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Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are
increasingly used to study genetic diseases on a human background. However, the
lack of a fully mature adult cardiomyocyte phenotype of hiPSC-CM may be limiting
the scope of these studies. Muscular dystrophies and concomitant cardiomyopathies
result from mutations in genes encoding proteins of the dystrophin-associated protein
complex (DAPC), which is a multi-protein membrane-spanning complex. We examined
the expression of DAPC components in hiPSC-CM, which underwent maturation in
2D and 3D culture protocols. The results were compared with human adult cardiac
tissue and isolated cardiomyocytes. We found that similarly to adult cardiomyocytes,
hiPSC-CM express dystrophin, in line with previous studies on Duchenne’s disease.
B-dystroglycan was also expressed, but, contrary to findings in adult cardiomyocytes,
none of the sarcoglycans nor a-dystroglycan were, despite the presence of their mRNA.
In conclusion, despite the robust expression of dystrophin, the absence of several
other DAPC protein components cautions for reliance on commonly used protocols
for hiPSC-CM maturation for functional assessment of the complete DAPC.

Keywords: dystrophin-associated glycoprotein complex, human induced pluripotent stem cells, hiPSC-

derived cardiomyocytes, sarcoglycanopathy, hiPSC cardiomyocyte maturation, Duchenne muscular dystrophy,
cardiomyopathy

INTRODUCTION

Muscular dystrophies are genetically inherited degenerative disorders with a progressive
impairment of skeletal, respiratory, and cardiac function (Mercuri et al, 2019). The most
prevalent muscular dystrophies involve proteins from the dystrophin-associated protein complex
(DAPC) with dystrophin, sarcoglycans, dystroglycans, and laminin as core components
(Figure 1A, left). The DAPC has a mechanical and signaling role in muscle cells,
providing a link between the extracellular matrix and the intracellular cytoskeleton (Cohn
and Campbell, 2000; Ozawa, 2010). Studies in animal models for muscular dystrophies
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FIGURE 1 | (A) Schematic of the DAPC composition in adult vs. hiPSC-CM. Laminin was present in the hiPSC-CM preparations (See Supplementary Figures 1,2).
(B) Differentiation protocols of hiPSC-CM: panel (a) in 2D monolayer culture, panel (b) in 3D engineered heart tissues, and panel (c) with thyroid hormone and

(0.1 pM) + Dexa
(1 uM) - 21% O,

<\

Day 34:
Immunostaining

provided insights into the mechanistic pathways leading to the
development of cardiomyopathy (loss of membrane integrity,
increase in cell permeability, cardiomyocyte cell death, and
replacement fibrosis) (Ikeda et al, 2000; Heydemann et al,
2001; Lapidos et al., 2004; Fraysse et al., 2010; Law et al., 2020).

Abbreviations: DAPC, dystrophin-associated  protein complex; CM,
cardiomyocyte; DG, dystroglycan; hiPSC-CM, human induced pluripotent
stem cell-derived cardiomyocytes; SG, sarcoglycan.

However, because of the unavailability of cardiac biopsies
from those patients, there remains a knowledge gap in
the understanding of the cellular mechanisms underlying
cardiomyopathy in humans, hampering clinical translation.
To overcome this limitation, human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CM) are increasingly
used as a model. A leading example is Duchenne muscular
dystrophy, resulting from loss of dystrophin, which has
been studied extensively with important translational insights

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2021 | Volume 9 | Article 737840


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Gilbert et al.

Incomplete DAPC in iPSC-CM

(Long et al., 2018; Kamdar et al., 2020; Moretti et al., 2020; Pioner
et al., 2020; Mekies et al., 2021). Notwithstanding the advantages
of using human cells, a general limitation of the approach is
that hiPSC-CMs lack several features of adult cardiomyocytes,
presumably due to incomplete maturation, resulting in a fetal
or neonatal phenotype (Guo and Pu, 2020; Karbassi et al.,
2020). Multiple strategies have been presented to promote hiPSC-
CM maturation (reviewed in Ahmed et al, 2020). These rely
on hormonal treatment, imposing load and pacing, or a 3D
environment. HiPSC-CM generated via some of these methods
have been used in the study of Duchenne muscular dystrophy
(Long et al, 2018; Pioner et al., 2020), yet it has also been
suggested that dystrophin is needed for hiPSC-CM maturation
(Pioner et al., 2020), and presently it is unknown whether the
DAPC in hiPSC-CM forms a complete functional complex.

The present study examines the presence of the DAPC in
hiPSC-CM, using maturation protocols that are accessible and
commonly used (Figure 1B). The first is the well-established
technique to create a small-engineered heart tissue by culturing
the cells in a 3D microenvironment. Cells are embedded in a
fibrin/Matrigel hydrogel connected to silicone posts that will
exert a tension force, mimicking the preload tension on a muscle
fiber (Jackman et al, 2016; Breckwoldt et al., 2017; Tiburcy
et al., 2017; Leonard et al., 2018; Goldfracht et al., 2020). The
second maturation method is a protocol that has been shown
to structurally improve iPSC-CM membrane with the presence
of transverse tubules, an important hallmark of cardiomyocyte
maturity, by stimulating 2D cultured hiPSC-CM with thyroid
hormones and glucocorticoids (Parikh et al., 2017; Huang et al.,
2020). The data are compared with the hiPSC-CM differentiated
in 2D without an intensified maturation protocol, and with adult
human cardiac tissue.

METHOD

Human Induced Pluripotent Stem Cell

Lines

We used a commercial hiPSC line from ThermoFisher Scientific
(A18945—lot 1793435) and three additional non-commercial
hiPSC lines, one derived within the Stem Cell Institute at KU
Leuven, (HC1) and two elaborated at the University Medical
Center, Hamburg Lab (ERC001 and ERC018).

Cardiomyocyte Differentiation and
Maturation Protocol Using 3D Culture of
Human Induced Pluripotent Stem

Cell-Derived Cardiomyocytes

HiPSC were differentiated in 2D monolayers using the
cardiomyocyte differentiation kit from  ThermoFisher
Scientific (A2921201) (Figure 1B, panel a). Twelve days
post-differentiation, hiPSC-CM were placed in a fibrin and
Matrigel based 3D environment using the system developed
in the Eschenhagen group (Schaaf et al., 2014; Breckwoldt
et al., 2017), modified in a mixture as described here (Jackman
et al,, 2016). Briefly, three wells of 2D differentiated cells were
detached using collagenase A at 1 U/ml (Merk—10103586001)

and pooled to prepare 3D constructs in a mixture of Matrigel
(10% final volume) (Corning—354234), fibrinogen (20% final
volume at 2 mg/ml) (Merk—341576), and thrombin (2%
final volume at 1 U/ml) (Enzyme Research Laboratories—HT
1002a). The culture medium composition was as follows:
DMEM low glucose (ThermoFisher Scientific—31885023),
10% horse serum (ThermoFisher Scientific—26050088), 1%
penicillin/streptomycin, 10 jg/ml human insulin (Sigma-
Aldrich—19278-5ML), and 33 pg/ml aprotinin (Carl
Roth—A162.3). The medium was replaced every 2 days for
14 days (day 26 post initial differentiation) (Figure 1B, panel b).

Cardiomyocyte Differentiation and
Maturation Protocol Using Chemical

Treatment

The protocol used here was the same as previously described
(Parikh et al, 2017). Briefly, hiPSC were differentiated in
RPMI 1640 medium containing glucose (ThermoFisher
Scientific—11875093) supplemented with B27 without insulin
(ThermoFisher Scientific—A1895601), using 6 .M CHIR99021
(Merk—SML1046) on day 1 followed by 5 uM IWR-1 (Merk—
10161) on day 3. From days 10 to 16, glucose was removed from
the medium to perform a metabolic selection and cardiomyocyte
enrichment (ThermoFisher Scientific—11879020). Cells were
then treated with 0.1 uM triiodo-L-thyronine hormone
(Merk—T2877), 1 pM dexamethasone (Cayman—11015) in
RPMI 1640 with glucose (ThermoFisher Scientific—11875093)
supplemented with B27 (ThermoFisher Scientific—17504044),
and 1% penicillin/streptomycin. On day 30, the 2D monolayer
of hiPSC-CM was dissociated using TrypLE Express
(ThermoFisher Scientific—12605010) and seeded onto Matrigel
mattresses (Corning—354234) for 4 days until experiments
(Figure 1B, panel c).

Proteasome Inhibition Test

Three-dimensional cultured hiPSC-CM were incubated in the
37°C incubator with 10 uM of MG-132 (Merk—474787) in
the culture medium for 8 h. After 8 h, the 3D hiPSC-CM
were snap frozen in liquid nitrogen for further analysis by
immunoblot. Proteasome inhibition efficiency was confirmed by
assessing by immunoblotting for ubiquitinated proteins using a
ubiquitin antibody.

Dissociation of Human Induced
Pluripotent Stem Cell From 3D

Constructs

To perform electrophysiology experiments, cells grown in
3D were dissociated using 0.4 mg/ml papain (Worthington
Biochemical Corporation—LS003118), 0.3 mg/ml collagenase
type IV (Worthington Biochemical Corporation—LS004186),
2 mM DL-dithiothreitol (Merk—D0632), 50 WM CaCl,, and
1 mg/ml bovine serum albumin (Merk—A2153) in Hank’s
balanced salt solution (HBSS) (ThermoFisher Scientific—
14170088) for 20 min at 37°C. After centrifugation at 1200 rpm
for 5 min, cells were resuspended in the 3D culture medium
and seeded on Matrigel mattresses for 1-5 days until experiment,
as previously described (Feaster et al., 2015). Briefly, 10 min
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prior to adding the dissociated cells, thin lines of 20 mm long
containing 1 pl of pure Matrigel were poured using a P10 pipet
on glass coverslips.

Adult Human Cardiomyocyte Isolation

Use of tissue from non-used human donor hearts conforms with
ethical guidelines, and permission for the study was obtained
from the Ethical Committee of UZ Leuven (permit number
S58824). Hearts were collected in an ice-cold solution containing
(in mM): 130 NaCl, 27 KCl, 6 N-2-hydroxyethylpiperazine-N-
2-ethanesulfonic acid (HEPES), 1.2 MgSOy, 1.2 KH,POy, and
10 glucose; pH was adjusted to 7.2 with NaOH and transported
from the hospital to the laboratory. A coronary artery from a
wedge of the left ventricle was cannulated. Then, the wedge was
perfused for 30 min with a Ca®" free solution at 37°C bubbled
with O, and containing (in mM): 130 NaCl, 5.4 KCI, 6 HEPES,
1.2 MgSOy, 1.2 KH,POy, and 20 glucose; pH was adjusted to
7.2 with NaOH. After this washing step, the wedge was perfused
for 40 min with the same solution containing around 0.4 U/ml
of Collagenase A (Merk—10103586001) and 0.1 mg/ml Protease
XIV (Merk—P5147). When the tissue appeared digested, it was
perfused for 20 min with a low Ca?* solution (Ca?* free solution
with 0.18 mM CaCl,). The mid-myocardium from the digested
perfused area was cut into small pieces and triturated for 5 min
in the low Ca?™ solution. Isolated cardiomyocytes were then
filtered through a 250 wm mesh and resuspended in low Ca?™
solution until use.

Electrophysiology

Coverslips containing the cells (isolated from 2D hiPSC-CM,
3D constructs, or adult human hearts) were mounted in a
chamber perfused with normal Tyrode solution warmed at 37°C
and containing (in mM): 137 NaCl, 5.4 KCI, 1.8 CaCl,, 0.5
MgCl,, 5.5 glucose, and 10 HEPES; pH was adjusted to 7.4 with
NaOH. Patch-clamp pipettes (2-3 MQ) (GB200-8P—Science
Products) were filled with a solution containing (in mM): 120 K-
Asp, 20 KCl, 10 HEPES, 5 Mg-ATP, 10 NaCl, and 0.05 Fluo-4
(ThermoFisher Scientific—F14200); pH was adjusted to 7.2 with
KOH. Cells were patched in a whole-cell configuration, and
action potentials were measured using an Axon 200B amplifier
and Digidata 1550B (Molecular Device) in current-clamp mode.
Stimulated action potentials were recorded after a 5 ms pulse of
0.1 nA at a 1 Hz frequency. To measure voltage-gated calcium
currents (ICaL), the setup was set to voltage-clamp mode. A train
of seven pulses of 250 ms from —70 to +10 mV was followed by a
sodium channel activation pulse of 750 ms from —70 to —40 mV,
and then ICaL was recorded with increasing steps of 10 mV of
250 ms from —50 to +60 mV.

Immunostaining

Snap frozen tissue of adult human hearts embedded in
optimal cutting temperature compound (OCT) were cut using
a cryostat (Leica) and directly fixed with 4% paraformaldehyde
for 10 min (Santacruz Biotechnology—sc-281692). HiPSC-
CM in 2D monolayers were directly cultured in imaging
plates (Ibidi—82406) and fixed with 4% paraformaldehyde
for 15 min. HiPSC-CM in 3D constructs were directly fixed
with the silicon posts with 4% paraformaldehyde for 20 min.

After fixation, the samples were washed with phosphate-
buffered saline (PBS) and permeabilized with 0.4% Triton X-100
(ThermoFisher Scientific—28314) diluted in PBS. Samples were
washed three times with PBS and incubated with blocking buffer
(4% bovine serum albumin, 0.1% Triton X-100 in PBS) for
1 h at room temperature. Primary antibodies were incubated
overnight at 4°C in the blocking buffer: a-sarcoglycan (Leica
A-SARC-L-CE, 1:10), B-sarcoglycan (Leica B-SARC-L-CE, 1:10),
y-sarcoglycan (Leica G-SARC-CE, 1:10), 8-sarcoglycan (Leica
D-SARC-CE, 1:10), a-dystroglycan (DSHB IIH6 C4-s, 1:10),
B-dystroglycan [DSHB MANDAG2(7D11)-s, 1:10], dystrophin
(Leica DYS1-CE, 1:10), cTnT (Abcam ab92546, 1:200), and
a-actinin (Proteintech 14221-1-AP, 1:200). The next day, after
three washes in PBS, samples were incubated with secondary
antibodies for 2 h at room temperature in the blocking buffer:
goat anti-mouse IgG Alexa 488 (ThermoFisher Scientific—A-
21121, 1:200) and goat anti-rabbit IgG Alexa 568 (ThermoFisher
Scientific—A-11036, 1:200), according to the primary antibody.
The sections from the human hearts were mounted using
ProLong™ Gold Antifade Mountant with diamino-2-phenyl-
indole (DAPI) (ThermoFisher Scientific—P36931). For imaging,
the 3D constructs were directly placed on a coverslip. Imaging
was performed using a confocal microscope (Nikon AIR
configured on an Eclipse Ti2 using a x60 1.4 NA oil
immersion objective).

Immunoblot

Adult human heart samples and 3D cultured hiPSC-CM were
snap frozen in liquid nitrogen and stored at —80°C until
use. Homogenization of samples was done on ice using a
tissue grinder (Weathon) with the following solution: 10 mM
Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM
Na3;VOy, 1% sodium deoxycholate, 1% Triton X-100, 1%
NP-40, 0.1% sodium dodecyl sulfate (SDS), 10 mM NaF
1 mM phenylmethylsulfonyl fluoride (PMSF), and protease
inhibitor tablets (ThermoFisher Scientific—A32963). Protein
concentration was estimated using the bicinchoninic acid
(BCA) assay from ThermoFisher Scientific (23225), and aliquots
were stored at —80°C until use. For de-glycosylation of
proteins, a PNGase kit was used (New England BioLabs—
NEB P0704S). Homogenized samples (30 jLg) were loaded in
a home-made Tris-acetate 3-15% gel, as described (Cubillos-
Rojas et al., 2012). After an overnight liquid transfer (4°C
at 40 V for 19 h) of the gel to a polyvinylidene difluoride
(PVDF) membrane, the membrane was saturated for 45 min
with 4% non-fat dry milk (Bio-Rad—1706404) diluted in PBS
(pH = 7.4) with 0.05% Tween-20. The membrane was cut
at around the 160 kDa marker into two pieces. The top
part was used to probe for dystrophin and the lower part
for sarcoglycans and dystroglycans (Supplementary Figure 3).
Then, membranes were incubated overnight at 4°C with the
primary antibodies diluted in 2% milk (same antibodies as
used for immunostainings, 1:1,000 dilution). The next day, after
three washes in PBS, membranes were incubated for 2 h at
room temperature with secondary antibodies: goat anti-mouse
IgG Alexa 680 (1:10,000, ThermoFisher Scientific—A28183).
Membrane immunofluorescence was quantified with a Licor
Odyssey Clx infrared imaging system.
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Polymerase Chain Reaction

Adult human heart samples and 3D-cultured hiPSC-CM were
snap frozen in liquid nitrogen and stored at —80°C until use.
Homogenization of samples was done using ceramide beads
(MP Biomedicals—116913050-CF) in 1 ml of TRI Reagent
(Merk—93289) and using the MP Biomedical Instrument
FastPrep-24 grinder (MP Biomedicals) at a speed of 6 m/s for
20 s, twice. Chloroform (0.2 ml) was added per milliliter of TRI
Reagent and incubated for 3 min at room temperature. After
centrifugation at 12,000 g for 15 min at 4°C, the upper phase
containing RNA was collected. To this, 0.5 ml of isopropanol
per milliliter of TRI Reagent was then added and incubated for
5 min at room temperature. Samples were then centrifuged at
12,000 g for 10 min at 4°C and the supernatant removed. The
pellet was then washed with 1 ml of ethanol 75% and centrifuged
at 7,600 g for 5 min at 4°C and the supernatant discarded. The
RNA pellet was resuspended in 20 pl of DNase/RNase-free
water. cDNA was generated from the RNA extracted samples
by reverse transcription using a kit (ThermoFisher Scientific—
4368814). The cDNA was then polymerase chain reaction
(PCR) amplified using the Platinum® Taq DNA Polymerase
High Fidelity kit (ThermoFisher Scientific—11304011) with the
following primers: a-SG (TGAGGTCACAGCCTACAATCG
and AACTCGGCTTGGTATGGCAG), B-SG (AGCAAAGT
TCCAATGGTCCTG and TCATCAATCGGAATGTATCCAGC),
v-SG (GAGCAGTACACTACAGCCACA and CGCAGTCCA
TCTTTTGTTACACA), and §-SG (GCGGAAACGATGCCT
GTATTT and TGGCGTAGAGAGGTTGTAAGAA). The
PCR products were resolved on a 2% agarose gel for 30 min
at 50 V using SYBR® Safe DNA Gel Stain (ThermoFisher
Scientific—S$33102) and visualized with UV light exposure using
a GelDoc Imaging System (Bio-Rad). For RT-qPCR, Platinum™
SYBR™ Green qPCR SuperMix-UDG was used (ThermoFisher
Scientific—11733038) and run on a ViiA 7 Real-Time PCR
System (ThermoFisher Scientific). The gene expression was
normalized to housekeeping genes (GAPDH and RLP13a), and
values were expressed as 2~ 22 CT as a fold difference to adult.

Statistics

Graphs were prepared and data analyzed using GraphPad
Prism software version 9. Normality was tested with Shapiro-
Wilk. Except for resting membrane potential, the data did
not pass the normality test, and hence groups were compared
using Kruskal-Wallis with Dunn’s multiple comparison. For
the analysis of the resting membrane potential, we used Welch
ANOVA, with Dunnett T3 for multiple comparisons. P-values are
indicated above each graph. Individual data points are displayed
in the graphs with the mean and the standard error of the
mean as error bars.

RESULTS AND DISCUSSION

In adult cardiomyocytes, the core proteins of the DAPC
[dystrophin, dystroglycans (a and f), and sarcoglycans (o,
B, v, and 3)] were present at the membrane, both in the
external plasmalemma and in transverse tubules but not at the

intercalated discs (Figure 2A, right). In contrast, hiPSC-CM
generated using a common 2D monolayer protocol expressed
an incomplete DAPC with only dystrophin and B-dystroglycan
present (Figure 2A, left). We investigated whether a further
maturation process could improve the expression of the
proteins that comprise the DAPC, especially sarcoglycans as
important mediators of dystrophy-related cardiomyopathies.
To these ends, two protocols were used: the first in which
we cultured hiPSC-CM in a 3D microenvironment and a
second in which we combined a treatment with triiodo-L-
thyronine and glucocorticoid for 14 days before seeding the
cells on 2D Matrigel mattresses. However, neither maturation
protocol improved DAPC expression above that seen in 2D
hiPSC-CM, which only express dystrophin and B-dystroglycan
but not sarcoglycans or a-dystroglycan (Figure 2A, middle).
These findings were confirmed in immunoblots in the 3D-
cultured hiPSC-CM (Figure 2B, panel a and b). All data
presented here are from the ThermoFisher Scientific hiPSC
line, and similar data were obtained in 3D cultures from
three different hiPSC lines, one from the Leuven and two
from the Hamburg Labs (Supplementary Figures 1,2). The
specificity of the sarcoglycan antibodies used was further verified
by deglycosylating the proteins in adult cardiac homogenates
with PNGase F, and as expected, all sarcoglycans decreased
in molecular weight after deglycosylation (Figure 2B, panel
b). Inhibition of the proteasome by treatment with MG-
132 (10 pM) for 8 h to reduce protein degradation had
no effect and could not uncover sarcoglycan expression
(Figure 2B, panel c). Yet, hiPSC-CM expressed sarcoglycans at
the mRNA level (Figure 2C). Additional RT-qPCR experiments
showed differences in expression of components of the
DAPC between 3D culture hiPSC-CM and adult cardiac
tissue (Figure 2D).

We examined proxies for maturation in the present
experiments, focusing on aspects of excitation—contraction
coupling as a key feature of cardiomyocytes. The increased
sarcomeric organization in hiPSC-CM cultured in 3D and
with hormonal treatment in 2D supported the assumption of
advanced maturation of the myocyte phenotype under these
conditions (Figure 3A). We also evaluated how 3D culture
influences the electrophysiological properties of hiPSC-CM,
compared to cells cultured in 2D monolayers and to adult
human ventricular cardiomyocytes. Figure 3B, panel a shows
representative examples of single cell action potentials. Both
hiPSC-CM cultured in 2D and 3D were smaller than adult
ventricular cells, in cell perimeter and electrical capacitance,
though the latter was higher in 3D-cultured hiPSC-CM
(Figure 3B, panel b). In addition, compared to 2D-cultured
cells, 3D-cultured hiPSC-CM had a more negative resting
membrane potential and greater action potential amplitude
and duration, with values closer to that in adult ventricular
cardiomyocytes (Figure 3B, panel c). Considering we did
not correct for junction potentials, these values for resting
membrane potential are comparable to those previously reported
(Horvath et al., 2018). Of note, the resting membrane potential
measured with microelectrodes in hiPSC-CM within the
connected 3D micro-tissue are more negative than those after
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FIGURE 2 | (A) From left to right: confocal images of immunostained 2D monolayer cultured hiPSC-CM, 3D-cultured hiPSC-CM tissue, 2D-cultured hiPSC-CM
seeded on Matrigel mattresses, and treated with T3+Dexamethasone and cryosections of adult human heart tissue. Adult heart sections were counterstained with
wheat germ agglutinin (WGA) for membrane, shown in magenta. hiPSC-CM were counterstained with cardiac troponin T (cTnT) or a-actinin, shown in magenta.
Nuclei were labeled with DAPI in blue. The DAPC components are in green. Results were replicated in three independent hiPSC-CM differentiations. Scale bar,

10 wm. (B) (@) Immunobilot of dystrophin (Dys) and dystroglycan (DG). (b) Immunoblot of sarcoglycans (SG) and Deglycosylation tests (+PNGase treatment) in adult
cardiac homogenates and in 3D-cultured hiPSC-CM. Results were replicated in seven independent hiPSC-CM differentiations for a-SG, §-SG, and y-SG; 10
independent differentiations for -SG and dystrophin and 5 independent differentiations for dystroglycan (DG). (¢) Immunaoblot for sarcoglycans from 3D-cultured
hiPSC-CM treated for 8 h with MG-132 (10 wM). The proteasome inhibition efficiency was confirmed by immunoblotting of lysates with an anti-ubiquitin antibody
(right). Results are from four 3D constructs prepared from one hiPSC-CM differentiation. Straight lines separate adult vs. hiPSC-CM, and dotted lines separate
control vs. treatment (PNGase or MG132), from the same blot. The expected molecular weight for glycosylated and deglycosylated forms of sarcoglycans are
indicated in the figure. The B-SG band at 50 kDa was considered as non-specific as its molecular weight did not decrease with deglycosylation (a similar band was
also seen in B-SG-null mouse heart—Supplementary Figure 2B). (C) mRNA detection by reverse transcription PCR of expression of sarcoglycans in 2D and
3D-cultured hiPSC-CM and in adult human heart lysates. Results were replicated in three independent hiPSC-CM differentiations. (D) RT-gPCR of sarcoglycans in
3D-cultured hiPSC-CM and adult human heart lysates. Values are expressed as 2~ 22CT normalized as a fold difference to adult.
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FIGURE 3 | (A) Cardiac troponin T (cTnT) organization in hiPSC-CM. Left: immunostaining for cTnT (green) and nuclei (blue) in hiPSC-CM cultured in 2D, 3D, or
2D+hormones seeded on Matrigel mattresses, and for comparison in adult human cardiac tissue. Right: semi-quantitative analysis of the cTnT striated pattern (2D:
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ICalL measured at the peak current (n numbers are indicated in the graph). P-values are indicated above each graph; Kruskal-Wallis with a Dunn’s multiple
comparison test was used for all, except for resting membrane potential where a Welch ANOVA test, followed by Dunnett T3 for multiple comparisons, was used.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 November 2021 | Volume 9 | Article 737840


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Gilbert et al.

Incomplete DAPC in iPSC-CM

isolation (Horvath et al, 2018). These features seen in 3D
culture (lower resting membrane potential and longer action
potential duration) are considered a characteristic of a more
adult and ventricular-like cardiomyocyte phenotype. Compared
to adult cardiomyocytes, both 2D and 3D-cultured hiPSC-CM
had a higher density of L-type voltage-gated calcium channel
current (ICalL) (Figure 3C), probably related to the absence
of T-tubules and consequent smaller membrane surface area.
Adult cardiomyocytes typically have a fast inactivation phase of
ICaL caused by Ca’* release from the internal store, followed
by a slow phase. ICaL in 2D-cultured hiPSC-CM typically has a
single inactivation phase, while ICaL in 3D-cultured hiPSC-CM
can have either type of inactivation time course. These data
highlight that the link between calcium influx and sarcoplasmic
reticulum release of calcium may improve in 3D but remains
poorly developed.

Taken together, our findings show that despite evidence for
a more advanced maturation, 3D-cultured-hiPSC-CM lack the
complete DAPC seen in adult cardiomyocytes: dystrophin and
p-dystroglycan are present, but sarcoglycans and a-dystroglycan
are not (Figure 1B). The lack of a full DAPC in hiPSC-CM,
even after additional culture in 3D or with hormonal treatment,
may reflect the incomplete maturity of the cells. Interestingly,
during the early stages of human fetal development, the heart
expresses sarcoglycans at the mRNA but not at the protein
level, only expressing dystrophin and PB-dystroglycan (Mora
et al., 1996; Fougerousse et al., 1998), and this is in line with
the immaturity or “fetal-like” phenotype of hiPSC-CM. The
expression of dystrophin in hiPSC-CM, even already present in
2D monolayer differentiated cells, confirms the use of hiPSC-
CM to study Duchenne muscular dystrophy. However, the lack
of sarcoglycans undermines the use of hiPSC-CM as a model for
sarcoglycanopathies and suggests caution in the interpretation
of the dystrophin studies. The absence of a-dystroglycan, as
recently observed (Kamdar et al., 2020), would prevent the
linking of the complex to laminin and the extracellular matrix,
thereby potentially affecting mechanosensing signaling, which
is important for cell adaptation and maturation. However,
we cannot rule out that we did not detect a-dystroglycan
in our samples due to its release into the culture medium,
as this extracellular protein could be poorly retained in an
immature DAPC. It is conceivable that the incomplete DAPC
is one of the hurdles to progression to an adult phenotype of
hiPSC-CM. Recent protocols using co-cultures with fibroblasts
and endothelial cells may further improve maturation but,
because of their complexity, are not yet widely adopted
(Giacomelli et al., 2020).

CONCLUSION

In conclusion, because of the unique insight into patient-
specific genetic and functional background they provide,
hiPSC-CM are a highly relevant model to study genetic
cardiac diseases. However, our findings indicate that it is
important to recognize the limitations of the hiPSC-CM model
for the study of dystrophy-related cardiomyopathies. Further

understanding of the mechanisms that govern the stabilization
of sarcoglycans and o-dystroglycan within the DAPC can
improve the use of hiPSC-CM as a model system and as a
bridge to medical applications such as regenerative medicine
and drug screening.
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