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Aim: The gut microbiome plays a crucial role in colorectal cancer (CRC) tumorigenesis,
but compositions of microorganisms have been inconsistent in previous studies due to
the different types of specimens. We investigated the microbiomes and resistomes of
CRC patients with colonic biopsy tissue and intestinal lavage fluid (IVF).

Methods: Paired samples (biopsy tissue and IVF) were collected from 20 patients
with CRC, and their gut microbiomes and resistomes were measured by shotgun
metagenomics. Clinical and laboratory data were recorded. Bioinformatics (KneadData,
Kraken2, and FMAP) and statistical analysis were done using the R (v4.0.2) software.

Results: Bacterial diversity in IVF was higher than in tissue samples, and bacterial
operational taxonomic units (OTUs) were 2,757 in IVF vs. 197 in tissue. β-diversity
showed distinct clusters in paired samples. The predominant bacteria in IVF were
phylum Proteobacteria, while the predominant bacteria of tissue were phylum
Actinobacteria. Twenty-seven representative bacteria were selected to form six bacterial
clusters, which showed only Firmicutes Cluster 1, and the Bacteroidetes Cluster 1 were
significantly more abundant in the IVF group than those in the tissue group (p < 0.05).
The Firmicutes Cluster 2, Bacteroidetes Cluster 2, Pathogen Cluster, and Prevotella
Cluster were not significantly different between IVF and tissue (p > 0.05). Correlation
analysis revealed that some bacteria could have effects on metabolic and inflammatory
parameters of CRC patients. A total of 1,295 antibiotic resistance genes (ARGs) were
detected in the gut microbiomes, which conferred multidrug resistance, as well as
resistance to tetracycline, aminoglycoside, and more. Co-occurrence patterns revealed
by the network showed mainly ARG-carrying bacteria to be similar between IVF and
tissue, but leading bacteria located in the hub differed between IVF and tissue.

Conclusion: Heterogeneity of microbiota is particularly evident when studied with
IVF and tissue samples, but bacterial clusters that have close relationships with CRC
carcinogenesis are not significantly different, using IVF as an alternative to tissue for gut
microbiome, and resistome assessment may be a feasible method.
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INTRODUCTION

Colorectal cancer (CRC) represents approximately 10% of the
global cancer incidence, and also is the third most diagnosed
cancer (10.2% of total cases) and the second leading cause
of cancer death (9.2% of total cases) worldwide (Vogelstein
et al., 2013; Bray et al., 2018). Despite extensive effort, the
carcinogenesis of CRC is still not fully understood. Currently,
the role of the intestinal microbiome in the pathogenesis of
CRC has become increasingly important. The gut microbiota
or its metabolites is a key environmental factor influencing
colon tumorigenesis, which is usually associated with altered
microbial diversity, increased abundance of pathogenic microbes,
or depletion of protective microbes (Wong and Yu, 2019). The
intimate crosstalk between the gut microbial community and the
epithelium layer of the host is a critical factor for cell proliferation
and differentiation, gene expression in host epithelial cells,
and regulation of inflammation (Hasegawa et al., 2007; Arthur
et al., 2014). Recent studies revealed that various bacteria,
including Fusobacterium sp. (Fn), Escherichia coli, Enterococcus
faecalis, Streptococcus gallolyticus, and enterotoxigenic Bacteroides
fragilis, are microorganisms that are closely associated with CRC
carcinogenesis (Yoon et al., 2017). Therefore, characterization
of the tumor microbiome is an essential step in unraveling the
effects of bacteria on cancer hallmarks (Nejman et al., 2020).

Presently, the role of microorganisms in CRC carcinogenesis
has not been unified nor conclusive (Flemer et al., 2017).
Because of the complex network and interaction between
microorganisms, intestinal microbiota may have a greater
ability to influence the intestinal microenvironment than a
single bacterium. Therefore, a study on intestinal microbiota
may provide more information on CRC carcinogenesis.
However, current studies in understanding intestinal microbiota
complexity and dynamics are inconsistent (Kostic et al., 2012;
Zeller et al., 2014; Flemer et al., 2017). The variability may be
due to different detection methodologies, tumor location, or
sampling stages. There are currently three main types of samples
for intestinal microbiome detection: feces, mucosal tissue, and
intestinal lavage samples. As feces samples are being acquired
relatively easily, most studies assess gut microbial diversity
through analysis of fecal samples. However, feces, reflecting the
fecal–luminal microbiota, are largely influenced and continually
changed by various factors, including diet, time of sampling, and
antibiotic use. This instability largely affects their accuracy in
mirroring the microbial structure. Moreover, microbial diversity
at the mucosal surface is hard to reflect using fecal samples
(Zoetendal et al., 2002; Eckburg et al., 2005). Studies have
confirmed significant differences existing in microbial structure
and community composition between normal fecal and mucosal
samples and found fecal microbiota to be less representative of
disease-associated dysbiosis than their mucosal counterparts,
especially among CRC patients (Zoetendal et al., 2002; Eckburg
et al., 2005; Chen et al., 2012). Mucosal biopsies display greater
microbial diversity, taxonomic and phylogenetic differences
(Durban et al., 2011; Li et al., 2015), and contrasting dominant
bacterial populations (Zoetendal et al., 2002). However, obtaining
a mucosa sample requires bowel preparation and biopsy. The

procedure is invasive and has difficultly being accepted by the
participants. Thus, the clinical applicability of biopsy tissue as a
screening method for CRC is significantly reduced. In addition,
the spatial organization of bacteria along the gastrointestinal
tract is highly variable (Donaldson et al., 2016), causing microbial
diversity to depend, to a large extent, on the anatomical site
sampled rather than the entire intestine. Thus, considerable
cohort-to-cohort differences have been reported among mucosal
microbial taxa from CRC patients (Zeller et al., 2014; Burns
et al., 2015; Nakatsu et al., 2015). Bowel preparation before
biopsy may change the microbiota composition. Decreases
in richness and microbial structure similarity after extensive
colonic lavage have also been observed (Harrell et al., 2012).
Intestinal lavage fluid (IVF) is obtained from patients preparing
for laparoscopic colorectal resection and is very easy to aspirate,
through a suction channel in the colonoscope, directly into a
collecting tube. Some species of mucosa-associated microbiota
(either on the surface or in cavities) may be obtained after a few
intestinal rinses (Shen et al., 2020). A previous study showed
that IVF contains higher microbial counts than corresponding
biopsy samples, suggesting that IVF better reflects the microbial
composition of a mucosal biopsy (Watt et al., 2016). Although
detection of microbiota in IVF has several advantages in
mirroring mucosa-associated microbiota (Shen et al., 2020),
data correlating tumor tissue with microbiota from IVF are
sparse. In this study, both tumor tissue and IVF samples were
collected simultaneously, and multifaceted comparisons were
made between the two sample types.

MATERIALS AND METHODS

Patients
The Shantou University Medical College Institutional Ethics
Board approved the study including all procedures (participant
recruitment and all experimental protocols). Patients who
were selected from the Second Affiliated Hospital of Shantou
University provided written informed consent. Pathological
tests diagnosed 20 CRC patients. Patients with a history of
polyps, adenomas, or non-primary CRC were excluded. None
of the patients received antibiotics before sample collection. All
participants were Chinese living in Guangdong Province, China.
No antibiotics or prebiotics were used in these patients before the
sample collection.

Sample Collection
All participants underwent a similar bowel cleansing procedure.
For IVF collection, the patient fasted for 1 day before sample
collection. Then, all patients were given a 500-ml enema, and
all liquid discharged from the intestine was collected. Samples
were centrifuged (4◦C, 10,000 × g, 10 min) within 2 h. The
sediments were collected and stored at−80◦C. Bowel preparation
was good in all subjects in the study. Tissue samples [biopsy
(Bx)] were collected from 20 participants after CRC screening
colonoscopy. Subsequent histological analysis was performed
on all participants. Paired samples [biopsy (Bx)] and IVF were
collected from the 20 CRC participants.
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Shotgun Metagenomic Detection for
Tumor Tissue and Intestinal Lavage Fluid
Bacterial genetic DNA was isolated from tissue/IVF samples
using an AllPrep DNA/RNA kit (Qiagen, German). A DNA
quality test was performed by using Qubit dsDNA Assay
KitinQubit 2.0 Fluorometer (Life Technologies, CA,
United States), and then the qualified DNA samples with
an OD value between 1.8 and 2.0 were accepted, and about
1 µg of DNA from each sample was used to construct a library.
Sequencing libraries were generated using NEB NextUltra
DNA Library Prep Kit for Illumina (NEB, United States).
PCR products were purified (AMPure XP system), and
libraries were analyzed for size distribution by Agilent2100
Bioanalyzer and quantified using qPCR. Water was used
as the negative control. The clustering of the index-coded
samples was performed on a cBot Cluster Generation System.
DNA samples was used for shotgun library construction.
Subsequently, Illumina high-throughput sequencing was
performed with the NovaSeq 6000 platform (paired-end
sequencing, PE150 × 2). The bacterial genomic sequences
identified in this study were deposited in the NCBI Sequence
Read Archive with accession numbers (PRJNA754518), which
can be shared with readers.

Bioinformatics Analysis Workflow
For subsequent bioinformatics analysis, the KneadData
software was used for quality control of raw data (based on
Trimmomatic) and de-hosting (based on Bowtie2). Before and
after KneadData, FastQC was used to detect the rationality
and effect of quality control, and tags were clustered to OTU
at 97% sequence similarity. Taxonomic ranks were assigned
to the OTU representative sequence using the Kraken2. The
diversity indices were calculated by the R software (v4.0.2).
Alpha diversity, beta diversity, and the different species
screening were analyzed based on OTU and taxonomic ranks.
Starting from clean reads with host genes removed, FMAP
software was used to compare and annotate the reads of
each sample with the antibiotic resistance gene database
(CARD) to check for the ARGs conferring resistance to
aminoglycoside, tetracycline, beta-lactam, colistin, fosfomycin,
fusidic acid, macrolide, nitroimidazole, oxazolidinone, phenicol,
quinolone, rifampicin, sulfonamide, trimethoprim, and
glycopeptide antibiotics.

Statistical Analyses
Mann–Whitney U (non-parametric) and Dunn’s tests were
employed to analyze the differences in the abundance
between two groups for non-normally distributed data.
Data were analyzed using the R software (v4.0.2), SPSS 23.0
software, and p-values represent two-sided statistical tests.
All graphics were made with GraphPad Prism (v 8.0.2) and
R (v4.0.2). Spearman’s correlation analysis was employed
to assess associations between ARG subtypes and bacterial
species. Pairs with thresholds of correlation coefficient >0.4,
p < 0.05, and the two items occurring in more than half of the

samples were selected to build the network using the software
Gephi (v 0.9.2).

Co-occurring network analysis using the Spearman
rank correlation was conducted using Hmisc (Harrell,
Vanderbilt University School of Medicine, Nashville, TN,
United States) within the R software package, using the
relative abundance of different types of bacterial genera.
Each co-occurring pair had an absolute Spearman rank
correlation above 0.4, with a significance level under 0.05.
The results were transformed into links between two
bacterial taxa in the co-occurrence network. Co-occurring
networks were visualized using Gephi (v 0.9.2). Spearman rank
correlation analysis between ARGs and bacterial communities
was performed in R with the psych package. Univariate
analysis using a Mann–Whitney U-test was performed to
assess associations between ARGs and gut microbiota and
clinical factors.

RESULTS

Clinical and Demographic Information of
Patients
Twenty newly diagnosed CRC patients were enrolled in our
study, including 10 males and 10 females, and their average
age was 58.40 ± 2.36 years. Tumors of four (20%) patients
were in the proximal colon, tumors of eight (40%) patients
were located in the distal colon, and tumors of eight (40%)
patients were in the rectum. Fourteen (70%) patients were
in I–II stage of tumor node metastasis (TNM I–II), and six
(30%) patients were in TNM III–IV. Seven (35%) patients
had hypertension. The tumor marker CA-19-9 was significantly
higher in CRC patients (155.09 ± 585.59; reference range 0–
37 U/ml). Other tumor markers and biochemistry parameters
in CRC patients were not significantly different compared with
reference range (Table 1).

Comparison of Gut Bacterial
Communities Between Intestinal Lavage
Fluid and Tissue Samples
In this study, we analyzed a total of 20 paired tissue and
IVF samples, with each pair being taken from one subject.
After filtering raw data with the criteria, we obtained a
dataset consisting of 350,606,294 high-quality gene sequence
reads, with an average of 8,765,157 (n = 40) sequences per
sample. Within the dataset, we identified a total of 2,758
OTUs, based on 97% sequence similarity (equal to bacterial
species level), with an average of 323.35 ± 386.37(n = 40)
OTUs per sample.

Diversity and Taxonomical
Measurements of the Microbiome Data
Comparisons of alpha and beta diversity were performed between
the two types of samples. Alpha diversity includes Observed
species, Chao, Ace, Shannon, and Simpson indices. Shannon’s
diversity and index were similar between the two groups, while
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TABLE 1 | Clinical characteristics of participants.

Indexes Tumor patients Reference range

Age (years) 58.40 ± 2.36

Gender

Female 10 (50%)

Male 10 (50%)

Location of tumor

Proximal colon 4(20%)

Distal colon 8 (40%)

Rectum 8 (40%)

TNM

0–II 14 (70%)

III–IV 6 (30%)

Blood pressure

Hypertension 7 (35%)

Normotension 13 (65%)

LNM

Yes 6 (30%)

No 14 (70%)

BMI, kg/m2 22.68 ± 3.53

Laboratory parameters (M ± Q)

Glu, mmol/L 6.14 ± 1.50 3.90–6.10

T-CH, mmol/L 4.56 ± 0.63 3.10–5.71

TG, mmol/L 1.81 ± 0.35 0.58–1.70

HDL, mmol/L 1.25 ± 0.26 0.91–1.55

LDL, mmol/L 2.77 ± 0.47 2.07–3.12

CEA, µg/L 4.39 ± 5.97 0–5

CA-19-9, U/ml 155.09 ± 585.59 0–37

TBA, µmol/L 4.78 ± 4.87 0–10

LDH, U/L 180.30 ± 46.00 120.0–250.0

ADA, U/L 10.05 ± 3.08 0–25

NEUT#, 109/L 4.40 ± 1.49 1.8–6.3

LY#, 109/L 1.52 ± 0.44 1.1–3.2

PLT, 109/L 275.45 ± 78.40 125–350

NLR 3.35 ± 2.28

PLR 199.43 ± 90.07

TNM, tumor–node–metastasis; LNM, lymph node metastasis; BMI, body mass index; Glu, glucose; T-CH, total cholesterol; TG, triglyceride; HDL, high-density
lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 19-9; TBA, total bile acid; LDH,
lactate dehydrogenase; ADA, adenosine deaminase; NEUT#, neutrophils; LY#, lymphocyte; PLT, platelet count; NLR, neutrophil–lymphocyte ratio; PRL, platelet-to-
lymphocyte ratio.

Simpson’s diversity and index, although insignificant, tended to
be higher in the tissue group than in the IVF group (p > 0.05).
The higher the Simpson index, the lower the bacterial diversity.
Our results suggested that the gut microbiome had higher
bacterial diversity in IVF than in tissue samples. The Chao index
(species richness) was higher in IVF than in tissue (p < 0.05),
while equitability and Pielou evenness were significantly lower
in IVF than in tissue (p < 0.05) (617.35, 0.006, and 0.243 in
IVF vs. 29.35, 0.236, and 0.596 in the tissue group, respectively),
and Good’s coverage demonstrated no statistical differences
between the two groups (Figure 1A). Beta diversity was analyzed
by the QIIME software (v1.80) to reveal the differences in
species complexity. PCoA performed on the Bray–Curtis distance
index, measured in unannotated OTUs, revealed distinguishing

bacterial species distributions between tissue and normal IVF
groups. Our results showed that microflora clustered strongly by
samples. Paired samples (tissue vs. IVF) of the 20 subjects formed
distinct clusters at the family level. Alpha and beta diversities in
the two sample groups are shown in Figure 1B.

Comparison of Bacteria at the Phyla,
Genus, and Species Levels Between
Intestinal Lavage Fluid and Tissue
This study also evaluated the similarity (or dissimilarity) of taxa
in IVF and tissue samples. We performed taxonomical analysis
on the 2,757 OTUs in IVF and 197 OTUs in tissue, excluding the
unclassified OTUs. Among the classified OTUs, we identified 19
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FIGURE 1 | (A) Boxplots represent the indices of observed species. Chao, equitability, Pielou, Shannon’s diversity, and Simpson’s diversity indices in the IVF and
tissue groups. IVF, intestinal lavage fluid; tissue, tumor tissue. (B) Beta diversity between the two groups. PCoA analyses. The abscissa is a principal component, the
ordinate is another principal component, and the percentage on the coordinate axis indicates the contribution of the two principal components to the sample
difference.

phyla, 42 classes, 100 orders, 221 families, 859 genera, and 2,747
species in IVF, in contrast to the 11 phyla, 21 classes, 33 orders,
52 families, 102 genera, and 197 species in the tissue group.

First, we studied the differences between the two groups
of samples at the top 10 phyla level by Dunn’s test. We
identified six phyla that were significantly different between the
two groups. Phyla Proteobacteria and Verrucomicrobia were
higher in IVF, while Bacteroidetes, Actinobacteria, Synergistetes,
and Planctomycetes were higher in tumor tissue (p < 0.05).
Fusobacteria tended to be higher in tissue than in IVF
(p > 0.05). In the top 10 genera, Escherichia, Citrobacter, and
Acinetobacter were higher in IVF, and Tetrasphaera, Alcanivorax,
and Paeniglutamicibacter were higher in tumor tissue. In the
top 10 bacteria species detected, there were seven species that
were significantly different between the two groups. Escherichia
coli, Prevotella copri, and Citrobacter freundii were higher in
IVF, while Tetrasphaera japonica, Alcanivorax hongdengensis,
Paeniglutamicibacter antarcticus, and Bacteroides dorei were
higher in tissue. Klebsiella pneumoniae was insignificantly higher
in IVF, and Bacteroides fragilis and Bacteroides vulgatus were
insignificantly higher in tissue. Comparisons between the two
samples of the top 10 bacterial phyla, genera, and species are
shown in Figure 2.

Bacterial Co-abundance Groups in
Intestinal Lavage Fluid and Tissue of
Colorectal Cancer Patients
Co-abundance groups (CAGs) resemble the previously
formulated concept of enterotypes, which reflect community

structure that could be more informative than abundance
differences of individual taxa (Claesson et al., 2012; Flemer
et al., 2017). According to previous studies and the literature
analyses, we selected 27 representative bacteria that play
crucial roles in CRC pathogenesis to determine which bacterial
clusters were the primary drivers of the microbiome (either
in IVF or in tissue samples). First, the Spearman correlation
coefficient was calculated, and according to the correlation
coefficient, the R language was used for cluster heatmap analysis.
Six robust CAGs or bacterial clusters in the OTU dataset
were identified, including Bacteroidetes1, Bacteroidetes 2,
Firmicutes1, Firmicutes 2, Pathogen Cluster, and Prevotella
Cluster (Flemer et al., 2017) (Figure 3A).

Then, the abundance of each cluster was compared between
the two groups. Our results showed that Firmicutes Cluster 1 and
Bacteroidetes Cluster 1 were significantly more abundant in the
IVF group than those in the tissue group (p < 0.05), Firmicutes
Cluster 2 tended to be more abundant in the IVF group than
those in the tissue group, but the difference was insignificant.
Conversely, Bacteroidetes 2, Pathogen Cluster, and Prevotella
Cluster tended to be less abundant in the IVF group than those in
the tissue group, but the difference was not statistically significant
(p > 0.05) (Figures 3B,C).

In order to determine which bacterial taxa are the main
drivers of IVF and tissue microbiota, linear discriminant
analysis (LDA) was used to calculate the effect size of different
bacterial taxa. An LDA > 2 indicates significant differences
among species, and the larger the LDA, the greater the species
difference. In the phylogenetic tree, the circle radiating from the
inside to the outside represents the classification level from the
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FIGURE 2 | Histogram of IVF and tissue at the phylum, genus, and species levels. IVF, intestinal lavage fluid; tissue, tumor tissue. ∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05.
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FIGURE 3 | (A) Hierarchical Ward-linkage clustering based on the Pearson correlation coefficients of the relative abundance of operational taxonomic units in IVF
and tissue microbiota of 20 individuals with colorectal cancer (CRC). Bacterial clusters were defined based on the clusters in the vertical tree and named after their
most notable characteristic. Column color coding is according to the legend below. The right shows the most abundant bacterial genera, and the most strongly
connected genera in each bacterial cluster (i.e., genera with the highest numbers of significant positive correlations with other members of each respective group)
are listed. (B) Boxplots of the relative abundances of the six co-abundance groups (CAGs) of bacterial clusters, **p < 0.01. (C) Hierarchical Ward-linkage clustering
based on the Pearson correlation coefficients of the relative abundance of CAGs in CRC samples (20 individuals).

phylum to the genus. Each node represents a species, and the
diameter of each small circle was proportional to the relative
abundance of the taxon. The yellow nodes indicate that the
differences among the two groups were not significant, the red
nodules represent the main bacteria that play an important
role in IVF, and the green nodules represent the bacteria

that play a crucial role in tissue. The dominant bacteria in
IVF (LDA > 4) were Proteobacteria (phylum level), mainly
Betaproteobacteria and Gammaproteobacteria (class level);
Pseudomonadales, Burkholderiales, and Enterobacterales (order
level); Moraxellaceae, Comamonadaceae, and Enterobacteriaceae
(family level); Acinetobacter, Citrobacter, and Escherichia (genera
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level), and Escherichia coli (species level). On the other hand, the
dominant bacteria of tissue (LDA > 4) were Actinobacteria
and Synergistetes (phyla), mainly Actinobacteria and
Synergistia (class); Micrococcales and Oceanospirillales (order);
Intrasporangiaceae, Alcanivoracaceae, and Synergistaceae
(family); Tetrasphaera and Alcanivorax (genera), and T. japonica,
and A. hongdengensis (species). Our results indicate that the
dominant bacteria in IVF are different from those in tissue (LDA
score histogram and the evolutionary branching plot are shown
in Figures 4A,B).

Correlation of Bacterial Communities
and Clinical Parameters
To study the influence of bacteria or bacterial clusters on
parameters reflecting patient disease characteristics, we identified
the associations between bacteria genera and the following
confounding factors: body mass index (BMI), metabolic
parameters, including total bile acid (TBA), glucose, and low-
density lipoprotein (LDL)/high-density lipoprotein (HDL),
inflammatory parameters, including neutrophils, and tumor
markers such as CA-19-9 and CEA. Neutrophil count was
positively correlated with Bifidobacterium bifidum, Prevotella
nigrescens, B. dorei, Bacteroides thetaiotaomicron, Parvimonas
micra, Peptostreptococcus stomatis, Fusobacterium nucleatum,
Fusobacterium hwasookii, Alloprevotella tannerae, Prevotella
intermedia, Bacteroides ovatus, Pyramidobacter piscolens, and
Prevotella multiformis (p < 0.05). BMI index was positively
correlated with B. bifidum, P. nigrescens, P. multiformis,
and B. ovatus (p < 0.05); TBA was positively correlated
with B. fragilis/dorei, P. micra, P. stomatis, F. hwasookii, and
A. tannerae (p < 0.05); glucose (Glu) and HDL were found
to negatively correlate with P. copri, Fusobacterium varium,
Clostridium perfringens, B. dorei, Bilophila wadsworthia,
P. micra, and Clostridium symbiosum (p < 0.05); and tumor
marker CA-19-9 was found to be negatively correlated with
P. copri and B. bifidum, but positively correlated with B. vulgatus,
Erysipelatoclostridium ramosum, and Parabacteroides_sp._CT06
(p < 0.05). CEA was positively correlated with P. nigrescens and
B. fragilis (p < 0.05). Our results suggest that some intestinal
bacteria could influence the metabolic and inflammatory
parameters of CRC patients. Conversely, other bacteria had no
significant influence (Figure 5A).

The correlation between bacterial clusters and patient
characteristics was also analyzed. TBA was positively correlated
with Bacteroidetes 1, Bacteroidetes 2, and Pathogen Cluster
(p < 0.01). Neutrophil count was positively correlated with
Bacteroidetes 1, Pathogen Cluster, and Prevotella Cluster
(p < 0.05); Pathogen Cluster and Prevotella Cluster were also
positively associated with the metabolic parameters LDL and
ADA. Pathogen Cluster was negatively associated with Glu
(p < 0.01), and Firmicutes Cluster 2 was negatively associated
with HDL (p < 0.01). The correlation between bacteria and
patient characteristics is depicted as a heatmap (Figure 5B).

We used the pheatmap tool to identify potential differences
in the metabolic capability of each cluster between sample
groups. Bacteroidetes 1 and Firmicutes 1 were the two

clusters that had the most influence on signaling pathways,
both of which had a close association with the signaling
pathways connected with RNA degradation, D-glutamine, and D-
glutamate metabolism, ribosome, valine, leucine and isoleucine
biosynthesis, D-alanine metabolism, and lipoic acid metabolism.
In addition, Bacteroidetes 1 was related to pantothenate and
CoA biosynthesis, and Firmicutes 1 was related to beta-lactam
resistance. On the contrary, Bacteroidetes 2 and Prevotella
Clusters were negatively associated with cationic antimicrobial
peptide (CAMP) resistance. Pathogen Cluster was negatively
associated with ascorbate and alternate metabolism (Figure 5C).

Identification of Operational Taxonomic
Units That Are Associated With
Antibiotic Resistance Genes
A total of 1,295 ARGs were detected in the gut microbiomes. We
selectively studied the top 100 ARGs based on their abundance,
and matched each resistance gene type to its corresponding
antibiotic, then summarized the relative abundance of types
resistant to the same antibiotic. The subtypes (>5) belong
to the multidrug resistance types (27), followed by resistance
to aminoglycosides (12), tetracycline (10), peptide antibiotics
(8), dual drugs (6), and fluoroquinolone antibiotics (5). Our
results showed that ARGs of multidrug resistance, tetracycline,
and aminoglycosides were the dominant types in the human
gut. Among all ARGs, VatI, MdtE, TetQ, ErmB, AAC(3)-
IIa, MphA, MdtF, Sul1,TolC, PmrE, BaeR, PmrF, AcrE, CRP,
MdtP, MdtM, bacA, MsbA, MdtB, and ErmF were the top
20 ARGs in both IVF and tissue. We then compared ARG
richness between IVF and tissue samples based on the
number of subtypes and total abundance for each sample.
Procrustes analysis showed that ARG subtypes had significant
associations with microbial species. In IVF, ARG-carrying
bacteria mainly were Bacteroides (fragilis/vulgatus), Citrobacter
(freundii/complex_sp._CFNIH9/youngae), E. coli, K. pneumoniae,
P. copri, and Tepidimonas fonticaldi. While in the tissue, the most
ARG-carrying bacteria were B. vulgatus, Colwellia marinimaniae,
P. antarcticus, E. coli, A. hongdengensis, B. thetaiotaomicron,
P. piscolens, and T. japonica. Our results indicate that the main
ARG-carrying bacteria, i.e., Bacteroides and E. coli are similar
between IVF and tissue.

We then investigated the co-occurrence patterns between
ARG types and microbial taxa using the network analysis
approach. Pairs with Spearman r > 0.4 and p < 0.05 were
used to stand for co-occurrence patterns. Bacterial genera
were speculated as possible ARG-type hosts based on co-
occurrence results. In IVF, a total of 69 nodes (23 species and
46 ARG subtypes) and 161 edges (subtype–species connections)
were included in the co-occurrence network. The figure
clearly shows that the leading bacterial hubs were Citrobacter,
Acinetobacter junii, and E. coli. Three subtypes of Citrobacter
(portucalensis/youngae/freundii/freundii_complex_sp._CFNIH9)
were the hub node that connected with several ARGs. A. junii and
E. coli were also hub nodes with a high degree of connectedness.
E. coli co-occurred with ARG subtypes, including five multidrug
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FIGURE 4 | System clustering tree. (A) The red color indicates IVF, the green color represents the tissue. The red nodes represent the key species in the IVF group;
the green nodes represent the key species in the tissue group. The yellow nodes represent normal species. The species’ name is on the right side of the figure.
(B) The key species in the two groups are analyzed by linear discriminant analysis (LDA) analysis. The LDA score is represented.

FIGURE 5 | (A) Heatmaps of interactions between species and environmental factors. Environmental factors are on the X-axis, and species are on the Y-axis.
(B) Heatmap of the relationship between clusters and environmental factors. The X-axis is the environmental factor, and the Y-axis is the cluster. (C) Heatmap of the
relationship between metabolic pathways and clusters. The X-axis shows the clusters, and the Y-axis shows the metabolic paths. The R-value (rank correlation) and
the p-value of the corrected error finding rate were calculated. The R values are shown in different colors in the figure. The legend on the right is the color code of the
different R values. *p < 0.05, **p < 0.01, ***p < 0.001.

resistance genes (e.g., mdtP, mdtO, GadW, GadX, AcrA), 3′-
aminoglycoside [AAC(3)-IIa, AAC(3)-IIc, aadA5], 2 quinolone
(EmrR, emrB), 1 Sul2, TetQ, and ampC. In tissue, a total of 62

nodes (24 species and 38 ARG subtypes) and 116 edges (subtype–
species connections) were included. The leading hubs were
C. marinimaniae that connected with seven multidrug resistance
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genes (CRP, AcrS, mdfA, mdtP, mdtM, AcrF, and AcrE), one
dual resistance (BaeR), two peptide antibiotics (YojI, PmrE),
and one of TetQ, ErmF, and mdtG. E. coli co-occurred with
ARG subtypes, including eight multidrug resistance genes (AcrS,
AcrE, acrB, vgaC, mdtN, mdtO, mdtP, and TolC), two peptide
antibiotics (bacA and PmrF), and one MdtB. Other leading
bacteria were A. hongdengensis, Dialister invisus, P. piscolens,
and B. vulgatus. Except for E. coli, bacteria located in the hub
were quite different between IVF and tissue, and the microbiota
network showed a significantly different bacterial distribution
(Figures 6A,B).

Analysis of Microbial Community
Function/Metabolic Pathway With
Intestinal Lavage Fluid and Tissue
We analyzed the factors representing metabolic pathways by
metagenomics, and the top 10 metabolic pathways are shown in
Figure 7. After the conversion of standardized data and log2,
they were ranked according to abundance. The main metabolic
pathways were for valine, leucine, and isoleucine biosynthesis, D-
glutamine and D-glutamate metabolism, lipoic acid metabolism,
flagellar assembly, biosynthesis of amino acids, sulfur relay
system, and biotin metabolism were abundant in the IVF,
whereas beta-lactam resistance, RNA degradation, ascorbate and
aldarate metabolism, quorum sensing, biofilm formation—Vibrio
cholerae, CAMP resistance, and phosphotransferase system (PTS)
were abundant in tissue. D-Alanine metabolism, ribosome, and
pantothenate, and CoA biosynthesis were found in both IVF and
tissue. Our results indicate that metabolic pathways detected in
IVF or tissue samples were incomplete same (Figure 7).

DISCUSSION

The gut microbiome has emerged as a central player in
CRC pathogenesis, and it has been shown to have multiple
effects on tumor biology, such as the transformation process,
tumor progression, and the response to anticancer therapies,
including immunotherapy (Wong et al., 2017; Matson et al.,
2018; Helmink et al., 2019). Some bacteria play a leading role
in the occurrence and development of CRC. Previous studies
have yielded inconsistent results. In one report, CRC tumor
biopsy specimens were shown to harbor greater abundances of
Fusobacteria and Actinobacteria, and their paired adjacent tissue
counterparts harbor an elevated abundance of Firmicutes (Shah
et al., 2018). However, in another study, a lower abundance
of Bacteroidetes, Firmicutes, and Actinobacteria, and higher
abundance of Proteobacteria and Fusobacteria were observed in
tumor tissues (Wang et al., 2020). Compared with their tumor
biopsy counterparts, fecal samples harbor a greater abundance
of Verrucomicrobia roseburia, Blautia, Bifidobacterium, and
fewer Proteobacteria and Prevotella, suggesting that the bacterial
microbiota varies in different types of samples or anatomical
positions. Bacteria existing as the abundant taxon of CRC tumor
tissues are protagonists of tumor development, due to their
close interactions with epithelial and immune cells, and their
presence correlates with increased risks of CRC. Up to now,

F. nucleatum, E. coli, enterotoxigenic B. fragilis, S. gallolyticus,
and Klebsiella, among others, have been successively discovered
to act as driver bacteria for CRC carcinogenesis (Swidsinski
et al., 1998; Tjalsma et al., 2012; Wang et al., 2012, 2020;
Antonic et al., 2013; Sears and Garrett, 2014; Tahara et al.,
2014). Therefore, the microbiota of tumor tissue may provide
extremely valuable information in identifying the tipping point
in malignant transformation, detecting stages of carcinogenesis,
and evaluating the potential prognosis of CRC (Shah et al.,
2018). However, due to the aforementioned limitations in tissue
samples, plus the considerable variation in composition and
abundance of the gut microbiota across anatomic sublocations
in the colorectum (Donaldson et al., 2016; Purcell et al.,
2017), there are still uncertainties and inconsistent results
when detected from tissue specimens (Flemer et al., 2017;
Shah et al., 2018; Wang et al., 2020). Furthermore, the CRC-
associated microbiome is dynamic, with changes occurring
during CRC progression. Interindividual microbial community
heterogeneity of the human gut is influenced by spatial
distribution, microheterogeneity, and host genetics, which has
posed a long-standing challenge when investigating microbial
signatures implicated in CRC tumorigenesis (Eckburg et al.,
2005; Hong et al., 2011; Zhang et al., 2014; Thomas et al.,
2016; Pan et al., 2020). Differences in analysis, methodology
(e.g., phylogeny, culturing, and metagenomics), and sample size
can also lead to markedly different findings (Walker et al.,
2014). Uncovering specific microbiota structures with suitable
specimens will benefit our understanding of how microbial
dysbiosis impacts the microenvironment of the colon.

The biofilm-like architecture of the mucosal microbiota, in
close contact with the underlying gut epithelium, facilitates
nutrient exchange and induction of host innate immunity
(Sonnenburg et al., 2004). The stability of intestinal microbiota is
achieved in part through the ability of these microbes to attach
to the mucosa (Harrell et al., 2012). Thus, mucosal adherent
bacteria are likely to play a more direct role in the pathogenesis
of CRC than luminal bacteria (Keku et al., 2015). Currently,
the mucosa-associated gut microbial richness and biodiversity
shifts associated with CRC progression have remained largely
unexamined (Flemer et al., 2017). IVF is obtained from patients
preparing for laparoscopic colorectal resection. Some species
of mucosa-associated microbiota (either on the surface or in
cavities) may be obtained after a few whole intestinal rinses. Thus,
IVF is enriched in mucosal microbes from the entire colonic
environment and includes areas that tissue biopsy cannot reach
(Shen et al., 2020). A previous study reported that microbiota
of paired mucosal and fecal samples from individuals with CRC
differed significantly (Flemer et al., 2017; Russo et al., 2017;
Shen et al., 2020). Due to intestinal flora being susceptible to
food and antibiotics, fecal bacteria fluctuate greatly and likely
do not accurately reflect the mucosal microbiota composition.
Given the known limitations of tissue sampling, we set out to
investigate whether IVF was an alternative approach. Our results
show that a greater number of bacterial species is detected in
IVF than that in tumor tissue (2,757 species vs. 197 species).
Similarly, higher bacterial diversity is detected in IVF samples
than in tissue, particularly pertaining to species richness. Bowel
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FIGURE 6 | Network analysis of co-occurrence patterns among antibiotic resistance gene (ARG) subtypes and microbial taxa in IVF (A) and tissue (B). The nodes
are colored according to ARG types and species. A connection represents a strong (Spearman’s correlation coefficient r > 0.4) and significant (p < 0.05) correlation.
The size of each node is proportional to the number of connections.

preparation may alter microbial alpha and beta diversity (Harrell
et al., 2012; O’brien et al., 2013). On the other hand, it is likely
that luminal bacteria have a more complex community structure
(Keku et al., 2015). Beta diversity revealed that distinguishing
cluster of bacteria formed between tissue and IVF groups. When
the differences at each bacterial level between the two specimen
groups were further studied, we found that Proteobacteria and
Verrucomicrobia were higher in IVF, while Bacteroidetes and
Actinobacteria were higher in tumor tissue. Verrucomicrobia
and fewer Proteobacteria mainly existed in the fecal of CRC,
while abundant Fusobacteria and Actinobacteria existed in tumor
tissue (Shah et al., 2018). In our study, Fusobacteria did not
significantly differ in both tissue and IVF, suggesting that bacterial
composition in IVF could reflect either fecal or tissue microbiota.
Fusobacteria is a key bacterium in CRC carcinogenesis, which
is enriched in CRC tissues (Tahara et al., 2014). Some bacteria,
including E. coli, K. pneumoniae, B. fragilis, and B. vulgatus,
presented in large quantities in both IVF and tissue, suggesting
that IVF could provide a comparative assessment of microbial
diversity without the limitations associated with biopsy collection
(Watt et al., 2016).

Heterogeneity of microbiota is particularly evident when it
was studied at the level of CAGs rather than at the level of
individual organisms or taxa. Microbial clusters were considered
a higher-level structure of the CRC-associated microbiota,
reflecting gut microflora better than a particular bacterium.
However, inconsistent results have also been observed in various
studies (Kostic et al., 2012; Zeller et al., 2014; Flemer et al.,
2017). A previous study showed that Firmicutes Cluster 1
and Bacteroidetes Cluster 1 were significantly less abundant
in the microbiota of individuals with CRC. In contrast, other
studies have shown that bacteria belonging to the Firmicutes

and Bacteroidetes phyla are the most abundant species in CRC
(Gao et al., 2015; Nejman et al., 2020), and that Firmicutes
Cluster 2, Prevotella Cluster, Pathogen Cluster, and Bacteroidetes
Cluster 2 are more abundant in CRC biopsy microbiota (Flemer
et al., 2017). From a functional point of view, the microbiota
of individuals with high abundances of the Prevotella Cluster
and Pathogen Cluster might influence the development of CRC
through modulating the expression of immunoinflammatory
response genes (i.e., CXCL1), which has been shown to increase
the survival of cancerous cells and promote angiogenesis in
CRC(Wang et al., 2006; Acharyya et al., 2012; Flemer et al.,
2017). In our study, there was no significant difference between
Firmicutes Cluster 2, Bacteroidetes 2, Pathogen Cluster, and
Prevotella Cluster in the IVF group and those in the tissue group,
demonstrating that microbiomes in IVF could reflect those in
the tissue. Pathogen Cluster is associated with increased TH17
response and may be associated with a poor prognosis for CRC
(Flemer et al., 2017). However, the Pathogen Cluster is in very
low abundance in fecal microbiota (Flemer et al., 2017), making it
difficult to detect in feces. Thus, detecting it with IVF may provide
more valuable information mirroring its content in tissues. The
abundance of Firmicutes Cluster 2 and Bacteroidetes Cluster 2
is also correlated with a mucosal gene-expression profile more
resembling that of a healthy mucosa (Flemer et al., 2017).

The relative abundance of these CAGs differs by tumor
location. For example, Bacteroidetes Cluster 2 and the Pathogen
Cluster are more abundant in distal cancers, whereas the
Prevotella Cluster and Firmicutes Cluster 2 are only significantly
more abundant in individuals with proximal cancers (Flemer
et al., 2017). As IVF enriches the mucosal microbes from the
entire colonic environment, the differences in spatial distribution
are alleviated. From this point, bacterial microbes in tissue more
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FIGURE 7 | Functional features of the gut microbiome. (A) The 10 most abundant metagenomic pathways in IVF. (B) The 10 most abundant metagenomic
pathways in tissue. (C) The 10 most abundant metagenomic pathways in the two groups. The heatmap is converted from standardized data and log2.

accurately reflect the relationship between bacterial flora and
cancer. Therefore, selecting suitable specimens according to the
purpose of the study is essential for a better understanding of the
host–microbial relationships in health and disease.

Presently, a full understanding of how the bacteria
microbiome impacts host metabolism is still lacking. Bacteroides
species are closely associated with an increased risk of CRC
because of their ability to convert bile to fecapentaenes,
considered carcinogenic or mutagenic metabolites (Moore
and Moore, 1995). In our study, Bifidobacterium, Prevotella,
and Bacteroides were positively correlated with BMI index.
Bacteria, including Bacteroides, Parvimonas, Peptostreptococcus,
Fusobacterium, and Alloprevotella tannerae, as well as
Bacteroidetes 1, Bacteroidetes 2, and Pathogen Cluster, influence
the TBA. Glu and HDL are negatively correlated with Firmicutes
Cluster 2, Prevotella copri, Fusobacterium, Clostridium, and
Bacteroides. The Pathogen Cluster and Prevotella Cluster

are also positively associated with the metabolic parameters
LDL and ADA. Pathogen Cluster is negatively associated
with Glu. These results indicate the effects of the intestinal
microbiome on metabolism.

Antibiotic administration results in a fundamentally altered
gut microbiome, and the stable microbiome has remarkable
plasticity to routine perturbation of antibiotics, but the
response to each antibiotic differs based on the microbiome
composition (Gibson et al., 2016; Schwartz et al., 2020). The
gut microbiome can act as a reservoir for antibiotic-resistant
bacteria and their associated genes (ARGs) (Hu et al., 2013).
ARGs transmit between species within the gut microbiome,
including potential pathogens. Therefore, understanding how
the resistome changes in parallel with the microbiome is vitally
important in CRC (Stalder et al., 2019). Nowadays, only a few
studies have characterized the effects of particular antibiotic
regimens on the gut ecosystems of individuals with respect
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to the associated resistome (Palleja et al., 2018), which may be
because data for antibiotic exposure on gut microbiota are
quite hard to obtain. To assess the resistomes in IVF and
tissue samples, we used a measure for the antibiotic resistance
potential of a microbial community based on the abundance
of its resistance genes relative to its species composition.
We then matched each ARG type to its corresponding
antibiotic and summarized the relative abundance of types
resistant to the same antibiotic. Our results reveal that the
common ARGs, detected in both IVF and tissue, confer
multidrug resistance, as well as resistance to aminoglycosides,
beta-lactams, and tetracycline antibiotics. A previous study
showed that tetracycline, aminoglycoside, beta-lactam, MLS,
vancomycin, and multidrug resistance genes are the dominant
types in the human gut (Qiu et al., 2020). The human
microbiome may constitute a mobilizable reservoir of ARGs,
which are accessible to pathogenic bacteria for acquiring
antibiotic resistance. However, direct experimental proof of
in vivo transfer of antibiotic resistance genes within the
human microbiome remains to be shown (Sommer et al.,
2009). Characterizing resistome distribution and its relationship
with the gut microbiota can help elucidate the effects of
antibiotic use in CRC pathogenesis and manage antibiotics at the
clinical practice.

The gut microbiota network shows different bacterial hubs
in tissue groups compared with IVF microbiota. The leading
bacterial hubs in IVF are Citrobacter, A. junii, and E. coli,
which relate to many ARGs. While in the tissue, the leading
hubs were Colwellia, E. coli, and B. vulgatus. E. coli is the
only bacterium located in the central hub of IVF and tissue
and contains similar ARGs in the two sample groups. Most
ARGs in the human gut are those resistant to widely used
antibiotics, and antibiotic therapy leads to personalized resistome
diversification and individual-specific strain level selection in the
gut microbiota (Li et al., 2019). Analysis of ARG distribution in
the population provides an important indicator for public health
policies (Qiu et al., 2020).

The characterization of the tumor microbiome has remained
challenging because of its low biomass, methodology of detection,
and sample size (Walker et al., 2014; Nejman et al., 2020).
Evaluating on-tumor versus off-tumor microbial communities,
and mucosal versus fecal taxonomic disparities in the context
of CRC, have been hindered by the limited number of studies
that have examined differences in both the mucosal (both
tumor and tumor-adjacent tissue) and fecal microbiota within
the same CRC cases (Chen et al., 2012; Weir et al., 2013;
Mira-Pascual et al., 2015; Flemer et al., 2017). Fecal sample
collection still offers the benefit of participants not needing to
have a colonoscopy to provide samples. Therefore, attracting
a large sample size is not an issue (Watt et al., 2016). Even
though fecal microbiota partially reflects the microbiota at the
mucus layer, differences between fecal and tissue microbiota
are still evident. The bacterial clusters in IVF may provide
greater insight into mucosal-specific colonic neoplasia due to
their close interactions with epithelial and immune cells (Hong
et al., 2019). As there is no unanimous conclusion in the
advantages of different types of specimens, accurate comparisons

between sample types in large sample sizes are needed, and
a combinatorial approach may enable a sensitive and accurate
evaluation of the gut microbiota.

The main limitation of this study is the small sample size.
Nowadays, patients do not need intestinal lavage before doing a
colonoscopy in general clinical practice, then the paired sample is
extremely difficult to obtain. The results would be more valuable
if microbiome detects in various anatomical locations (rectum,
proximal colon, distal colon) as well as different TNM stages.
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