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The characterization of developmental phenotypes often relies on the accurate linear
measurement of structures that are small and require laborious preparation. This is
tedious and prone to errors, especially when repeated for the multiple replicates that
are required for statistical analysis, or when multiple distinct structures have to be
analyzed. To address this issue, we have developed a pipeline for characterization
of long-bone length using X-ray microtomography (XMT) scans. The pipeline involves
semi-automated algorithms for automatic thresholding and fast interactive isolation and
3D-model generation of the main limb bones, using either the open-source ImageJ
plugin BoneJ or the commercial Mimics Innovation Suite package. The tests showed
the appropriate combination of scanning conditions and analysis parameters yields fast
and comparable length results, highly correlated with the measurements obtained via
ex vivo skeletal preparations. Moreover, since XMT is not destructive, the samples
can be used afterward for histology or other applications. Our new pipelines will help
developmental biologists and evolutionary researchers to achieve fast, reproducible and
non-destructive length measurement of bone samples from multiple animal species.

Keywords: bone growth and development, micro-CT (computed tomography), BoneJ, MIMICS, skeletal
phenotype analysis, limb evolution

INTRODUCTION

Skeletal measurement is the pillar of many research applications, such as developmental studies
on limb patterning (Summerbell, 1977; Galloway et al., 2009) and growth (Rosello-Diez et al.,
2017; Marchini and Rolian, 2018), main axis segmentation (Casaca et al., 2014; Wong et al., 2015),
evolutionary studies (Sears et al., 2006; Sheth et al., 2012; Kherdjemil et al., 2016), disease modeling
(Chen et al., 1999; Li et al., 1999; Rowe et al., 2018), adult phenotyping of mutant models (Boskey
et al., 2003), etc. Whereas clinical musculoskeletal research often uses non-destructive imaging
as routine (Cheng and Wang, 2018), fundamental evolutionary and development (evo-devo)
studies often rely on differential staining of bone and cartilage (the so-called ex vivo skeletal
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preparations) (Rigueur and Lyons, 2014; Mead, 2020) and
subsequent two-dimensional (2D) imaging for quantitative
comparisons of the models of interest. Despite being broadly
used, the skeletal preparation technique is ridden by several
disadvantages. First, it is a destructive technique in the sense that
the samples cannot be used for further histological or molecular
applications. Second, it involves lengthy staining and clearing
of cadavers, followed by laborious and damage-prone dissection
of the skeletal elements of interest, in their preparation for
imaging. Third, accurate measurements depend heavily on the
imaged sample being positioned as flat as possible; otherwise,
the apparent length will be shorter than the real one due to
parallax error. As a result, measurements are often prone to user
error and require multiple measurements to calculate standard
error. These limitations prompted us to seek alternative methods
to measure bone length in a fast and reliable way, without
destroying the sample.

X-ray microtomography (XMT) is a non-destructive imaging
modality that uses radiographic projections taken at multiple
angles to reconstruct two-dimensional tomograms (literally, slice
images) whose pixel values represent the X-ray attenuation
coefficient at each point in the imaged object (Elliott and Dover,
1982). It is common to arrange the tomograms into a stack
to produce a three-dimensional (3D) image (Elliott and Dover,
1982; Christiansen, 2016; du Plessis et al., 2017). We reasoned
that since XMT can be used to image undissected samples, it
would allow us to scan multiple samples relatively fast, with the
advantage of preserving their integrity in case they are needed for
further processing. Moreover, computer-based image processing
would in principle allow us to maximize the automation of
the subsequent 3D reconstruction and measurements. Methods
based on manual landmarking and measurement of the 3D
models have already been developed, but we wanted to eliminate
the human interaction component as much as possible. Our
main goal, in summary, was to develop a pipeline to scan
multiple whole-animal samples in a batch, and bulk-process
the scans to extract linear measurements of the bones of
interest. Minimal user intervention was the most important
requirement, both to enable its use as a workhorse method in
skeletal development labs, but also to eliminate any potential
unconscious bias in the process. Within this general goal, we
established three objectives: (1) to identify standard conditions
(i.e., combination of scan resolution and analysis parameters)
that yield low inter-batch variability; (2) to obtain a versatile
pipeline that could be applied with minimal variation to a range
of developmental stages; (3) to achieve enough precision to
detect even small phenotypes, such as the 5–10% bone-length
differences we have previously described with some of our models
(Rosello-Diez et al., 2017, 2018).

In XMT, the ability to independently analyze distinct
tissues relies on their accurate separation through so-called
segmentation (Bouxsein et al., 2010; Weissheimer et al., 2012).
Since bone has a high mean atomic number and linear
X-ray attenuation coefficient compared to other body tissues,
it generates strong contrast in X-ray imaging modalities such
as XMT and can be readily segmented through threshold-
based methods where grayscale values determine what is bone

tissue and what is background (Campbell and Sophocleous,
2014). There are several modalities of segmentation. Manual
segmentation involves the manual selection of the areas of
interest section by section, and is therefore quite laborious and
subjective, thus prone to user error (Rathnayaka et al., 2011).
Semi-automated methods, on the other hand, use algorithms
like edge detection (Rathnayaka et al., 2011) and/or local
differences in gray values (Zhang et al., 2010) with some
user input for initial parameters. Another common method is
automated segmentation, whereby image-processing algorithms
are used to segment elements of interest with minimal to no-
user interaction (Šajn et al., 2007; Okada et al., 2008; Heidrich
et al., 2013; Yiannakas et al., 2016). Algorithm-based automatic
segmentation, however, requires the user to have programming
knowledge and a thorough understanding of mathematical
algorithms related to the image processing software being used
(Rathnayaka et al., 2011). Deep learning-based segmentation
methods may out-perform simple thresholding, but at a high cost
for initial training (Galvez-Hernandez et al., 2021).

There are a wide range of software solutions that can analyze
XMT data in the form of digital imaging communications in
medicine (DICOM) files to segment a variety of high-contrast
tissues like lungs (Weissheimer et al., 2012; Reynisson et al.,
2015), liver (Okada et al., 2008; Huhdanpaa et al., 2011) and bone
(Rios et al., 2014; Mehadji et al., 2019; Taghizadeh et al., 2019).
After some pilot testing of both open-source and commercial
solutions, we settled on the Mimics Innovation Suite (Materialize,
Leuven, Belgium) as the one that most readily suited our
needs. Mimics has been previously benchmarked against other
programs like Syngo (An et al., 2017), OsiriX (Reynisson et al.,
2015) and ITK-snap (Weissheimer et al., 2012), and some of its
key features are its flexibility, ease of use, sensitive and controlled
segmentations (Weissheimer et al., 2012; Reynisson et al., 2015)
and the possibility to integrate Python scripting modules to
further extend its automation capabilities.

Here we present a semi-automated analysis pipeline for the
fast and robust characterization of long-bone length, using
two solutions that can be adopted by non-experts: (1) Python
scripting and segmentation tools of the commercially available
software package Mimics; (2) a standardized pipeline in the
ImageJ plugin BoneJ. We report the advantages and caveats of
each method.

MATERIALS AND METHODS

Animal Experiments
Mouse embryo and pup samples were retained as residual tissues
from other experiments in the Rosello-Diez lab, approved by
the Animal Ethics Committee at Monash University (protocol
17048). Wild-type E17.5 samples were obtained from Asmu:Swiss
crosses. P7 samples consisted of tTA-negative littermates
(phenotypically wild-type) obtained from crosses of females
containing the left-lateral plate mesoderm specific Pitx2-Cre
(Shiratori et al., 2006) and a cartilage-specific Col2a1-tTA
(Rosello-Diez et al., 2018) with males bearing a TigreDragon−DTA
allele (Ahmadzadeh et al., 2020). P3 samples consisted of
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pups obtained from crosses of females containing the left-
lateral plate mesoderm specific Pitx2-Cre, a cartilage-specific
Col2a1-rtTA (Posey et al., 2009) and 1 copy of an Egr1 null
allele (JAX#012924) with males bearing a TigreDragon−DTA allele
(Ahmadzadeh et al., 2020). Control and experimental animals
were separated based on rtTA genotype, regardless of the
presence of the Egr1 null allele. Doxycycline hyclate (Sigma,
0.5 mg/ml in the drinking water, with 0.5% sucrose to increase
palatability) was given to the pregnant female from E12.3 to
E13.8. Noon of the day the vaginal plug was detected was
considered E0.5.

Samples Collection and Fixation
Mouse embryos/pups were decapitated, the skin, internal organs
and adipose tissue were removed. The samples were then fixed in
4% paraformaldehyde overnight at 4◦C and then stored in PBS
until ready for XMT scans.

X-ray Microtomography Scans
A Siemens Inveon PET-SPECT-CT Small Animal scanner in CT
modality was used for all experiments. Parameters: 20- and 40-
µm resolution, 360 projections at 80 kV, 500 µA, 600 ms exposure
with a 500 ms settling time between projections. Binning was
applied to vary resolution with 2 × 2 for 20 µm and 4 × 4
for 40 µm scans and data was reconstructed using a Feldkamp
algorithm. The samples (beheaded embryo and pup bodies) were
placed in supine position over custom-fitted foam bedding, so
that the limbs were not in contact with any hard surface. Scan
time for each sample is roughly 10 min (plus 30 min of set up
per imaging session). However, scan time can depend on the scan
resolution, number of projections, exposure time and settling
time between projections.

Data Processing
Data was reconstructed using a Feldkamp algorithm and further
converted to DICOM files using Siemens software.

Note on File Size Limits
Current versions of Mimics (v24) have a file size limit of 256
TB (Materialize, email communication July 2021). In ImageJ the
pixel limit for a 3D image stack is 262 (i.e., 231 in z and 231

in xy, about 4.6 EB in total.) because of how the image slices
are arranged and the pixels indexed with signed 32-bit integers.
These limits are still well above the typical datasets obtained
from XMT instruments, which are in the order of 1–10 GB. As
a reference, our typical 20-µm datasets are 5–7 GB.

BoneJ Software and Pipeline
FIJI was used to develop the analysis pipeline. See section
“Results” for an overview; each step in the process is outlined
in detail below.

Data Loading
The entire image set is loaded into memory, as many of the
downstream actions requires to have the entire image set in
memory. A virtual stack is possible as the initial action, if it is

necessary to crop or reduce the size of the image, if the image
is too large for the computer being used. When the crop/size
reduction is performed, FIJI will load the entire image stack
into main memory.

Segmentation
This method employs the segmentation method of maximum
entropy. Segmentation divides the image into multiple parts
(at least two, usually). This yields the objects of interest, and
everything else. Some methods, such as Otsu’s three-class, can
produce more than two layers. The choice of maximum entropy
in this case is based on making the method as widely applicable
as possible. Maximum entropy is implemented in ImageJ as
a method to maximize the inter-class entropy (between the
selected objects and everything else in the image). This involves
the average gray values of the pixels present in each image
(or in a reference image), the individual gray value of each
pixel, and the gray values in the local neighborhood of each
pixel. The initial threshold value the algorithm selects is based
on the probability estimation from a histogram of all pixels
in the image stack. Therefore, maximum entropy offers the
best robustness, rejection of undesirable elements, acceptable
performance in low-contrast images, and good noise tolerance.
The method is described in Kapur et al. (1985). Threshold
values of 280 to 500 HU were chosen, depending on the
developmental stage, as a best compromise on the images
included. This value may need to be adjusted depending on
the CT scanner, reconstruction kernel, and the sample. The
segmentation was further refined via the Erode and Watershed
tools (2D versions).

Generation and Labeling of Aligned Boxes With
Particle Analyser
BoneJ’s Particle Analyser code was altered to use the bone’s inertia
tensor to define the three principal axes of each element, and
then generate the minimum-size cuboidal box that fits the skeletal
element and that is aligned with the principal axes (BoneJ styloid-
r11). The coordinates and dimensions of these boxes are then
appended to the Results window in Fiji. The Label Elements
(3D) feature then allows the user to Ctrl-click the surfaces of
interest and assign a label to them. These are added as a new
column to the Results window. The macro below also includes
the possibility of saving a screenshot of the 3D Viewer window
with the desired orientation.

ImageJ Macro to Automate the Process
setSlice(300);
//run("Threshold.");
filename = getTitle();
output = getDirectory("Choose Destination Directory");
threshold = getNumber("enter min. threshold", 280);
setAutoThreshold("MaxEntropy dark");
setThreshold(threshold,
1000000000000000000000000000000.0000);
setOption("BlackBackground", true);
run("Convert to Mask", "method = MaxEntropy
background = Dark black");
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run("Fill Holes", "stack");
run("Remove Outliers.", "radius = 3 threshold = 50
which = Bright stack");
run("Erode", "stack");
run("Watershed");
run("Particle Analyser", "aligned min = 0.02 max = 3.9
surface_resampling = 2 show_surfaces show_aligned_boxes
show_particle_stack surface = [Labels (3-3-2 RGB)]
split = 0.000 volume_resampling = 2");
run("Label Elements (3D)");
waitForUser;
selectWindow("Results");
saveAs("Results", output + filename + "_" + threshold
+ ".csv");
showMessage("rotate to desired orientation");
waitForUser;
call("ij3d.ImageJ3DViewer.snapshot", "1024", "1024");
selectWindow("Snapshot");
saveAs("Tiff ", output+ filename+ "_"+ threshold);
selectWindow("Results");
run("Close");
selectWindow("Log");
run("Close");
call("ij3d.ImageJ3DViewer.close");
while (nImages() > 0) {

selectImage(nImages());
run("Close");

}

R-Script to Merge and Clean-Up Data Tables
#Define the path to the raw files
Path_to_raw_files < - "Path to files"

# Import the files
initial_files < - list.files(path = Path_to_raw_files,

pattern = ".csv",
full.names = T)

list_files < - lapply(X = initial_files,
FUN = function(i) read.csv(file = i,

check.names = F,
header = TRUE))

# Filter the data (remove the rows in which the column
"particle name" is a number)
list_files < - lapply(X = list_files,

FUN = function(i) i[suppressWarnings(which
(is.na(as.numeric(i$particle name)))),])

# Sort rows within each file, by the value in "particle name"
list_files < - lapply(X = list_files,

FUN = function(i) i[order(i$particle name),])

# Merge files
merged_file < - do.call(what = rbind, list_files)

# Export.csv
output_name < - paste(Path_to_raw_files, "/merged.csv",
sep = "")
write.csv(merged_file, file = output_name)

Mimics Software and Pipeline
Mimics Research (v21.0; Materialize, Leuven, Belgium) equipped
with the scripting module was used to develop the analysis
pipeline and the Python script described here. See section
“Results” for an overview and each step in the process is outlined
in detail below.

Data Loading
DICOM files are imported into Mimics via the
New Project wizard.

Thresholding
As soon as the DICOM data is uploaded into Mimics, the first
step is to distinguish the bones from all the other tissue by
defining a range of Hounsfield Units (HU) that corresponds to
bone density. The first Python command in BASILISC creates a
mask labeled “ALL,” which will segment all the skeletal elements
present, creating a global threshold specific to this mask. Since the
goal was to measure the developing mineralized part from end
to end, this step had to detect immature trabecular bone at the
ends of the growing elements. In our uncalibrated XMT scans,
we realized that the custom minimum threshold for bone tissue
defined by Mimics (226 HU) often over-represented the actual
bone tissue in the scans as it selected a greater area of tissue. The
optimal lower threshold for the developmental stages of interest
had thus to be determined empirically. Although Mimics can take
both gray scale values (GV) and HU units, the input in the script
can only be into GV, and therefore the first step was to transform
the data into GV to adequately segment all bones from the rest of
the tissue. This is achieved through the “segment” attribute seen
on the last line of code for this section. In principle, different
optimal thresholds exist for different scanning conditions and
certainly for different developmental stages, as the ratio between
woven and lamellar bone decreases, and hence BASILISC was
designed in such a way that the user can select among three
pre-defined thresholds via a pop-up menu. This can be easily
changed within the following section of the script (pre-defined
values appear in orange font):
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Landmarking
The purpose of this step is to segment and uniquely label all
the bones of interest, using Mimics tools. This is achieved using
a function that prompts the user (via a pop-up window) to
select a landmark on the bone of interest. The first step in
landmarking is to select the bones of interest to create a list of
“landmarks.” This list contains the unique name of each selected
bone and defines the order of segmentation during the process.
The “indicate_landmark” function guides the user through each
of the bones to be segmented by means of a dialog box, asking
the user whether a given element is present in the scan or not
and with two active buttons: “Select” and “Skip” (Figure 1C).
The user has the option to skip an element if a given bone is
not present in the scan, this would then be excluded from the
analysis. If the “Select” button is activated, a second dialog box
prompts the user to select a region (landmark) of the indicated
element by simply clicking on it on one of the 2D views of
the sample. BASILISC will automatically label and segment the
selected element without further user interaction, through the
Mimics “region_grow” function. A FOR loop has been included
in the BASILISC script when executing the “indicate_landmark”
function, so that the steps above are recursively followed for each
of the bones of interest sequentially, using the name of each bone
as an index within the FOR loop.

Generation of 3D Models
Once all the elements of interest have been segmented and labeled
accordingly, a function has been created in BASILISC that creates
3D models of each element, “create_3D.” A FOR loop in the
script steps through each of the segmented bones and creates a 3D
model of each at the highest possible resolution (Figure 1D). This
provided the most accurate measurements possible and since a
limited number of bones are analyzed, computing time to create
each 3D model did not increase significantly.

Measurement
Once BASILISC has automatically made 3D models, it will fit
a center line to each bone within the “create_3D” function.
This is achieved through the “analyze.create_line_fit_to_surface”
attribute in Mimics. The script has been designed to then
automatically obtain the length of the fitted line and save the
measurement in a text file (Figure 1E). Since this step is included
within the function described above, which includes a FOR loop,
the line is fitted as each 3D element is made, and the measurement
is recorded progressively. The text file created will have the
name of the given part, e.g., RIGHT HUMERUS, followed by a
comma and the corresponding length of the element. This step
is done automatically without any user input required after the
landmarking step has been finalized. As the file created is only
labeled with the name of the developmental stage created, the
user should change the name of the text file to be sample specific
before analyzing the next sample.

Manual Corrections During Image
Analysis
For E17.5 samples, the radius and ulna were segmented together
at the thresholds we use, but they could be easily separated using

the Split mask function of Mimics, as their interaction surface
was quite reduced. This requires identification of specific areas
where there was an overlap in pixels, manually selecting areas that
corresponded to each bone in a 2D view in at least three areas
across the length of the bone (proximal, distance and middle
area), before extrapolating the selected regions to create two
separate elements. This tool is not available in BoneJ.

Pipeline Benchmarking
For Figures 2, 3, each specimen was scanned in triplicate
or quadruplicate (on three or four different days), at two
resolutions each (20 and 40 µm), and each of the six scans was
segmented at two different lower thresholds (in Mimics: 650 and
398 HU for P7, 398 and 226 HU for E17.5; in BoneJ: 500 and
385 HU for P7, 400 and 280 HU for E17.5) to perform length
measurements. Humerus, radius, femur, tibia and clavicle (the
latter only for E17.5) were analyzed for two (P7) or three (E17.5)
different specimens.

Skeletal Preparations
After embryo collection, the skin, internal organs and adipose
tissue were removed. The samples were then fixed in 95% EtOH
overnight at room temperature. To remove excess fat, the samples
were then incubated in acetone overnight at room temperature.
To stain the cartilage, the samples were submerged in a glass
scintillation vial containing Alcian blue solution (0.04% (w/v),
70% EtOH, 20% acetic acid) and incubated at least overnight at
room temperature. The samples were de-stained by incubating
them in 95% EtOH overnight, and then equilibrated in 70%
EtOH, prior to being pre-cleared in 1% KOH solution for 1–
10 h at room temperature (until blue skeletal elements were
seen through). The KOH solution was replaced with Alizarin
red solution (0.005% (w/v) in 1% KOH) for 3–4 h at room
temperature. The Alizarin red solution was then replaced with
1–2% KOH until most soft tissues were cleared. For final
clearing, the samples were progressively equilibrated through
20% glycerol:80% (1% KOH), then 50% glycerol:50% (1% KOH)
and finally transferred to 100% glycerol for long-term storage.

Statistical Analysis
Experimental data are presented as the mean ± SD. P < 0.05
(two-way ANOVA) was considered statistically significant.

RESULTS

A Script for Bone-Length Measurement
on XMT Scans With Minimal User Input
Using Mimics
After testing multiple software solutions, we chose a commercial
one (Materialize Mimics Research software) to develop the
initial pipeline, based on the promising initial results and the
possibility of automation via scripting. We thus developed a
Python script that utilizes Mimics capabilities to segment and
measure the mouse bones of interest (humerus, radius, ulna,
tibia and sometimes clavicle) from CT scans. This script is
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FIGURE 1 | Bone Automated Segmentation and Interactive Length Interrogation of Standardized computerized scans (BASILISC). (A–E) Mimics procedure.
(A) Diagram depicting the Mimics procedure followed by the script. (B–E) Representative screenshots of key steps in the process: threshold pre-selection and
segmentation (B), element seeding (C), fit-to-surface line fitting (D), table export (E). (F–l) BoneJ procedure. (F) Diagram depicting the BoneJ procedure followed by
the macro. (G) Typical output of the Particle Analyser module, as visualized with ImageJ’s 3D Viewer. Aligned boxes appear in yellow. (H,l) The BoneJ command
Label Elements (3D) (in development, code at GitHub) allows the user to interact with the 3D viewer to select the bones of interest, select or write a label for them (H)
and append that label.
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FIGURE 2 | Assessment of batch effect for multiple P7 bones across different scan and analysis conditions. (A–D) Measured length for the indicated bones of two
P7 mouse pups, each scanned on three different days (triplicates joined by lines) at either 40 (A,B) or 20-µm resolution (C,D), and analyzed with either a high (A,C)
or a low (B,D) minimum threshold. L, R: left, right. (E,G) Top: Heatmap for the Coefficient of Variability (CV, %) between the three batches of the indicated
measurements, for the Mimics (E) and the BoneJ (G) pipelines. Bottom: 2-way ANOVA table showing the contribution and associated p-value of each source of
variation of the experiment. (F,H) Representative examples of the generated 3D models (left and right from the same specimen) and their fitted lines/boxes, for tibia
using Mimics (F) and for radius/ulna using BoneJ (H).

called BASILISC (Bone Automated Segmentation and Interactive
Length Interrogation on Standardized computerized scans).
BASILISC is available in Github1, and designed to run in the

1https://github.com/rosellodiez/Basilisc.git

Materialize Mimics Research software v.18 to 21, and hence there
are attributes that are specific to this program. The script can
be divided into four main sections: thresholding, landmarking,
3D modeling and measurement and export (Figure 1A). See
Supplementary Video 1 for an overview of the whole procedure.
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FIGURE 3 | Assessment of batch effect for multiple E17.5 bones across different scan and analysis conditions. (A–D) Measured length for the indicated bones of
two or three E17.5 mouse fetuses, each scanned in triplicate (or quadruplicate) at either 40 (A,B) or 20-um resolution (C,D), and analyzed with either a high (A,C) or
a low threshold (B,D). (E,G) Top: Heatmap for the Coefficient of Variability (CV, %) between the batches of the indicated measurements for the Mimics (E) and BoneJ
(G) pipelines. Bottom: mixed-effects model table showing the contribution and associated p-value of each source of variation of the experiment. (F,H) Representative
example of the generated tibial 3D models and its fitted line (F) or aligned box (H).

The first Python command in BASILISC segments all
the skeletal elements, using a global threshold for bone
tissue (Figure 1B). Since these were developmental samples,

segmentation was applied to the mineralized region, not
the cartilage poles. To increase its applicability to different
developmental stages and scanning conditions, BASILISC was
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designed in such a way that the user can select among three
pre-defined thresholds [Low, Medium, High, ranging from∼200
to 500 Hounsfield Units (HU)] via a pop-up menu. These pre-
defined values can be easily changed within the script (see section
“Materials and Methods”). The next section of the script is
landmarking, which uses Mimics tools to segment and uniquely
label all bones of interest via a pop-up menu (Figure 1C). The
user is prompted to select a region (landmark) of the indicated
element by simply clicking on it on one of the 2D views of
the sample. BASILISC will automatically label and segment
the selected element without further user interaction. In the
third section of the script, once all bones of interest have been
segmented and labeled accordingly, a 3D model of each skeletal
element is created (Figure 1D). Then BASILISC automatically fits
a “line to surface” running from end to end along the center of
each element. In the last section, the script automatically obtains
the length of the fitted lines and saves the measurements to a
comma-separated-values (csv) text file (Figure 1E).

A Pipeline for Streamlined Bone Length
Measurement in the Open-Source
ImageJ Plugin BoneJ
We also developed a similar pipeline to semi-automatically
measure bone length using open-source software, as a broadly
useful approach. We chose ImageJ2, a popular Java-based
image analysis program developed at the United States.
National Institutes of Health, as a platform for such a solution.
Importantly, one of us (M.D.) previously developed an ImageJ
plugin (BoneJ) with modules designed for analysis of bone
geometry (Domander et al., 2021). ImageJ’s ability to load and
segment XMT data was the starting point we required. We also
developed new modules and new capabilities for existing ones
to suit our purposes (see section “Materials and Methods”).
These capabilities will soon be included as a BoneJ update and
the code is currently available at https://github.com/bonej-org/
BoneJ2/blob/0e295520e4956662e94363ab61a09c190d24b727/
Legacy/bonej/src/main/java/org/bonej/plugins/extensions/
MouseSkeleton.java. The pipeline can be divided into loading,
segmentation, fitting a minimal bounding box to each
element and measurement of said box (Figure 1F). A brief
overview follows.

We first loaded the whole data set (DICOM format) into
FIJI [a package that includes ImageJ and multiple biology-
oriented plugins for image analysis (Schindelin et al., 2012)]. We
then proceeded with segmentation (i.e., the isolation of skeletal
elements from everything else). As with Mimics, segmentation
was applied to the mineralized region, not the cartilage poles.
We chose to use a maximum entropy method because in our
experience it offers the best robustness, acceptable performance
with low-contrast images, and good noise tolerance (Kapur et al.,
1985). The macro prompts the user to enter a value for the lower
threshold, which needs to be adjusted depending on the stage
being analyzed, and for our scans it ranged between 280 and
500 HU. We then used the Fill holes tool (2D version) to close

2https://imagej.nih.gov/ij/

solid structures such as the marrow, which facilitates downstream
analysis. To clean up the data, we used the Remove outliers tool
to remove small radio-dense objects that may appear in some
images, followed by the Erode and the Watershed commands
(2D versions), to facilitate the separation of structures that are
frequently close to each other (e.g., radius and ulna). Finally,
to obtain the length of the different bones without the time
investment of selecting points manually on a 3D object, we first
attempted to use the Particle Analyser tool of BoneJ (Doube,
2021) to calculate approximations of bone dimensions and plot
them on 3D models of the segmented elements (Supplementary
Figure 1A). Supplementary Figure 1B shows examples of the
common measurements and fitted shapes that could be computed
with BoneJ before this project was started, namely the maximum
Feret’s diameter, a fitted ellipsoid and the three moments of
inertia. The Feret’s diameter (also known as the maximum caliper
diameter) is the longest distance between any two points on
the particle’s surface. For rod-like structures with relatively flat
ends, Feret’s diameter is a reasonable approximation of length.
However, we noticed that in the case of real-life bones, the
Feret’s diameter tends to find a diagonal that is not aligned
with the main bone axis, leading to an overestimation of
the length (Supplementary Figures 1B-B′′, green arrowheads).
Additionally, it is implemented as a brute-force method so it
is computationally demanding. The fitted ellipsoid is the best-
fit ellipsoid to the particle’s surface mesh. Since long bones are
not ellipsoidal in shape, the ellipsoid fit is not precise and the
fitted ellipsoid’s long axis tends to be longer than the bone’s
(Supplementary Figure 1B, blue mesh). Finally, the moments
of inertia are defined with respect to the three mean principal
axes of the segmented element (longest, shortest and middle,
Supplementary Figure 1B, red lines). Therefore, we reasoned
that the intersections between the longest axis and the surface
of the 3D model of the skeletal element could be used to define
a straight line approximating bone length. However, we noticed
that while the principal axis ran reasonably well along the center
of bones such as the femur (e.g., Supplementary Figure 1B),
this was not the case for other bones such as the humerus,
where the identified principal axis formed a steep angle with
the line that a human user would use to measure bone length
(Supplementary Figure 1B′′). In summary, BoneJ was able to
automatically provide good approximations of bone length for
only some bones, depending on their shape.

Given these limitations, we developed a new capability for
BoneJ’s Particle Analyser, to generate and measure Aligned boxes
fitting each element (Figure 1G). The new tool uses the bone’s
inertia tensor to define the three principal axes of each element,
and then generates the minimum-size cuboidal box that fits the
skeletal element and that is aligned with the principal axes. The
coordinates and dimensions of these boxes are then appended to
the Results window in ImageJ. One challenge of this approach is
that for whole-body scans, hundreds of elements are segmented
and measured (Figure 1G), and the numeric IDs assigned to
the different bones are not the same from sample to sample,
precluding the streamlined export of only the measurements of
interest. While filtering by volume in the Particle Analyzer tool
allows reducing the number of elements to a certain extent, it
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is often impossible to reduce it only to the bones of interest.
Therefore, we generated a new analysis module for BoneJ,
Label Elements (3D), which allows the user to interact with the
3D Viewer in order to Control-click the elements of interest,
subsequently selecting or writing the label for the clicked element
in an iterative manner (Figure 1H). That label is appended to
the Results window (Figure 1I), which is subsequently exported
as a csv file. Lastly, we developed an R-script to clean up
the data tables (i.e., to remove all the rows but the ones of
interest), sort the remaining values in alphabetical order and
finally to bind several data tables together, if required (see section
“Materials and Methods”).

Standardized Conditions to Achieve
Robustness to Batch Effect at Multiple
Stages
A semi-automatic protocol to measure bone length would only be
useful if it yielded consistent measurements for a given sample,
scanned and analyzed repeatedly on different days. We thus
explored different scan resolutions (20 and 40 µm) to analyze at
least three technical replicates per resolution, obtained from two
different postnatal day (P) seven mouse specimens (see section
“Materials and Methods”), and assessed the reproducibility of
the results (Figure 2). We report the Mimics and BoneJ results
separately below.

In the Mimics pipeline, 40-µm scans showed relatively
high inter-batch effect, especially for hindlimb bones, regardless
of the threshold (Figures 2A,B, left), whereas 20-µm scans
yielded more consistent measurements, including hindlimb
bones, especially for the lower threshold (Figures 2C,D, left). To
compare the batch effect more quantitatively, we then calculated
the coefficient of variability (CV) for each bone’s measurements
across the three batches, and compared the CV for the different
conditions and bones. A 2-way analysis of variance (ANOVA)
showed that there was a significant effect of the imaging and
analysis conditions, although the extent of it was likely distinct
for the different bones (Figure 2E). In summary, these results
identified a 20-µm resolution and a 398-HU threshold as the
optimal conditions to minimize inter-batch variability in this type
of samples (i.e., P7 mouse long bones). Importantly, this protocol
succeeded to separate radius from ulna in most cases, despite
their proximity, with only a few scans requiring the manual use of
Split Mask. However, it was not able to separate tibia from fibula
(Figure 2F), potentially affecting tibial length measurement (see
section “Discussion” below).

With BoneJ, the 20-µm resolution also led to somewhat
less variable results, but in this case the differences between
different resolution-threshold combinations were not statistically
significant (Figure 2G). Moreover, 20-µm Low Threshold was
the condition that yielded length values more similar to those
obtained by Mimics (e.g., femur data in Figures 2C,D). As in the
Mimics case, the femur and to some extent the humerus were
the long bones most affected by the changes in resolution and
threshold (Figure 2G). One obvious difference with the Mimics
pipeline is that, in the BoneJ pipeline, radius and ulna were
segmented together in most cases (Figure 2H). In the absence

of a Split mask function that could be applied to separate those
elements in a quick and efficient way, we concluded that radius
measurements could not be included in the analysis.

In order to test the versatility of BASILISC across
developmental stages, we performed a similar battery of scan
and measurement analyses exploring different scan resolutions
and threshold values at embryonic day (E) 17.5 (Figure 3).
With Mimics, most of the conditions performed similarly in
terms of reproducibility across batches, except for low resolution
and threshold, for which some femora were not properly
segmented and consequently their length was overestimated
(Figures 3A–D). Although there was no overall difference in
the CV across conditions (Figure 3E), the data trends suggested
that a 398-HU threshold outperformed a 226-HU threshold
in terms of inter-batch robustness. Moreover, length variation
in individual bones due to differences in scan resolution were
minimized with a 398-HU threshold (compare Figure 3A with
Figure 3C and Figure 3B with Figure 3D). Importantly, tibia and
fibula were again segmented together no matter the conditions
of analysis (Figure 3F).

With the BoneJ pipeline, variability was somewhat higher,
although again high resolution and low threshold tended to
yield more robust results, and closer to those obtained by
Mimics (Figures 3A–D,G). At this stage, radius and ulna
were, as with Mimics, individually segmented in all cases.
One important difference with the Mimics pipeline is that
tibia and fibula were not always segmented together. Namely,
low resolution and high threshold led to separated tibia and
fibula in approximately half of the cases and therefore to high
variability (Figures 3A,G); low resolution and low threshold
led to fibula and tibia always segmented together, such that
there was less variability in the measurements, although the
measurement itself was somewhat overestimated (Figures 3B,G);
high resolution and high threshold led to separated tibia and
fibula in ∼88% of the cases but also to highly eroded skeletal
elements (Figure 3H), which was associated with intermediate
variability (Figures 3C,G); and high resolution and low threshold
also led to separated tibia and fibula in ∼88% of the cases but
with less eroded surfaces, which likely corresponds to more exact
measurements (Figures 3D,G).

Internal Consistency Across Stages,
Scan Resolutions and Segmentation
Thresholds
Besides inter-batch variability, a good analysis pipeline should
yield low intra-scan variability. In other words, the ratios
between two specific bones should be very similar across
different scans. One of the advantages of working with paired
bones is the possibility of assessing internal consistency of the
BASILISC method by measuring the left/right ratio for each
bone and condition. We therefore calculated a left/right ratio
for the P7 samples, including replicates, to determine how
close the ratio was to the hypothetical value of 1 (i.e., equally
long left and right paired bones) and how much variability
there was between replicates. As shown in Figures 4A,B
and Supplementary Figure 2, for P7 samples the variability

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2021 | Volume 9 | Article 736574

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-736574 August 25, 2021 Time: 11:51 # 11

Beltran Diaz et al. Automatic Bone Measurements With Micro-CT

FIGURE 4 | The comparison of intra-specimen ratios reveals the most reproducible conditions for scan and analysis. (A,B) Left/right ratio of bone length
(mean ± SD) for the indicated bones and conditions at P7, using Mimics (A) or BoneJ (B). Hu/Ra/Fe/Ti, Humerus/Radius/Femur/Tibia. (C,D) Similar to panels (A,B),
except that the ratios shown are Humerus/Radius (H/R) and Femur/Tibia (F/T). S1–S3, specimens 1 to 3.
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was frequently quite low, with 20-µm resolution and low
threshold again showing the lowest inter-batch variability and
a L/R ratio remarkably close to 1. As parameters moved
away from these optimal settings, there were several bones
(femur for Mimics, femur and humerus for BoneJ) for which
either the average value was not as close to 1 as for other
bones, and/or the variability between batches was higher than
5% (Figures 4A,B and Supplementary Figure 2). Similarly,
we calculated internal ratios for E17.5 bones to determine
optimal scan and segmentation parameters. In this case we
chose intra-limb ratios (humerus/radius and femur/tibia) as a
normalization approach that could be achievable in the case that
contralateral bones were not available (as it was our case for
these scavenged samples). With this approach, the parameter
of interest to estimate the precision of the approach was the
variability of each measurement across replicates. High resolution
and low threshold minimized variability, and in all conditions
the Mimics pipeline was more accurate (Figures 4C,D and
Supplementary Figure 2).

In summary, these results suggest that, as expected, 20-µm
resolution is preferred to 40-µm in order to achieve more
robust measurements. In terms of threshold, a higher threshold
is preferred to segment out bones that are close to each other,
but if the separation is not always achieved this leads to higher
variability of the measurement. We thus concluded that the
exact threshold needs to be determined for each scanner and/or
scanning condition. Of note, the threshold can be easily changed
in the Mimics script and the ImageJ macro that we present here.

Correlation Bone Lengths Obtained via
Mimics, BoneJ and Skeletal Preparations
on the Same Samples
We next compared the bone lengths obtained by BASILISC
(Mimics pipeline) with the lengths obtained from the same

samples via skeletal preparations and digital measurement of
photographed bones (Supplementary Figure 2D), a method
frequently-used in developmental biology studies. We used eight
long bones from two different specimens at P7. The linear
relationship between both measurements was very good in all
conditions (Figure 5A, p-value for Pearson correlation < 0.0001
in all cases), and the slopes were not significantly different
(p = 0.2506), with an average common value of 0.9336.
As expected, however, the BASILISC measurements that
used lower thresholds tended to overestimate bone length
(as the resulting 3D model includes less dense tissue), as
indicated by the differences in the intercepts with the axes
(Figure 5A). Overall, the conditions that yielded measurements
with better correlation to the skeletal preparations were 20-
µm resolution and low threshold. We thus restricted our next
analysis to these conditions, comparing BoneJ and Mimics
BASILISC with the skeletal preparations (Figure 5B). Both
correlations showed very similar slopes and Y-intercepts with
the P7 samples. Both BASILISC approaches led to greater
measurements than the skeletal preparation, especially in the case
of Mimics (Figure 5B).

As the last test for our pipelines, we compared the
measurements obtained by Mimics and BoneJ from the
same samples and scan batches, covering a broader range
of stages, i.e., from E17.5 to P7. We focused on the
conditions that yield most robust results, namely 20-
µm resolution and low threshold. As seen in Figure 5C,
there is remarkable correlation between both methods
(R2 = 0.9982), although BoneJ leads to smaller lengths than
Mimics (which itself leads to greater lengths than the skeletal
preps, Figures 5A,B).

We concluded that both pipelines were suitable for high-
throughput analysis of bone length from whole-body scans, with
minimal user intervention. Next, we tested these methods in
proof-of-principle studies.

FIGURE 5 | Correlation between BASILISC methods and with measurements obtained via skeletal preparations. (A) Bone length measurements obtained via
skeletal preparations (prep.) (X axis) and Mimics BASILISC (Y axis), for different combinations of imaging resolution and segmentation threshold (averages of three
technical replicates are shown). Solid lines represent the regression line for each combination. The coefficient of determination (R2) is indicated. The table shows the
slope and Y-intercept for each of the conditions used. (B) Bone length measurements obtained via skeletal preparations (prep.) (X axis) and via micro-CT with Mimics
and BoneJ versions of BASILISC (Y axis), obtained at 20-µm resolution and low threshold. (C) Correlation between bone length measurements of 22 bones (10 from
E17.5 embryos and 12 from P7 pups) obtained with our Mimics (X axis) and BoneJ (Y) pipelines. Each Mimics-BoneJ comparison was done on the same scan
batch. In panels (A–C), the dashed black line represents a 1:1 correlation as a reference, and the dotted ones delimit the 95% confidence interval of the regression.
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Application of BASILISC to the Analysis
of Genetic Mouse Models With Altered
Skeletogenesis
To test the utility of the BASILISC pipeline for the detection
of skeletal phenotypes that affect bone length, we applied it
to one of our models of limb asymmetry that we recently
reported (Ahmadzadeh et al., 2020). In this model, diphtheria
toxin expression (DTA) is activated in an inducible and
reversible manner in the cartilage template that drives growth
of the left limb bones, killing chondrocytes and mostly
sparing the right limbs (Ahmadzadeh et al., 2020). While
continuous expression of DTA from E12.5 generates extreme
asymmetries by birth (not shown), transient activation from
E12.3 to E13.8 (see section “Materials and Methods”) leads
to a subtler asymmetry (Figure 6A), well suited to test the
sensitivity of BASILISC. We scanned eight P3 mouse pups (four
control and four experimental ones) and applied the Mimics
version of BASILISC to measure left and right humerus, ulna,
radius, femur and tibia. We then calculated the left/right ratio
for each bone, and compared this parameter for all bones
between experimental and control mice, via 2-way ANOVA
(Figure 6B). This analysis revealed a significant effect of the
Genotype on limb asymmetry, with asymmetries ranging from
∼5 to 20%, similar to our previous report (Ahmadzadeh
et al., 2020). These results suggest that BASILISC can be
used to quickly detect and characterize skeletal phenotypes
affecting the long bones.

DISCUSSION

Here we have presented a fast and easy method to determine
calcified bone length from XMT scans of whole mouse samples,
without the need for dissecting the limbs, skinning or eviscerating
the bodies. We tested our algorithm on a range of developmental
stages (E17.5 through P7) that covers 9 days of very fast growth
(Sanger et al., 2011).

Advantages Over Classic Skeletal
Preparations
As any developmental biologist working on limb patterning
and/or growth has experienced, analyzing one litter’s worth
of samples by the classic method of skeletal preparation,
limb microdissection, photograph acquisition and length
measurement on the 2D pictures takes at least ten days and
close to 20 h of dedicated hands-on work (Rigueur and Lyons,
2014). With the BASILISC approach, decapitation and storage
of the mouse bodies takes just a few minutes per litter; scan
time is roughly 10 min per sample (plus 30 min of set up per
imaging session); data loading and analysis takes ∼5 min per
scan. On average, this amounts to 3–4 h of hands-on work
per litter. Another advantage is that the measurement is three-
dimensional, as opposed to two-dimensional, and therefore
robust to orientation errors. Lastly, the scan is not destructive,
and therefore the samples can be later on processed for histology
or other procedures (Hopkins et al., 2015; Baier et al., 2019).

FIGURE 6 | Application of BASILISC to a mouse model of limb asymmetry. (A) Mouse model of transient cell ablation in the left cartilage. L, R: Left, Right.
(B) Left/right length ratios of the shown bones at P3. The table shows the results of repeated measures 2-way ANOVA (i.e., multiple bones analyzed per sample),
and the numbers in the graph are p-values for Sidak’s multiple comparisons post hoc test.
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Comparison to Previous Automation
Approaches
In principle, the ideal pipeline for the kind of analysis that
we perform here would be a fully automated method that
recognized each of the long bones from a full-body scan,
measured their length and exported those measurements without
user intervention. In fact, there have been very impressive
attempts at achieving this goal, combining object-based image
analysis (that utilizes shape and context-dependent information
in addition to pixel intensity values) with machine learning.
For example, Heidrich et al. (2013) used Cognition Network
Technology to extract objects and their properties from XMT
data of chicken embryos at multiple stages, and then used
these data to train a machine learning tool for automatic long
bone classification. BASILISC is obviously far from achieving
that level of automation, and while ImageJ is progressively
including more machine learning modules, Mimics does not
currently allow it. However, one of the strengths of BASILISC
stems from its simplicity, as it can be used directly on any set
of data, with minimal modification of the script. Contrary to
this simplicity, the pipeline described in Heidrich et al. (2013)
required a large training set of close to 3,000 instances, and also
complex iterative thresholding methods. Moreover, although the
classification achieved via this complex process was remarkably
accurate, it still required supervision and was only applied to a
reduced developmental window.

In contrast to other automation procedures where edge
detection has been used to determine optimal thresholds (Zhang
et al., 2010; Rathnayaka et al., 2011), here we rely on a
global threshold optimized by trial and error to find an
optimal range of gray values. BASILISC could be further refined
by implementation of widely used edge detection algorithms
to further improve the segmentation process and potentially
increase the accuracy of the measurements obtained. However,
since intensity can vary across the length of long bones
(Rathnayaka et al., 2011), edge detection would require the use of
multiple thresholds to reduce the degree of error in segmentation.
Thus, here we opt for a single global threshold to extend the
capabilities of the algorithm for a range of developmental stages.
With this approach the earliest stage at which we were able to
detect the mineralized portion of the bone was E15.5 (not shown).

To our knowledge, our Mimics script is the first algorithm
that makes use of the Python library within the Mimics software
to automate the segmentation, 3D modeling and analysis
of length of skeletal elements. Previously, Mimics has been
complemented with other scripting languages like MATLAB
(Huhdanpaa et al., 2011) for image processing before segmenting
the data, or software like Creo elements (Rios et al., 2014) to
analyze scans after they have been segmented. In the latter case,
though, the reference points for length measurement had to
be manually selected, which is a time-consuming step to do in
3D. Through BASILISC, segmentation and length measurements
can all be obtained within the one program (be it Mimics or
ImageJ) and extensive programming knowledge is not required.
Furthermore, we provide a processing pipeline that goes from
optimized scanning conditions of mouse samples across a range
of developmental stages, to streamlined image processing and

data analysis, making BASILISC a readily available tool for the
research community.

It should be noted, however, that the BoneJ version of
BASILISC is less accurate than the Mimics one, especially at
young stages (Figures 2, 3), and this could lead to some
limitations in its applications. We hypothesize that BoneJ is more
sensitive to discretization and thresholding artifacts because it
uses binary pixel values for input, while Mimics makes a mesh
over grayscale data, smoothing out noisy pixels at the crucial
areas on the bones’ extremities.

Comparison With “Real” Length
Measurements
Strictly speaking, the “true value” of bone length cannot
be obtained with absolute certainty by any method, as no
measurement is devoid of error. However, given the widespread
use of skeletal preparation, flat mounting and imaging to obtain
2D length estimations, we compared the measurements obtained
by the BASILISC approach (Mimics and BoneJ) with the length
obtained by skeletal preparations (Rigueur and Lyons, 2014). Of
note, all conditions showed remarkable correlation between both
methods, with 20-µm resolution and 398-HU threshold yielding
measurements very well correlated to those obtained via skeletal
preparations across the whole range of lengths analyzed. In
general, the lengths obtained with Mimics and BoneJ were bigger
than those obtained via skeletal preparations. While the threshold
choice could have some effect on this comparison, the most
likely explanation is that the classic skeletal preparation method
involves quite a harsh procedure, including increasing gradients
of glycerol that can shrink the sample up to 3–6% (Mabee
et al., 1998). Another important consideration of the Mimics
version is that the “line to surface” fitting method generates the
longest possible distance, which in some cases is not strictly
running parallel to the element’s main axis (e.g., Figure 2F).
This obviously generates a small bias in the measurement,
but as long as the same method is used to compare different
experimental conditions, this bias will be consistent and is
not expected to contribute to the observed biological effect.
Similarly, the aligned box approximation used in our BoneJ
version of BASILISC can also potentially lead to slight length
overestimation, depending on the shape of the bone. Importantly,
we also showed that the optimal Mimics and BoneJ versions of
BASILISC yield highly correlated measurements when applied
to the same scans.

Limitations and Future Improvements
One potential limitation of fitting lines or boxes to the skeletal
elements is that the measurement is sensitive to shape distortion
due to mutations. If the shape distortion is not consistent
across different specimens, then the length comparison will be
less reliable. In this case, accurate measurement would require
manual identification of multiple points along the length of the
element, as it would be done with a 2D picture of a skeletal
preparation. A potential solution for future versions of the
algorithm could be to identify bending points along the length
of the element and then measure the line defined by the points.
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Another limitation is that some long bones are often
segmented together in our pipeline, most often tibia and fibula
(Figures 2F, 3F), and sometimes radius and ulna. This is
because their automatic separation would require too high
a threshold. While radius and ulna can often be quickly
separated manually using the Split_mask function in Mimics
(see section “Materials and Methods”), this is not feasible for
the tibia and fibula, because their interaction surface is too
large. This issue has some impact on the tibial measurements,
because the fibula protrudes a bit farther than the tibia on
the distal end (Figures 2F, 3F). However, the effect is quite
minor and we showed that under the right conditions the
error is very consistent, as the left/right ratio for the tibia is
quite tightly centered on 1 (Figure 4). Therefore, the slightly
overestimated tibial lengths can still be used for comparison
purposes between different genotypes and/or treatments. The
decision to invest more time in splitting them as opposed to
accepting the error is up to the user and depends on two
main aspects: the degree of accuracy desired and the time
investment required to correct the error in all samples. In
our case, we opted not to correct this segmentation error, as
the minor gain in accuracy would be outweighed by the extra
time investment.

The aforementioned limitation would be corrected with
an automatic classification system based on machine learning
(Heidrich et al., 2013), but the implementation of these methods
is not straightforward. If this capability is implemented in the
future, it could speed up image processing even further, as in
theory no user intervention would be required to seed landmarks
and/or label the bones of interest.

Other Applications
The current BASILISC pipeline in Mimics only measures length
of the elements, because it applies the “fit line to surface” tool
to the 3D models of the bones. However, it could in principle
be adapted to measure width, by fitting a cylinder to the model
and interrogating the width of the cylinder. This approach would
require careful selection of the fitting parameters, so that the
surface of the cylinder coincides with the surface of the 3D
model. The BoneJ version, in turn, can directly be used to
measure bone width, just by using the other dimensions of
the aligned box.

AUTHOR’S NOTE

Beltran Diaz et al. present a semi-automated pipeline for fast and
versatile characterization of bone length from micro-CT images
of mouse developmental samples.
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Supplementary Figure 1 | (A) Representative 3D viewer result window after
applying the Particle Analyser tool to a segmented and cleaned up whole-body
scan (P7 mouse). (B–B′′) Close-ups of femur (B), tibia [(B′), right] and humerus
[(B′), left and (B′′)] showing the features that can be obtained from the Particle
Analyser tool, as indicated. Green arrowheads point to the ends of the maximum
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Feret’s diameter. The red arrowhead points to a region where the longest principal
axis does not align with the skeletal element. (C) Two different samples were
scanned four times at 40-µm resolution, and each of those scans were analyzed
twice, with identical or nearly identical parameters. (D) Two different samples were
scanned four times at 20-µm resolution, and most of those scans were analyzed
once. (E) Heatmap with the average coefficient of variability for each
bone and resolution.

Supplementary Figure 2 | Coefficients of variability for P7 and E17.5 analysis
using Mimics and BoneJ. (A,B) Heatmaps for the CVs of the Left/Right length
ratios obtained after analysis of P7 bones with Mimics (A) and BoneJ (B)
pipelines. (C,D) Heatmaps for the CVs of the indicated ratios obtained after

analysis of E17.5 bones with Mimics (C) and BoneJ (D) pipelines. (E) Left/Right
ratios for the P7 bones used to benchmark BASILISC, measured after classic
skeletal preparations.

Supplementary Table 1 | All the measurements obtained and analyzed in the
manuscript.

Supplementary Video 1 | Overview of the BASILISC process in Mimics,
performed on one of the scans used for this study. The messages prompted by
the script were taken as screenshots and added to the video clip. Please note that
an artifact of the video capture causes the mouse cursor to be shown slightly
displaced from its real position.
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