechanisms whereby m6A RNA
modification regulators exert their action in immune cells of the
TME remain unclear.

m6A RNA Modification and
Tumor-Cell-Intrinsic Pathways
Several studies have shown that METTL3 acts as an oncogenic
regulator by activating tumor-cell-intrinsic pathways in
tumors. For example, in hepatoblastoma, upregulation of
METTL3 promotes the proliferation, migration, and invasion
of hepatoblastoma cells by activating the Wnt/β-catenin
signaling pathway (Liu et al., 2019; Cui et al., 2020). In
colorectal cancer, METTL3 promotes tumor metastasis,
stemness, and chemoresistance through activation of MAPK and
Wnt/β-catenin signaling (Peng et al., 2019; Liu et al., 2021b).
Furthermore, METTL3 facilitates the proliferation and invasion
of esophageal cancer cells via activation of Wnt/β-catenin
and AKT signaling (Hou et al., 2020). In contrast, Yin et al.
(2021) recently showed that ablation of METTL3 orchestrates

tumor growth and metastasis by facilitating ERK-NF-κB/STAT3
signaling. Liu et al. (2018) showed that METTL14 mutation
and loss of METTL3 expression contribute to increased
proliferation and tumorigenicity of endometrial cancer cells
by activating AKT signaling. Moreover, METTL3 knockdown
in a multiplicity of tumor cell lines leads to the activation
of PI3K/AKT/mTOR signaling (Zhao et al., 2020). Wang Y.
et al. (2021) indicated that METTL14 may be a favorable
prognostic factor for clear cell renal cell carcinoma (ccRCC).
Mechanistically, loss of METTL14 increases gastric cancer cell
proliferation and invasiveness by promoting the activation
of Wnt and PI3K/AKT signaling. In contrast, knockdown of
FTO restricts the activation of Wnt and PI3K/AKT signaling
(Zhang et al., 2019). Recently, Liu et al. (2021a) showed that
METTL3 and METTL14 are required for senescence-associated
secretory phenotype (SASP)-mediated tumor-promoting and
immune-surveillance functions of senescent cells through the
activation of NF-κB signaling. Frizzled proteins are key Wnt
receptors whose activation contributes to the stabilization of
cytoplasmic β-catenin (MacDonald and He, 2012). The activity
of FTO and ALKBH5 lead to PARP inhibitor resistance in BRCA-
deficient epithelial ovarian cancer (EOC) cells by upregulating
the Wnt/β-catenin pathway through stabilization of Frizzled 10
protein (Fukumoto et al., 2019). YTHDF1 has been shown to
promote stemness, tumor cell proliferation, and metastasis by
activating the Wnt/β-catenin pathway through the stabilization
of Frizzled 5 and 7 (Bai et al., 2019; Han et al., 2020; Liu et al.,
2020; Pi et al., 2021).

m6A RNA Modification and Soluble
Inhibitory Mediators in the TME
As mentioned earlier, altered tumors are characterized by the
presence of tumor angiogenesis. METTL3 has been shown
to facilitate miR-143-3p biogenesis, promoting the brain
metastasis in lung cancer patient samples through the miR-143-
3p/Vasohibin/VEGFA axis (Wang et al., 2019). In line therewith,
Wang G. et al. (2021) showed that METTL3 is responsible
for the activation of tyrosine kinase endothelial (TEK)-VEGFA-
mediated tumor progression and angiogenesis in bladder cancer.
In colon cancer, the m6A RNA modification reader, IGF2BP3, can
bind to the VEGF mRNA to promote its expression and stability.
Thus, loss of IGF2BP3 restricts angiogenesis by inhibiting VEGF
(Yang et al., 2020). Upregulation of TGF-β in the TME also
contributes to altered tumor formation by suppressing T-cell
proliferation and stimulating Treg development (Chen and
Ten Dijke, 2016). In TGF-β-induced epithelial-mesenchymal
transition (EMT) of lung cancer cell lines, the level of METTL3
was found to be upregulated. Loss of METTL3 attenuates
TGF-β-induced morphological conversion of lung cancer cells,
their cell migration potential, and EMT progression (Wanna-
Udom et al., 2020). Mechanistic investigations found that
METTL3 increases TGF-β1 mRNA decay and impairs TGF-β1
translation progress. Furthermore, ablation of METTL3 disrupts
the autocrine action of TGF-β1 by interrupting TGF-β1 dimer
formation and TGF-β1-induced EMT in cancer cells (Li et al.,
2020a). Importantly, the level of VEGFA and content of TGF-β1
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in the TME are decreased in ALKBH5-deficient melanoma cells
(Li et al., 2020c).

m6A RNA Modification and Metabolic
Competition in the TME
Recently, m6A RNA modification was recognized to be
responsible for metabolic competition-mediated tumorigenesis.
Cancer cells with metabolic competition contribute to
tumorigenesis through inhibiting T-cell responses and increasing
T-cell depletion (Kedia-Mehta and Finlay, 2019). Upregulation of
ALKBH5 was shown to contribute to breast cancer initiation by
attenuating NANOG mRNA methylation and thereby increasing
NANOG expression under hypoxia (Zhang et al., 2016). FTO
was found upregulated in tumor suppressor von Hippel-
Lindau (VHL)-deficient ccRCC. Mechanistically, FTO increases
metabolic reprogramming and survival of VHL-deficient ccRCC
cells by targeting SLC1A5 in a hypoxia-inducible factor (HIF)-
independent way (Xiao et al., 2020). Furthermore, Niu et al.
(2021) recently showed that the posttranscriptional regulation
of the abnormal expression of aldolase A (ALDOA) under
hypoxia was positively modulated by FTO-mediated m6A RNA
modification in a YTHDF2-dependent manner in liver cancer
cells, and hypoxia-mediated high level of ALDOA contributed to
liver cancer development by promoting glycolysis metabolism
and its terminal product lactate expression. Additionally,
FTO promotes tumor cell glycolysis by activating PI3K/AKT
signaling or in a YTHDF2-dependent manner (Liu et al., 2017;
Liu et al., 2021d). In addition, upregulation of METTL3 in
gastric cancer promotes tumor angiogenesis and glycolysis
by promoting IGF2BP3-dependent hepatoma-derived growth
factor (HDGF) mRNA stability, which is essential for increasing
in glycolysis by activating GLUT4 and ENO2 in gastric cancer
cells (Wang et al., 2020c).

m6A RNA Modification and Tumor
Mutational Burden
Tumors with high mutational burden carry neoantigens that
are sensitive to immune cells and immune checkpoint blockade
(Samstein et al., 2019). Recently, numerous systematic and
comprehensive studies have suggested a close relationship
between m6A RNA modification and mutational burden. m6A
RNA modification patterns are quantified as m6Ascore by
a specific procedure (Zeng et al., 2019). Zhang B. et al.
(2020) comprehensively investigated the m6A RNA modification
patterns of 1,938 gastric cancer samples based on 21 m6A
regulators and systematically analyzed the correlation between
the m6Ascore and TME cell-infiltrating characteristics. They
found that a low m6Ascore is markedly correlated with increased
mutational burden and activation of immunity and correlated
with increased neoantigen load and enhanced response to anti-
PD-1/L1 treatment (Zhang B. et al., 2020). Another study
showed a wide range of FTO, RBM15, and YTHDF1 inter-group
expression differences between high- and low- tumor mutational
burden cancer tissues (Liu et al., 2021c). Consistently, a recent
study indicated that there is a positive correlation between the
m6A signature and tumor mutational burden scores in 16 cancer

types (Shen et al., 2021b). Furthermore, in colon cancer patients,
a low m6Ascore is associated with high tumor mutational
burden, PD-L1 expression, and mutation rates in significantly
mutated genes (Chong et al., 2021). It is also noteworthy that
colorectal cancers with low mutational burden were suggested to
be resistant to anti-PD-1 immunotherapy through the inhibition
of IFN-γ-mediated CD8+ T-cell secretion by METTL3 and
METTL14 (Wang et al., 2020b). Nevertheless, the mechanisms
whereby m6A RNA modification regulates the tumor mutational
burden require further investigation.

Collectively, the mechanisms underlying m6A RNA
modification-mediated cold tumor formation include immune
cell regulation in the TME, targeting of tumor-cell-intrinsic
pathways, facilitation of soluble inhibitory mediators in the
TME, increase of metabolic competition in the TME, and effect
on tumor mutational burden. Notably, several specific m6A
regulators play dual roles in cold tumor formation, such as
METTL3, METTL14, and YTHDF1, suggesting the exact role
m6A RNA modification-mediated cold tumor formation is
tumor-type dependent. Furthermore, the abnormal expression
of m6A regulators contribute to cold tumor formation is not
through one mechanism alone, they always play roles in cold
tumor formation by several mechanisms. For example, METTL3
is involved in cold tumor formation via regulating immune
cell expression, targeting of tumor-cell-intrinsic pathways,
facilitating soluble inhibitory mediators, increasing metabolic
competition, and affecting tumor mutational burden together,
which indicated the extensive role of m6A RNA modification
in cold tumor formation. In addition, some different m6A
regulators are implicated in cold tumor formation by the same
mechanism, such as METTL3 and ALKBH5, they both lead to
cold tumor formation through VEGFA expression, indicating
they may play a role in the cold tumor formation synergistically,
which needs to be validated in the future. The studies involved
in m6A RNA modification in cold tumor are just getting started;
the related mechanism is still unclear and needs to be illustrated
in the future. An overview of the uncovered mechanisms till now
is presented in Figure 3.

POTENTIAL CLINICAL IMPLICATIONS
OF m6A RNA MODIFICATION IN
CANCERS

Considering the widespread role of m6A RNA modification in
tumorigenesis, it is reasonable to assume that the expression of
m6A writers, erasers, and readers might be used as diagnostic
or prognostic biomarkers for cancer patients. Recent studies
using Kaplan-Meier analysis and receiver operating characteristic
curve (ROC) have illustrated that METTL3 has potential
clinical implications in cancer. For instance, compared with
adjacent non-tumor tissues, METTL3 expression is upregulated
in hepatoblastomas. High METTL3 levels are associated with
continual recurrence and poor prognosis of hepatoblastoma
patients, suggesting that METTL3 could be used as a potential
diagnostic and prognostic biomarker for hepatoblastoma patients
(Liu et al., 2019; Cui et al., 2020). Furthermore, in bladder cancer,
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FIGURE 3 | The potential roles of RNA m6A modification in cold tumors. The mechanisms underlying RNA m6A modification-mediated cold tumors include
regulating the immune cells in TME, targeting tumor-cell-intrinsic pathways, facilitating soluble inhibitory mediators in TME, increasing metabolic competition in TME,
and affecting tumor mutation burden. ALKBH5, ALKB homolog 5; CTLA-4, cytotoxic T-cell lymphocyte-associated protein 4; DCs, dendritic cells; FTO, fat mass and
obesity-associated protein; HNRNP, heterogeneous nuclear ribonucleoprotein; M1, M1 macrophages; MDSCs, myeloid-derived suppressor cells; METTL,
methyltransferase-like; MHC, major histocompatibility complex class; NF-κB, nuclear factor kappa-B; HIF, hypoxia-inducible factor; IFN-γ, interferon γ; IRAK3, IL-1
receptor-associated kinase 3; IGF2BP, insulin-like growth factor-2 mRNA-binding protein; PD-1, programmed death receptor 1; PD-L1, programmed death receptor
ligand 1; RBM, RNA-binding motif; SASP, senescence-associated secretory phenotype; TAMs, tumor-associated macrophages; TGF-β, transforming growth
factor-β; TLR4, toll-like receptors 4; Tregs, regulatory T cells; VEGF, vascular endothelial growth factor; VIRMA, vir-like m6A methyltransferase associated; WTAP,
Wilms’ tumor 1-associated protein; YTHDC2, YT521-B homology domain-containing protein 2; YTHDFs, YT521-B homology domain-containing family; ZC3H13:
zinc finger CCCH-type containing 13.

gastric cancer, and colorectal cancer, increased expression of
METTL3 correlated with poor prognosis (Han J. et al., 2019; Peng
et al., 2019; Wang et al., 2020c). Since METTL3 plays overlapping
roles in tumors (Zheng et al., 2019), its high expression was
shown to be positively correlated with better survival in colorectal
cancer (Deng et al., 2019). Compared with normal samples, the
expression of METTL14 and ZC3H13 is decreased in invasive
breast cancer stroma, invasive ductal breast cancer stroma,
invasive mixed breast cancer, and ductal carcinoma in situ. These
low levels of METTL14 and ZC3H13 are negatively correlated
with overall survival (OS) and progression-free survival (PFS)
in luminal type A, luminal type B, human epidermal growth
factor receptor 2 (HER2)-enriched type, and triple-negative-
type breast cancer, indicating that the reduced expression of
METTL14 and ZC3H13 leads to poor prognosis in breast cancer
patients (Gong et al., 2020). Additionally, overexpression of
ALKBH5 is correlated with poor prognosis in acute myeloid
leukemia patients (Shen et al., 2020). Upregulation of YTHDF1 is
intimately associated with poor OS in hepatocellular carcinoma
(HCC) and gastric cancer patients (Liu et al., 2020; Pi et al.,
2021). YTHDF2 is significantly overexpressed in hepatoblastoma
and HCC when compared with their adjacent non-cancerous
tissues, and overexpression of YTHDF2 is closely connected with
poor prognostic clinical outcomes (Cui et al., 2020; Shao et al.,
2020). Recently, Li et al. (2020d) showed that head and neck
squamous cell carcinoma patients with lower YTHDC2 levels
have poorer OS and PFS than those with higher expression. Like
METTL3, FTO also plays pro- and antitumor roles in cancer
(Wang et al., 2020a). Cui et al. (2020) found that the upregulation
of FTO in hepatoblastoma patients is correlated with poor
clinical outcomes. However, Zhuang et al. (2019) suggested
that low FTO expression is correlated with poor prognosis in
endometrial cancer, lung cancer, rectum adenocarcinoma, and
pancreatic cancer.

Furthermore, a genome metacohort analysis showed that low
FTO and METTL14 levels and high METTL3, HNRNPA2B1,
and YTHDF3 levels are correlated with poor prognosis in
osteosarcoma patients (Li et al., 2020b). In endometrial cancer
patients, higher HNRNPC, YTHDC2, WTAP, VIRMA, IGF2BP3,
and HNRNPA2B1 expression is closely associated with worse
outcomes and advanced stage (Zhao et al., 2021). Furthermore,
high ALKBH5 levels in colon cancer indicates poor prognosis
(Huang et al., 2021). In addition, numerous studies used the
m6Ascore to investigate the potential clinical implications of m6A
RNA modification patterns in cancer (Zhang B. et al., 2020; Du
et al., 2021; Shen et al., 2021a; Xu et al., 2021b). For example,
Zhang C. et al. (2020) indicated that the m6Ascore can act
as an independent prognostic biomarker in gastric cancer. In
HCC patients, the OS of the low m6Ascore group was better
than that of the high m6Ascore group (Shen et al., 2021a).
Importantly, the OS of low-grade glioma patients who received
chemotherapy was higher in the low-m6Ascore group than in
the high-m6Ascore group (Du et al., 2021). These results suggest
that m6A RNA modification has potential clinical implications
in cancer patients, indicating their promising implications in
improving cancer patient treatment outcomes. Nevertheless, the
dual role of m6A RNA modification in cancers limited their
clinical implications in cancers which needs to be solved in the
future. Some of the significant studies examining the potential
clinical implications of m6A RNA modification in cancers are
listed in Table 2.

TARGETING m6A RNA MODIFICATION
AS CANCER IMMUNOTHERAPY

The critical role of m6A RNA modification in the immune
response in the TME and its confirmed clinical implications
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in cancer make m6A RNA modification an attractive
immunotherapy in cancer. Studies have shown that lung
adenocarcinomas and lung squamous cell carcinomas with
lower expression of METTL3, RBM15, ALKBH5, YTHDC1,
YTHDF1, YTHDF2, HNRNPC, and VIRMA are significantly
more sensitive to immunotherapy and chemotherapy (Xu
et al., 2020a,b). Furthermore, studies indicate that reversing the
dysregulation of m6A RNA modification could promote the
effectiveness of immunotherapy in cancer. For example, loss of
METTL3 and METTL14 expression increases the response to
anti-PD-1 treatment in colorectal cancer with low mutational
burden (Wang et al., 2020b). Ablation of METTL3 expression
in myeloid cell impairs anti-PD-1 therapeutic efficacy in B16

melanoma (Yin et al., 2021). Deletion of ALKBH5 can sensitize
tumors to anti-PD-1 therapy, reduce tumor growth, and prolong
mouse survival during GVAX/anti-PD-1 treatment by inhibiting
the composition of tumor-infiltrating Tregs and MDSCs in vitro
and in vivo, while melanoma patients harboring ALKBH5
deletion/mutation are more sensitive to anti-PD-1 therapy
(Li et al., 2020c). Moreover, the therapeutic effect of anti-
PD-L1 is elevated in YTHDF1-deficient mice, suggesting that
YTHDF1 is a promising therapeutic target for immunotherapy
in combination with checkpoint inhibitors (Han D. et al., 2019).
The knockdown of FTO was shown to inhibit the metabolic
barrier for CD8+ T-cell activation, promoted CD8+ T-cell
infiltration in tumors, and synergized with anti-PD-L1 treatment

TABLE 2 | The potential clinical implications of RNA m6A modification in cancers.

Tumor types Regulators Expressions Clinical implications References

Hepatoblastoma METTL3 Up High level of METTL3 is associated with continual
recurrence and poor prognosis

Liu et al., 2019; Cui
et al., 2020

Bladder cancer Gastric cancer
Colorectal cancer

METTL3 Up Increased expression of METTL3 correlated with poor
prognosis

Wang et al., 2020c;
Liu et al., 2021b

Colorectal cancer METTL3 Up High expression of METTL3 in colorectal cancer is positively
correlated with better survival

Deng et al., 2019

Osteosarcoma METTL3 HNRNPA2B1 Up High level of METTL3 and HNRNPA2B1 are correlated with
poor prognosis

Li et al., 2020b

Osteosarcoma METTL14 Down Low level of METTL14 is correlated with poor prognosis Li et al., 2020b

Breast cancer METTL14 Down Low level of METTL14 is negatively correlated with the OS
and RFS

Gong et al., 2020

ccRCC METTL14 Down High level of METTL14 exhibits as a favorable prognostic
factor

Wang Y. et al.,
2021

Breast cancer ZC3H13 Down Low levels of ZC3H13 is negatively correlated with the OS
and PFS

Gong et al., 2020

Acute myeloid leukemia Colon cancer ALKBH5 Up Over-expressed ALKBH5 is correlates with poor prognosis Shen et al., 2020;
Huang et al., 2021

HCC Gastric cancer YTHDF1 Up Up-regulated YTHDF1 is associated with poor OS Liu et al., 2020; Pi
et al., 2021

Hepatoblastoma HCC YTHDF2 Up Over-expressed YTHDF2 is connection with poor
prognostic clinical outcomes

Liu et al., 2019;
Shao et al., 2020

Osteosarcoma YTHDF3 Up High level of YTHDF3 is correlated with poor prognosis Li et al., 2020b

Head and neck squamous cell
carcinoma

YTHDC2 Down Lower level of YTHDC2 indicates poorer OS and PFS Li et al., 2020d

Endometrial cancer YTHDC2 Up Higher expressions of YTHDC2 is closely associated with
worse outcomes and advanced stage

Zhao et al., 2021

Hepatoblastoma FTO Up Up-regulated FTO is correlated with poor clinical outcomes Liu et al., 2019

Endometrial cancer Lung cancer
Rectum adenocarcinoma Pancreatic
cancer Osteosarcoma

FTO Down Low expression of FTO is correlated with poor prognosis Zhuang et al.,
2019; Li et al.,
2020b

Endometrial cancer HNRNPA2B1 WTAP
VIRMA IGF2BP3
HNRNPC

Up Higher expressions of HNRNPA2B1, WTAP, VIRMA,
IGF2BP3, and HNRNPC are closely associated with worse
outcomes and advanced stage

Zhao et al., 2021

Gastric cancer HCC m6Ascore Up OS for the low m6Ascore group was better than the high
m6Ascore group

He et al., 2021;
Shen et al., 2021a

Glioma m6Ascore Up OS of low-grade glioma patients who received
chemotherapy in the low-m6Ascore group is higher than
those in the high-m6Ascore group

Du et al., 2021

Abbreviations: ALKBH: ALKB homolog; ccRCC: clear cell renal cell carcinoma; FTO: fat mass and obesity-associated protein; HCC: hepatocellular carcinoma; HNRNP:
heterogeneous nuclear ribonucleoprotein; IGF2BP: insulin-like growth factor-2 mRNA-binding protein; m6A: N6-methyladenosine; METTL: methyltransferase-like; OS:
overall survival; PFS: progression-free survival; VIRMA: vir-like m6A methyltransferase associated; WTAP: Wilms’ tumor 1-associated protein; YTHDC: YTH domain-
containing protein; YTHDF: YTH domain-containing family; ZC3H13: zinc finger CCCH-type containing 13.
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TABLE 3 | Targeting RNA m6A modification as cancer immunotherapy.

Tumor types Regulators Immunotherapy References

Lung adenocarcinoma METTL3 Lower expressions of METTL3 is more sensitive to immunotherapy Xu et al., 2020a

Low mutation burden of colorectal
cancer

METTL3 METTL14 Loss of METTL3 and METTL14 increase response to anti-PD-1
treatment

Wang et al., 2020b

Melanoma METTL3 Ablation of METTL3 in myeloid cells impairs anti-PD-1 therapeutic
efficacy

Yin et al., 2021

Melanoma Non-small cell lung cancer FTO Knockdown of FTO synergizes with anti-PD-L1 treatment Samstein et al., 2019

Melanoma FTO Knockdown of FTO sensitizes melanoma to anti-PD-1 Yang et al., 2019

Melanoma ALKBH5 Melanoma patients harboring ALKBH5 deletion/mutation are correlated
with more sensitive to anti-PD-1 therapy

Li et al., 2020c

Lung adenocarcinoma ALKBH5 RBM15 YTHDC1
YTHDF1 YTHDF2

Lower expressions of ALKBH5, RBM15, YTHDC1, YTHDF1, and
YTHDF2 are more sensitive to immunotherapy

Xu et al., 2020a

Melanoma Colon cancer YTHDF1 The therapeutic effect of anti-PD-L1 is elevated in YTHDF1 deficient
mice

Han D. et al., 2019

Lung squamous cell carcinoma HNRNPC Lower expressions of HNRNPC and VIRMA are more sensitive to
immunotherapy and chemotherapy

Xu et al., 2020b

Colon cancer m6Ascore Lower m6Ascore showed a better clinical benefits to anti-PD-1,
anti-CTLA-4, and anti-PD-L1 therapies

Chong et al., 2021

ccRCC m6Ascore Low m6Ascore group presents a apparently prolonged survival in the
anti-PD-1ccRCC patient

Zhong et al., 2021

Kidney renal clear cell carcinoma m6Ascore Low m6Ascore indicates an inflammatory phenotype and more sensitive
to anticancer immunotherapy

Li H. et al., 2021

Pancreatic cancer m6Ascore m6Ascore-low pancreatic cancer patients have higher response rates
to anti-PD-1and anti-CTLA-4 treatments

Zhou et al., 2021

Colorectal cancer “Writer” score Low “writer” score present significant clinical benefits and have a
dramatically prolonged OS in anti-PD-L1 cohort

Chen et al., 2021

Abbreviations: ALKBH: ALKB homolog; ccRCC: clear cell renal cell carcinoma; CTLA-4: cytotoxic T cell lymphocyte-associated protein 4; FTO: fat mass and obesity-
associated protein; HNRNP: heterogeneous nuclear ribonucleoprotein; m6A: N6-methyladenosine; METTL: methyltransferase-like; OS: overall survival; PD-1: programmed
death receptor 1; PD-L1: programmed death receptor ligand 1; RBM: RNA-binding motif; VIRMA: vir-like m6A methyltransferase associated; YTHDC: YTH domain-
containing protein; YTHDF: YTH domain-containing family.

(Samstein et al., 2019). In keeping with this, FTO knockdown
sensitized melanoma cells to IFN-γ and anti-PD-1 treatment by
increasing YTHDF2-dependent PD-1, CXCR4, and SOX10 RNA
decay in mice (Yang et al., 2019).

Recently, it was suggested that quantification of the m6Ascore
could predict the clinical response of cancer patients to
immunotherapy. For instance, in colon cancer, Chong et al.
(2021) found that cancers with a lower m6Ascore show better
clinical responses to anti-PD-1, anti-CTLA-4, and anti-PD-
L1 therapies. ccRCC patients receiving anti-PD-1, the low
m6Ascore group presented an apparently prolonged survival
(Zhong et al., 2021). Li H. et al. (2021) further validated that
a low m6Ascore in kidney renal clear cell carcinoma patients
indicates an inflammatory phenotype and higher sensitivity to
anticancer immunotherapy. Zhou et al. (2021) also confirmed
that m6Ascore-low pancreatic cancer patients have higher
response rates to anti-PD-1 and anti-CTLA-4 treatments. Of
note, an RNA modification writer score model was constructed
by Chen et al. (2021) recently, which is based on differentially
expressed genes responsible for RNA modification patterns and
quantifies the RNA modification-related subtypes of individual
tumors. The authors found that colorectal cancer patients with a
low writer score in an anti-PD-L1 cohort presented significant
clinical benefits and had a dramatically prolonged OS (Chen
et al., 2021). Notably, we found that in some m6A regulators,
such as YTHDF1 and YTHDF2, their lower expressions are

both more sensitive to immunotherapy, suggesting a possible
cooperative role in tumor immunotherapy, which needs to be
explored in future studies. Some of the most important studies
examining m6A RNA modification as a potential target for cancer
immunotherapy are listed in Table 3.

CONCLUSION AND FUTURE
PERSPECTIVES

Within the past decade, m6A RNA modification has been
identified as a novel emerging layer of posttranscriptional
regulation controlling gene expression in eukaryotes. Currently,
it is clear that m6A RNA modification exhibits essential roles
in almost all bioprocesses, including the immune response in
cancers. In our present review, we have focused on discussing
the underlying mechanisms whereby m6A RNA modification is
implicated in cold tumor formation. We have also discussed the
potential clinical implications and immunotherapeutic strategies
of targeting m6A RNA modification in cancer. Indeed, m6A
RNA modification is involved in cold tumor formation by
regulating the immune cells in the TME, targeting tumor-cell-
intrinsic pathways, facilitating the action of soluble inhibitory
mediators in the TME, increasing metabolic competition in the
TME, and affecting the tumor mutational burden. Furthermore,
many m6A RNA modification regulators (m6A writers, erasers,
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and readers) have potential clinical applications as diagnostic
and prognostic biomarkers for different types of cancer. In
addition, targeting m6A RNA modification regulators could
sensitize cancers to immunotherapy. Thus, targeting m6A RNA
modification is a promising immunotherapeutic approach for
turning cold tumors into hot ones.

Although tremendous progress has been achieved on
understanding m6A RNA modification and their role in diseases,
a complete understanding of the mechanisms is far away,
and especially, their implications in cancers is our concern.
The present researches show that the abnormal level of m6A
regulators are intimately associated with the prognosis of tumors,
indicating their promising implications in improving cancer
patient treatment outcomes, although it has been demonstrated
that targeting RNA m6A modification could be the optional
combination therapy in cancer immunotherapy, the limitation
is that except for the role of RNA m6A modification in immune
response, their functions in tumor development should be taken
into consideration, which could be a cause of immunotherapeutic
resistance or insensitivity. For example, PD-1/PD-L1 acts as a
tumor suppressor and mediates resistance to PD-1 blockade
therapy in tumor (Wang et al., 2020e). Therefore, we believe
that future research on m6A RNA modification should focus
on several aspects. First, some specific m6A RNA modification
regulators play opposite roles in different cancers, indicating
that the exact role of m6A RNA modification regulators is
cell or tissue dependent (Deng et al., 2018; Zeng et al., 2020).
Consequently, defining the context-specific role of m6A RNA
modification regulators in cancers and their mechanisms will
be crucial to direct specific m6A RNA modification regulator-
based therapeutic interventions in the future. Second, we know
that m6A RNA modification is found not only in mRNAs but
also in non-coding RNAs, and that non-coding RNAs play
critical roles in the immune response and immunotherapy

in cancers (Atianand et al., 2017; Huang et al., 2020a);
therefore, future studies focused on m6A-related non-coding
RNAs in cancer will contribute toward the development of
more effective and novel cancer immunotherapies (Chen et al.,
2020; Xu et al., 2021a). Third, studies evaluating the use
of m6A RNA modification as cancer immunotherapy have
mainly focused on regulating m6A RNA modification regulators
through transfection experiments, which are difficult to translate
to clinical trials or clinical practice; therefore, m6A RNA
modification regulator agonists or antagonists should be searched
in the future (Su et al., 2018). Lastly, considering the toxic
side effects of cancer immunotherapy, target carrier material
should be developed to carry immunotherapeutics including
m6A modification RNA regulators that augment antitumor
immune responses with reduced toxicity and side effects
(Zeng et al., 2021).
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