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Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death
worldwide, and heterogeneity of HCC is the major barrier in improving patient outcome.
To stratify HCC patients with different degrees of malignancy and provide precise
treatment strategies, we reconstructed the tumor evolution trajectory with the help of
scRNA-seq data and established a 30-gene prognostic model to identify the malignant
state in HCC. Patients were divided into high-risk and low-risk groups. C-index and
receiver operating characteristic (ROC) curve confirmed the excellent predictive value
of this model. Downstream analysis revealed the underlying molecular and functional
characteristics of this model, including significantly higher genomic instability and
stronger proliferation/progression potential in the high-risk group. In summary, we
established a novel prognostic model to overcome the barriers caused by HCC
heterogeneity and provide the possibility of better clinical management for HCC patients
to improve their survival outcomes.

Keywords: hepatocellular carcinoma, single-cell transcriptomics, tumor heterogeneity, tumor evolution, copy
number aberration, prognosis, cell state transition, genomic diversity

INTRODUCTION

Hepatocellular carcinoma (HCC), with more than one million new cases annually and a 5-year
survival rate <20% in most countries, is the fastest growing malignancy both in terms of incidence
and mortality (Allemani et al., 2018; Bray et al., 2018). Despite the clinical efficacy of systemic
therapies such as tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs),
primary and secondary drug resistance is inevitable and ultimately leads to treatment failure
(Llovet et al., 2008, 2018; Abou-Alfa et al., 2018; Pinter et al., 2021). This ability of HCC to adapt
to pharmacologic pressures can be described as tumor evolution and can be attributed to the
heterogeneity of HCC (Amirouchene-Angelozzi et al., 2017), which refers to the different genetic
or epigenetic alterations within the same lesion (intratumor heterogeneity) or in different lesions in
the same patient (inter-tumor heterogeneity). Thus, the understanding of the potential mechanisms
underlying HCC heterogeneity and its impact on therapeutic intervention is paramount for
treatment success and overall survival (OS; Llovet et al., 2021).
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The traditional bulk RNA-seq only provides the average
number of genes expressed in a pooled population of cells
and cannot detect the wide transcriptome heterogeneity in cell
populations (Wang et al., 2020). Thus, researchers previously
classified cells by purpose-related features and focused on a
set of genes, ignoring the continuity of the tumor evolution
process (Bidkhori et al., 2018; Chaudhary et al., 2018; Long
et al., 2019b; Sarathi and Palaniappan, 2019; Sun et al., 2020;
Zhang et al., 2020; Zhu et al., 2020). However, with the advent
of single-cell RNA sequencing (scRNA-seq), a novel technology
that allows transcriptomic analyses of individual cells, researchers
can explore the heterogeneity and plasticity of tumor cells,
which can result in early recurrence and drug resistance in the
process of tumor evolution on single cell resolution. Given the
large number of cells, we can reasonably hypothesize that the
sequencing results include every distinct point of the dynamic
process (Losic et al., 2020; Marjanovic et al., 2020; Rajewsky et al.,
2020; Sun et al., 2021). Several studies have profiled the single-cell
landscape of tumor generation and progression (Kim et al., 2018;
Durante et al., 2020; Losic et al., 2020; Marjanovic et al., 2020).
Furthermore, scRNA-seq is a promising tool that can facilitate
individualized therapy owing to its ability to define cell subsets
with potential treatment targets.

Here, we reconstructed the evolution trajectory of tumor cells
with the help of scRNA-seq data and established a prognostic
model to classify different risk groups of HCC. Our findings
provide a strategy for precision medicine on the basis of
tumor heterogeneity, and we also identified a wide range of
potential therapeutic targets, thus improving the survival of
patients with HCC.

MATERIALS AND METHODS

Data Sources
The normalized gene-level RNA-Seq data and clinical
information for 364 patients LIHC-TCGA cohorts were
downloaded from UCSC Xena1 with R package UCSC Xena
Tools (Wang and Liu, 2019). To obtain 258 patients LIRI-JP
validation set, RNA-seq data, and related clinic pathological data
were downloaded from the ICGC website2 (Zhang J. et al., 2019).
The scRNA-seq barcode sequences and raw gene expression
matrix were downloaded from the CNP0000650 (Sun et al.,
2021). Mutation data that contained somatic variants were
stored in Mutation Annotation Format (MAF) form and were
downloaded from Genomic Data Commons (GDC).3

Processing of Single-Cell RNA-Seq Data
Dimension Reduction and Unsupervised Clustering
Single-cell RNA sequencing data were processed for dimension
reduction and unsupervised clustering by following the workflow
in Seurat (v4.0.2) (Butler et al., 2018). In brief, first, the
read counts for each cell were divided by the total counts

1https://xenabrowser.net/
2https://dcc.icgc.org/projects/LIRI-JP
3https://portal.gdc.cancer.gov/

for that cell and multiplied by the scale factor (10,000), and
then natural-log transformed. A principal component analysis
(PCA) matrix with 50 components were calculated to reveal the
main axes of variation and the data were denoised by using
“Run PCA” function with default parameter. For visualization,
the dimensionality of each dataset was further reduced using
Uniform Manifold Approximation and Projection (UMAP)
implemented in “Run UMAP” function (Becht et al., 2019). We
retained cell clustering based on the original study. The cluster-
specific marker genes were identified by using the “Find All
Markers” function with MAST algorithm (Finak et al., 2015).

Define Subpopulations of Aneuploid Tumor Cells
TPM gene expression matrix was extracted from the Seurat
object as recommended in the “prepare the read count input
file” section (CopyKAT). For each patient, normal reference T
cells and malignant cells were selected and identified from the
annotated clusters as determined above. Quality control filtering
was performed to select the highest quality cells by only including
malignant cells with at least five genes in each chromosome to
calculate DNA copy numbers. We extracted aneuploid cells that
are considered as tumor cells in aneuploid tumors to define two
copy number subpopulations of single tumor cells using default
parameters in CopyKAT (Gao et al., 2021).

Construct Tumor Cell Evolution Trajectory
Malignant cells were identified from the annotated clusters as
determined above. This resulted in six high-quality malignant
clusters to use for this analysis. Single-cell pseudo-time
trajectories were constructed with Monocle 2 (2.10.1) (Qiu
et al., 2017). Genes for trajectory inference were selected
using the “dispersion table” function to calculate a smooth
function describing how variance in each gene’s expression
across cells varies according to the mean. Only genes with
mean expression greater than or equal to 0.1 were used for the
analysis. The “reduce Dimension” function was utilized with
the DDRTree reduction method with default parameters. Results
were visualized using the “plot cell trajectory” and “plot complex
cell trajectory” functions and annotated with cell type, subclones,
and calculated cell states. Once the pseudo-space trajectory was
defined, we used the Tradeseq (Trajectory Differential Expression
analysis for Sequencing data) R package to select genes that
were differentially expressed along the trajectory (Van den Berge
et al., 2020). Association Test function was used to test whether
the average gene expression is significantly changing along
pseudotime. The top 500 gene upregulated genes and Top 500
downregulated genes decrease along the inferred pseudo-time
trajectory with a q-value less than 0.01 were separated with
hierarchical clustering using the “plot multiple ranches heatmap”
function with num clusters = 3 and “branches” set to the terminal
branchpoints for aneuploid tumor cells.

Development and Validation of the Tumor Evolution
Signature for Hepatocellular Carcinoma
Select differential genes based on single cell tumor evolution
trajectory to reduce the impact of non-tumor cells. The cases
from the TCGA LIHC datasets were used as the training cohort
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to establish the LASSO model. Univariate analysis and logRank
test were used to identify genes with prognostic ability. For the
genes with prognostic ability, Cox proportional hazards model
(iteration = 1,000) with a lasso penalty was used to find the best
gene model utilizing an R package called “glmnet” (Friedman
et al., 2010). The best gene model was used to establish the tumor
evolution signature. The risk score for each patient was calculated
with the LASSO model weighting coefficient as follows:

riskscores =
n∑

i=1

Coefj ∗ Xj

In this formula, n represents the number of key genes, Coefj
is the LASSO coefficient of Gene j, and Xj is the normalized
expression value of Gene j (Supplementary Table 4). Then,
the concordance (c)-index proposed by Harrell24 was applied
to validate the predictive ability of the signature in all datasets,
by using the “survcomp” R package (Haibe-Kains et al., 2008).
The larger c-index indicated the more accurate predictive
ability of the model.

Survival Analysis
To verify the trend of this tumor evolution trajectory, Kaplan–
Meier (K–M) analysis was performed. The top 10 end-genes
were extracted and the potential prognostic significance of these
genes was assessed with the LIHC data from GEPIA2.4 The K–M
survival curves were also generated to graphically demonstrate
the OS to the high-risk group and low-risk group, which were
stratified by the tumor evolution signature. The R package called
“survminer” was utilized to perform the survival analysis, and the
optimal cutoff was ascertained by the “surv_cutpoint” function.

Somatic Mutation and Copy-Number
Aberration Analysis
Mutation comment file (MAF) of TCGA-LIHC cohort was
downloaded from the GDC client. Differential analysis and
visualization of somatic mutations was done using Maftools (The
Cancer Genome Atlas Research Network et al., 2013; Mayakonda
et al., 2018). This difference between high- and low-risk group
was detected using function “mafComapre,” which performs
Fisher’s exact test on all genes between two groups to detect
differentially mutated genes.

Composite copy number profiles were generated to highlight
differences between high- and low- risk group. Segment file
of TCGA-LIHC cohort was downloaded from FIREHOSE and
samples were further divided into high- and low-risk groups.
Then we ran the GISTIC 2.0 pipeline to generate discrete copy
number data file. Chromosomes reference objects were from the
“BSgenome.Hsapiens.UCSC.hg19” R package.

As in the previous study, a non-synonymous mutation from
the TCGA database was used as the raw mutation count, and it
was divided by 38 MB to quantify TMB (Chalmers et al., 2017).
The samples were sorted according to the value of the median
TMB from low to high.

4http://gepia2.cancer-pku.cn/#index

Bioinformatics Analyses
Gene Enrichment Analysis (GSEA) was further used to
investigate the functional enrichment of risk score-associated
genes using the R package “clusterProfiler” (Yu et al., 2012).
The Benjamini–Hochberg method was used to adjust nominal
p-values (false discovery rate, FDR) for multiple testing.

The Maftools package was used to illustrate the respective
mutation profiling of the two risk group levels by waterfall plot,
and differentially mutated genes were identified by using the
“mafCompare” function where genes mutated in greater than
5% of LIHC samples in the TCGA cohort were considered
(Mayakonda et al., 2018).

Statistical Analysis
Student’s t-test was conducted to make statistical comparison.
The “pheatmap” R package was applied to generate heatmaps.
Survival analysis was completed using Kaplan–Meier method,
and the prediction performance of the risk model was evaluated
using receiver operating characteristic (ROC) via “time-ROC”
R package. Multivariate COX regression analyses were used
to investigate the prognostic value of risk-score. Hazard ratio
(HR) and 95% confidence intervals (CI) for each variable were
also calculated where needed. A value of p < 0.05 was defined
as statistically significant difference. All of our analyses were
conducted using R software version 4.0.2.5

The whole process of data analysis is depicted in Figure 1.

RESULTS

Classification of the Malignant Cell
Clusters With Single-Cell RNA
Sequencing Data
Unsupervised dimensionality reduction and graph-based
clustering analysis were performed with the data from
CNP0000650, and 24 clusters (Figure 2A) were visualized
by the UMAP method (Becht et al., 2019; Sun et al., 2021).
The immune cells mainly consisted of myeloid-derived cells, T
cells, B cells, plasma cells, and natural killer (NK) cells, while
non-immune cells included endothelial cells, hepatic stellate
cells, apparently normal epithelial cells, and HCC malignant
cells. To contrast the difference among different patients, we
classified the cells by patient origin (Figure 2B), and the result
showed that tumor cells contained obvious heterogeneity, while
non-tumor cells kept homogeneous, proving that the differences
between tumor cell clusters are mainly due to the tumor
heterogeneity, rather than batch effects between samples. No
normal liver cells were detected, likely because of the technical
limitations, resulting in no comparison between normal and
malignant liver cells.

We further extracted the varied tumor cell clusters for the
analysis of tumor heterogeneity (Figure 2C), and two major
sub-clones were defined by the clustered heat maps of single
cell copy number profiles (Figure 2D). Compared with sub-
clone 2 (green), the heatmap showed that sub-clone 1 (red)

5https://www.r-project.org/
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FIGURE 1 | The whole process of data analysis.

contained more CNAs, implying that sub-clone 1 might be more
malignant (Figure 2E).

Reconstruction of Tumor Cells
Progression Trajectory
To determine the relationship between malignant cell clusters,
we performed single-cell trajectory analysis with scRNA-seq
data using Monocle (Qiu et al., 2017). As is well known,
genomic mutations accumulate over time in the process of tumor
evolution (Turajlic et al., 2019; Craig et al., 2020; Losic et al.,
2020). Thus, we defined the cell cluster with a lower CNA burden
as the root, while the cell cluster with a higher CNA burden
was defined as the end of the trajectory. We noticed that sub-
clone 2, comprising cells with obvious liver characteristics, was
concentrated at the beginning of the trajectory, while sub-clone 1,
comprising cells with less specificity of origins, was concentrated
at the end of the trajectory, indicating that the trajectory model
fits the process of tumor evolution well (Figures 3A,B).

During the process of transition of tumor cells from a lower
to higher malignant state, some genes are silenced, while others
become newly active. We used Tradeseq, a powerful generalized
additive model framework based on the negative binomial
distribution, to interpret the within lineage differential expression
(Figure 3C and Supplementary Table 1). To verify the malignant
trend of this trajectory, we extracted the top 10 downregulated
genes (root genes) and top 10 upregulated genes (end genes)
for Kaplan–Meier (K-M) analysis. The high expression of the
top 10 root genes represented a benign prognosis, while the
high expression of the top 10 end genes represented a poor
prognosis (Figures 3F,G). Furthermore, along the trajectory, liver

characteristics such as ALB (Figure 3D) were gradually lost,
while stemness and malignant marker genes such as TWIST1
(Figure 3E), gradually increased, suggesting that the malignant
state was advancing.

The gene set variation analysis (GSVA; Hänzelmann
et al., 2013) was used to further analyze the underlying
biological processes along the trajectory. In the Molecular
Signature Database (MSigDB) “hallmark” collection of major
biological categories (Liberzon et al., 2015), the upregulated
genes of sub-clone 1 were enriched in the tumor-promoting
pathway (“Wnt/β-catenin signaling”) and proliferation pathway
(“G2M checkpoint,” “E2F Targets,” “MYC Targets”), while
the downregulated genes of sub-clone 1 were enriched in the
tumor-suppressor pathway (“P53 pathway”) and essential liver
function pathway (“Complement,” “Fatty acid metabolism,”
“Adipogenesis”) (Figure 3H), which were consistent with the
characteristics of cells that progressed from the lower malignant
state to the higher malignant state (Maley et al., 2017; Losic et al.,
2020; Marjanovic et al., 2020; Llovet et al., 2021).

Establishment of the 30-Gene Prognostic
Model
Although the top 10 genes had a certain predictive effect,
we preferred optimizing gene combination to obtain a better
prognostic model. With the selection criteria of p < 0.01, the
intersection of univariate Cox regression analysis and K-M
analysis identified 200 credibly survival-related genes. We used
TCGA data as the training cohort and ICGC data as the
external validation cohort (The Cancer Genome Atlas Research
Network et al., 2013; Zhang J. et al., 2019). Lasso-penalized Cox
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FIGURE 2 | Single-cell RNA sequencing (scRNA-seq) profiling of different malignant cell clusters. (A,B) The Uniform Manifold Approximation and Projection (UMAP)
plot showing the annotation and color codes for cell types in hepatocellular carcinoma (HCC) (A). Cells were further shown in different color by patient origin (B).
(C) The UMAP plot, showing only malignant cell clusters by Louvain algorithm. (D) With CopyKAT, malignant cell clusters were delineated into two subclones by
single-cell copy number profiles inferred from scRNA-seq data. (E) Clustered heat maps of single HCC malignant cell copy number profiles in two major subclones.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 September 2021 | Volume 9 | Article 737723

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-737723 September 23, 2021 Time: 17:5 # 6

Wang et al. Prognostic Model of HCC Progression Trajectory

FIGURE 3 | Cells were sorted by progression from lower malignant state to higher malignant state. (A,B) Cell Trajectory performing the route of low- to
high-malignant cells, which can serve as a model to describe malignant cell differences. (C) Expression levels for differentially expressed genes (rows), with cells
(columns) shown in pseudo-time order. (D,E) ALB and Twist genes confirming the trusty of the cell progression trajectory model. (F,G) The Kaplan–Meier (K-M)
analysis of the top 10 downregulated genes (root genes) and top 10 upregulated genes (end genes) from 1,000 differential genes group capturing the overall survival
(OS) differences between low- and high-malignant cell groups. (H) Gene set variation analysis (GSVA) heat map showing the mainly differential signaling pathways
between low- and high-malignant cell groups.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2021 | Volume 9 | Article 737723

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-737723 September 23, 2021 Time: 17:5 # 7

Wang et al. Prognostic Model of HCC Progression Trajectory

analysis was subsequently performed 1,000 times in the TCGA
training cohort with 10-fold cross-validation to evaluate and
eliminate variables that contributed less to the model, and a 30-
gene signature with the most powerful predictive features were
selected (Figures 4A,C,D). To validate the credibility of this
model, C-index was assessed in the TCGA training cohort and
ICGC validation cohort, which was confirmed as 0.79 and 0.73,
respectively (Figure 4B), suggesting that our model had favorable
efficacy for predicting prognosis (Harrell, 1982). Based on the 30-
gene prognostic model, TCGA and ICGC samples were clustered
into high-risk and low-risk groups, and the OS time of patients in
the high-risk group was remarkably decreased (Figures 4E,F).

Evaluation of the Prognostic Model in
TCGA Cohort and ICGC Cohort
The K–M analysis and time-dependent ROC was used to assess
the prognostic capacity of the 30-gene prognostic model in the
TCGA cohort and ICGC cohort, respectively. The K–M analysis
illustrated that patients in the low-risk group had significantly
longer OS than those in the high-risk group, both in the TCGA
cohort (Figure 5A) and the ICGC cohort (Figure 5B). The area
under the ROC curve (AUC) for the 1-, 3-, and 5-year OS was
0.843, 0.848, and 0.824 in the TCGA cohort, while it was 0.77,
0.796, and 0.774 in the ICGC cohort (Figures 5C,D), indicating
that this 30-gene prognostic model had high sensitivity and
specificity for survival prediction.

Gender, age, stage, vascular invasion, bile duct invasion,
fibrosis, and the risk score of the prognostic model were included
in the multivariate Cox regression model, and the risk score was
revealed to be independent predictor for OS, showing splendid
predictive performance ability, with HR: 6.432, 95% CI: 4.095–
10.103, p < 0.001 in TCGA cohort, and HR: 3.751, 95% CI:
1.419–9.918, p < 0.001 in ICGC cohort. Taken together, the 30-
gene prognostic model was completely reliable for the precise
prediction of OS in HCC (Figure 5E).

Comparison of Genomic Aberrations in
Different Risk Groups
Increasing mutation frequency is a typical feature of human
cancer. To identify the divergence of genomic aberrations
between the high-risk and low-risk groups in the TCGA database,
CNAs data were downloaded from the GDC portal and analyzed
with GISTIC 2.0, with which the high-risk group had an
obviously higher genomic aberration burden than the low-
risk group (Figure 6A). Meanwhile, the top 20 genes with
high genomic mutation frequency in the high-risk and low-
risk groups were constructed by Maftools (Mayakonda et al.,
2018; Figures 6B,C). To analyze the discrepancy between the
high-risk and low-risk groups, the differentially mutated gene
type and frequency were compared by Fisher’s exact tests. The
results showed three significantly differential genes—TP53 (47
versus 19%), OBSCN (18 versus 5%), and RB1 (11 versus 2%)
(Figure 6D). The six genes most recurrently mutated were TP53
(47 versus 19%), TTN (31 versus 27%), CTNNB1 (26 versus 28%),
MUC16 (19 versus 16%), OBSCN (18 versus 5%), and ALB (12
versus 13%) (Figure 6E and Supplementary Table 2). These

findings suggested that some mutated genes such as TP53 and
OBSCN that were notably different compared with the high-risk
and low-risk groups could be related to the malignant progression
and can continuously accumulate mutations over time; whereas,
the others such as CTNNB1 and ALB, which remained stable
from the low-risk state to high-risk state, likely contribute to the
essential neoplastic process rather than malignant progression.

The tumor mutation burden (TMB) is also considered an
essential factor impacting on the occurrence and progression
of the tumor. The distribution plot shows TMB distribution of
different cancer types (Figure 6F). The three types including
low-risk HCC, all HCC samples (liver hepatocellular carcinoma,
LIHC), and high-risk HCC were apparently distinct from each
other, and the TMB gradually increased from low-risk type to
high-risk type, which suggested that our model had excellent
distinguishing capability.

Gene Enrichment Analysis of the
30-Gene Prognostic Model
To explore the underlying molecular mechanisms of this
prognostic model, we conducted GSEA to compare the low-risk
group with the high-risk group in TCGA cohorts (Yu et al.,
2012). In the MsigDB “hallmark” collection of major biological
categories, proliferative signaling pathways (“E2F targets,” “G2M
checkpoint,” “KARS signaling”), and the invasion and metastasis-
related signaling pathways (“EMT” and “myogenesis”) were
dramatically increased in the high-risk group (Figure 7B). This
was consistent with the data at the single-cell level. Notably,
the low-risk group was enriched in inflammation-related
gene pathways such as “inflammatory response,” “interferon-α
response,” and “interferon-γ response,” which suggested that the
secretion of inflammatory factors might originate from the tumor
cells, indicating a strong proinflammation potential in the early
tumorigenesis stage (Figure 7A). A similar phenomenon had
been reported in melanoma, breast cancer, and colorectal cancer,
where the expression of immune-related genes was also presented
by tumor cells and could likely be an independent influence on
their prognostic differences (Sconocchia et al., 2014; Forero et al.,
2016; Buetow et al., 2019; McCaw et al., 2019; Jin et al., 2020).

DISCUSSION

Hepatocellular carcinoma is one of the leading causes of cancer-
related mortality worldwide. Previous studies have proved that
the heterogeneity, which was thought to be evolutionarily
selected for increasing fitness of tumor cells, might be the major
barrier for improving patients outcome (Chaudhary et al., 2018;
Llovet et al., 2018, 2021; Long et al., 2019b,a; Yang et al., 2019;
Craig et al., 2020). Thus, there is a critical need to stratify HCC
patients accurately on the basis of heterogeneity and provide
precise treatment strategies.

In this study, we analyzed CNAs in tumor cells using
CopyKat and classified them into two major subclones, wherein
subclone 1 had a higher CNA burden than that of subclone
2. Then, we defined the cells in hepatocyte-like state as
the root and cells in high-plasticity state as the end, and
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FIGURE 4 | Establishing the 30-gene prognostic model with LASSO regression analysis. (A) LASSO regression analysis performed the frequency of different gene
combination models and finally determined the 30-gene signature for OS prediction. (B) C-index of 30-gene prognostic model was 0.79 in TCGA training cohort,
while 0.73 in ICGC validation cohort. (C) LASSO coefficient profiles of the gene features. (D) Ten-time cross-validation for tuning parameter selection in the LASSO
model. (E,F) The risk score distribution and survival status distribution of 30-gene prognostic model in TCGA training cohort and ICGC validation cohort, and the
heat map of gene expression are shown below with color, red (high) and green (low).
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FIGURE 5 | Prognostic performance of 30-gene signature in TCGA Training Cohort and ICGC Validation Cohort. (A,B) K–M survival curve for risk score in TCGA
training cohort (A) and ICGC validation cohort (B). (C,D) Receiver operating characteristic (ROC) curve of the 30-gene prognostic model in TCGA cohort (C) and
ICGC cohort (D). (E) Multivariate Cox regression analysis of clinical parameters and prognostic model for OS.
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FIGURE 6 | The analysis of genomic aberrations in high-risk group and low-risk group. (A) Recurrent copy number aberrations of high-risk group and low-risk group
in TCGA cohort. Regions of recurrent copy number amplifications (red) and deletions (blue) were above and below baseline (0.0), respectively, in the targeted array
were identified by GISTIC 2.0. (Red line represented GISTIC score of 0.3). (B,C) Oncoplot displaying the somatic landscape of high-risk group (B) and low-risk group
(C). Genes were arranged according to their mutation frequency. The Y-axis was the gene name and the abscissa was the sample name. Different colors
represented different mutation types. (D) Forest plot showed differentially mutated genes between high-risk group and low-risk group. The adjacent table included
the number of samples in high-risk group and low-risk group with the mutations in the highlighted gene. The p-value indicated significance threshold: ***p < 0.001;
**p < 0.01; Fisher’s exact test. (E) Co-bar plots showed the most recurrently mutated genes in high-risk group and low-risk group. (F) The distribution plot shows
tumor mutation burden (TMB) distribution of different cancer types. Liver hepatocellular carcinoma (LIHC) patients were divided into low-risk group and high-risk
group.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 September 2021 | Volume 9 | Article 737723

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-737723 September 23, 2021 Time: 17:5 # 11

Wang et al. Prognostic Model of HCC Progression Trajectory

FIGURE 7 | GSEA enrichment analysis. (A) The enrichment plot of upregulated gene sets in low-risk group. (B) The enrichment plot of downregulated gene sets in
low-risk group.

FIGURE 8 | Varied malignant cell subgroups contribute to the inter-tumor and intra-tumor heterogeneity of HCC. Hepatocyte-like tumor cells could progress to high
plasticity tumor cells, accompanied by the inactivation of tumor suppressor pathways such as TP53, the disappearance of the inherent characteristics of
hepatocytes, the enhancement of proliferation, invasion and metastasis ability, and the appearance of immune suppression.

reconstructed the tumor evolution trajectory with the help
of scRNA-seq data. Consistent with previous studies of other
tumors (Zhang L. et al., 2019; Marjanovic et al., 2020), GSVA
analysis revealed that along the trajectory, cells gradually
lost their intrinsic characteristics and transformed into a
high plasticity state. Based on this evolutionary trajectory,
we further constructed a 30-gene prognostic model. C-index
and multivariate analysis confirmed that compared with the
other three existing prognostic models (Bidkhori et al., 2018;

Chaudhary et al., 2018; Liang et al., 2020; Sun et al.,
2020; Zhang et al., 2020; Deng et al., 2021), this model
possessed high predictive efficacy and accuracy. Finally, we also
performed GSEA analysis to explore the underlying biological
mechanisms of this model.

To investigate the heterogeneity and potential progression
trajectory of HCC cells on single-cell resolution, high-quality
scRNA-seq data were necessary. Thus, we reviewed associated
studies of liver cancer published in recent years to identify the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 September 2021 | Volume 9 | Article 737723

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-737723 September 23, 2021 Time: 17:5 # 12

Wang et al. Prognostic Model of HCC Progression Trajectory

most suitable single-cell dataset (Supplementary Table 3; Zheng
et al., 2018; Ma et al., 2019; Zhang Q. et al., 2019; Losic et al.,
2020; Sharma et al., 2020; Sun et al., 2021). Two key points
need to be considered, namely, the number of tumor cells and
the quality of sequencing data. Dissociating tissues is one of the
difficulties of single-cell sequencing. Epithelial cells require more
stringent dissociation conditions than immune cells and need to
be enriched with FACs. However, in early studies, few authors
noticed this point, making their results got a large proportion of
immune cells and stromal cells instead of tumor cells. This was
also the reason why some HCC studies focused on the immune
microenvironment (Ma et al., 2019; Ramachandran et al., 2019;
Massalha et al., 2020; Sun et al., 2021). To obtain enough cells,
we narrowed the range into the data of Sun and Sharma (Sharma
et al., 2020; Sun et al., 2021). Regarding the quality of sequencing
data, a major factor is the sequencing platform. The plate-based
SMART-seq2 full-length method provides in-depth coverage for
a smaller number of cells, but the droplet-based 10× Genomics
Chromium approach captures cells on a larger scale but with the
limitation of inadequate gene coverage. The gene capturing rate
of 20 cells by SMART-seq2 was comparable with that of 1,000 cells
by 10× (Ding et al., 2019; Zhang Q. et al., 2019). Unfortunately, at
least half of the tumor cells from the data of Sharma et al. (2020)
based on the 10× platform, could not meet the input threshold of
CopyKat, which would introduce a large bias in the downstream
analysis (Sharma et al., 2020; Gao et al., 2021). To explore a more
refined dynamic change process, we finally chose the data of Sun
et al. (2021) for the downstream analysis.

As our model was based on tumor heterogeneity and the
trajectory was highly similar to the natural process of tumor
evolution, genes included in this model and the underlying
biological mechanisms were complicated. Some upregulated
genes were found to be associated with cell proliferation and
progression. The upregulation of GPC1 had been reported to
be dramatically correlated with the reduced OS time for HCC
patients (Wang et al., 2021). MYCN, a member of the Myc
family, was positively correlated with the recurrence of de novo
HCC (Qin et al., 2018). Furthermore, EVA1 expression was
significantly increased in HCC and was also associated with a
poor prognosis and recurrence in these patients. Overexpression
of EVA1 promoted cell growth, invasion, and migration in vitro,
while knockdown of EVA1 expression inhibited proliferation
and migration in vitro (Ni et al., 2020). Some downregulated
genes were considered to function as tumor suppressor genes,
such as PPARGC1A, also known as PGC-1α, a master regulator

of mitochondrial biogenesis and oxidative phosphorylation.
A previous study had reported that low levels of PPARGC1A
expression were correlated with poor survival, vascular invasion,
and large tumor size (Huang et al., 2020; Zuo et al., 2021).
PRICKLE1 has been reported to be a negative regulator of the
Wnt/beta-catenin signaling pathway and is a putative tumor
suppressor gene in HCC (Chan et al., 2006).

Our study has some limitations. First, RNA-Seq detected more
of the content specific to Affymetrix and Illumina microarrays
than either of the microarray platforms on the same samples,
and many of the feature genes included in our analysis were not
detected on the microarray platform (Zhao et al., 2014). Thus,
we only used cohorts based on RNA-seq platform. Second, our
retrospective findings need to be further validated in prospective
research, and complex mechanisms involved in the progression
of liver cancer cells still need to be further explored.

In conclusion, this study integrated the scRNA-seq data
and bulk multi-omics data to reconstruct the tumor evolution
trajectory and establish a novel prognostic model to clarify
different risk groups of HCC, which might help in clinical
decision making for individual treatment and improve
patient outcomes (Figure 8).

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repositories and accession
numbers can be found in section “Materials and Methods.”

AUTHOR CONTRIBUTIONS

HW, SY, and ZY contributed to conception and design of the
study. SY, HW, and QC performed the statistical analysis. HW
wrote the first draft of the manuscript. DM, LY, XZ, and JZ wrote
sections of the manuscript. All authors contributed to manuscript
revision, read, and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
737723/full#supplementary-material

REFERENCES
Abou-Alfa, G. K., Meyer, T., Cheng, A.-L., El-Khoueiry, A. B., Rimassa, L.,

Ryoo, B.-Y., et al. (2018). Cabozantinib in patients with advanced and
progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63. doi: 10.1056/
NEJMoa1717002

Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Nikšić,
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