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Thyroid cancer ranks second in the incidence rate of endocrine malignant cancer.
Thyroid cancer is usually asymptomatic at the initial stage, which makes patients easily
miss the early treatment time. Combining genetic testing with imaging can greatly
improve the diagnostic efficiency of thyroid cancer. Researchers have discovered many
genes related to thyroid cancer. However, the effects of these genes on thyroid cancer
are different. We hypothesize that there is a stronger interaction between the core genes
that cause thyroid cancer. Based on this hypothesis, we constructed an interaction
network of thyroid cancer-related genes. We traversed the network through random
walks, and sorted thyroid cancer-related genes through ADNN which is fusion of
Adaboost and deep neural network (DNN). In addition, we discovered more thyroid
cancer-related genes by ADNN. In order to verify the accuracy of ADNN, we conducted
a fivefold cross-validation. ADNN achieved AUC of 0.85 and AUPR of 0.81, which are
more accurate than other methods.
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INTRODUCTION

Thyroid carcinoma (TC) is the most common malignant tumor of endocrine system, accounting
for 2.5% of all human cancers, accounting for 90% (Maniakas et al., 2020; Sahu and Pattanayak,
2020; Xia et al., 2020) are cell-derived thyroid malignancies are derived from the follicular
cells, including follicular thyroid carcinoma (FTC), papillary thyroid carcinoma (PTC), poorly
differentiated thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma (ATC) (Dralle et al.,
2015). PTC and FTC with low malignancy are classified as differentiated thyroid carcinoma (DTC),
accounting for about 90% of all thyroid cancers (Zanella et al., 2021). And the majority of deaths
from thyroid carcinoma was caused by ATC (Molinaro et al., 2017). Medullary thyroid carcinoma
(MTC) originates from parafollicular (c) cells, accounts for 2–4% of all thyroid carcinoma (Ceolin
et al., 2019; Chen et al., 2020). About 25% of MTC cases are caused by germline genetic mutations,
that is, familial medullary thyroid carcinoma (FMTC), while 75% are sporadic cases. Hereditary
cases can occur alone, it can also be used as a part of multiple endocrine neoplasia type 2 (men2)
syndrome (Vijayan et al., 2021).
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According to statistics, the incidence rate of thyroid
malignancies in recent decades is almost entirely due to the
improvement of diagnostic accuracy and over diagnosis of PTC
tumors, while the incidence rate of FTC, ATC, and MTC remains
relatively stable (Xing, 2019; Zhang et al., 2021). The degree of
differentiation of PTC is relatively high, and the corresponding
degree of malignancy is relatively low, but it is not equivalent to
the low risk of PTC. There are generally no obvious symptoms
in the early stage of PTC (Tsukatani et al., 2020), but once clinical
symptoms appear, such as hoarseness, Tracheal compression, etc.,
usually have entered the local advanced stage, and the best time
for treatment has been missed at this time, and the metastasis of
cervical lymph nodes and the invasion of local muscles, nerves
and other tissues can often be seen during surgical treatment,
resulting in postoperative complications. The treatment effect is
not satisfactory.

Molecular markers are an effective tool for diagnosis,
especially for thyroid nodules whose Fine needle aspiration
cytology (FNAC) is uncertain (Sanguedolce et al., 2015). Gene
mutation and chromosome rearrangement are important
genetic changes in the occurrence and development of thyroid
cancer. The molecular pathogenesis of most thyroid cancer
involves mitogen activated protein kinase (MAPK) and
phosphatidylinositide 3-kinases/protein kinase B (Sui et al.,
2014), PI3K/Akt signaling pathway (Petrulea et al., 2015) is
out of balance. BRAF and RAS point mutations, RET/PCT and
Pax8/PPAR γ Rearrangement can activate MAPK pathway,
and mainly occurs in DTC. BRAF mutation and RET/PCT
rearrangement are common in PTC, while Ras mutation and
Pax8/PPAR γ Rearrangement is a common molecular change
in FTC. Pik3/Akt pathway is mainly activated by Ras, TP53
and TERTP mutations. TP53 and TERTP mutations are rare
in well-differentiated thyroid cancer (Penna et al., 2016), and
the mutation frequency is high in ATC and PDTC, which may
be related to tumor invasion. Therefore, FNAC is difficult to
determine the benign and malignant thyroid nodules, which can
be combined with relevant molecular detection to help diagnosis,
so as to improve the diagnostic accuracy of thyroid cancer.

According to the data released by the Cancer Genome Atlas
(TCGA) in 2014 (Tomczak et al., 2015), 402 patients with
thyroid cancer were analyzed. Compared with other cancers,
the frequency of gene somatic mutations in thyroid cancer is
relatively low. The frequency of BRAF V600 was 58.5%, which
was the highest mutation site in thyroid cancer. In addition,
the high-frequency mutation gene also includes three RAS gene
family members, such as NRAS and KRAS, which are known
tumor related genes, with a mutation frequency of 12.9% in
European and American populations. In addition, some new
thyroid cancer driving genes eif1ax, ppm1d, and CHEK2 were
identified, and some of them also had gene fusion (Agrawal et al.,
2014). TCGA research, with large sample size and various analysis
methods, not only found a large number of somatic mutations,
but also copy number variation and gene fusion information,
which has great reference value and clinical significance. BRAF
gene is used to assist in the diagnosis of benign and malignant
thyroid nodules (Salvatore et al., 2006), which greatly reduces
the misdiagnosis rate in clinical diagnosis and improves the

accuracy of preoperative diagnosis of patients with papillary
thyroid cancer. BRAF gene is used for clinical diagnosis of
papillary thyroid cancer (Trovisco et al., 2004). It can also be used
as an important factor for clinical prediction of post-operative
recurrence and guidance of medication, so as to facilitate the
formulation of individualized and precise diagnosis, treatment
and follow-up plans. In recent years, deep learning methods
have been widely used in the diagnosis thyroid cancer. Lee JH
et al. developed a deep learning-based computer-aided diagnosis
(CAD) system could accurately classify cervical lymph node
metastasis (LNM) on CT images in patients with thyroid cancer
(Lee et al., 2019). Li X et al. indicated that compared with a
group of skilled radiologists, deep convolutional neural network
(DCNN) models that showed similar sensitivity and improved
the diagnostic accuracy of thyroid cancer on sonographic images
(Li et al., 2019).

Although multiple TC-related genes have been found by
collecting samples and implementing gene differential expression
analysis (Zhao et al., 2021b), people are still unclear about
the pathogenesis and early diagnosis of thyroid cancer. With
the increasing computational power and omics data, machine
learning methods can identify disease-related molecules on a
large scale to reveal the pathogenesis (Zhao et al., 2020c), disease
occurrence process (Zhao et al., 2020a) and clinical medication
guidance (Tianyi et al., 2020). Most of the calculation methods are
based on similarity and interaction (Zhao et al., 2020b, 2021a). In
this article, we propose hypotheses: there is a stronger interaction
between the core genes that cause thyroid cancer. There is a close
relationship between the pathogenic genes of thyroid cancer, but
the interaction between the genes only related to thyroid cancer
and these genes is not that close. Based on this hypotheses, we
constructed a gene interaction network and used Random Walk
(RW) to traverse this network. Then, Adaboost and deep neural
network (DNN) was fused to identify TC-related genes.

MATERIALS AND METHODS

There are three steps to implement ADNN. First, TC-related
genes are obtained from DisGeNET (Piñero et al., 2015). Then,
we collected genes which can interaction with TC-related genes to
construct gene interaction network. The red points represent TC-
related genes and blue points represent other genes. The second
step is to use RW to traverse this network. The features of genes
can be encoded by this step. The last step is to fuse Adaboost with
DNN to prioritize TC-related genes. The whole process of ADNN
is shown as Figure 1.

Construction of Gene Interaction
Network
First, we obtained TC-related genes from DisGeNET. According
to DisGeNET, there are 147 genes related to TC. Using String
database (Szklarczyk et al., 2016), we draw these genes interaction
network as Figure 2.

As we can see in Figure 2, the interaction between some core
genes in the center of the network is very close. Although there
are still some marginal genes that cannot interact with other
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FIGURE 1 | Three steps of ADNN to prioritize genes related to thyroid cancer.

genes, most of the genes have close relationship with other genes.
We collected genes which can interaction with 147 TC-related
genes to construct a whole gene interaction network.

Encoding Gene Features by RW
Since the gene interaction network we construct is a two-
dimensional graph, when we walk through the network in a
probabilistic manner based on gene interaction, when the node
information of the current gene is known, the historical gene
node traversal information and the future gene node The traversal
path is irrelevant. Therefore, we can regard the genetic coding
method based on random walk as a Markov chain. In each step of
the Markov chain, the probability distribution of gene interaction
can change from one state to another, or maintain the current
state. The change of state is called transition, and the probability
associated with different states is called transition probability.

If A is the adjacency matrix of the gene interaction network,
we can normalize A as:

P = D−1A (1)

D is a diagonal matrix and the degree matrix of the gene
interaction network:

D(i, i) =
∑

A(i, j) (2)

P is a random walk matrix, the transition probability of each
node is 1, and P is the probability matrix associated with
TC and all genes.

A random walk matrix corresponds to a Markov chain, and
the probability distribution of TC-related genes changes as the
state in the Markov chain changes. Starting from any state, the
probability of going to the next state is as follows:

Pt+1 = AtP (3)

This process continues, and the relationship between TC and
genes is constantly changing. After a period of time, it reaches
a state of equilibrium. The equilibrium state is also called
steady state, which means that the probability distribution of
the association between TC and genes no longer changes. The
calculation method of steady state is as follows:

π = D(i, j)/
∑
i

∑
j

A(i, j) (4)

When πP = π, the entire system reaches a steady state.
This steady state is the final calculated association
between TC and gene.

Prioritize TC-Related Genes by ADNN
DNN neural network layers can also be simply divided into three
categories: input layer, hidden layer and output layer. Its layers
are fully connected, that is, all neurons in the upper layer are
connected to any neuron in the next layer. Its partial model is:

O = σ
(∑

wx+ b
)

(5)
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FIGURE 2 | Gene interaction network of TC-related genes.

O is output. σ() is activation function. w is the coefficient of linear
relationship, b is bias model parameters.

Using DNN network architecture to identify the interaction
pattern between TC and gene, we need to define the objective
function to measure the loss of model fitting.

J(w, b, x, y) =
1
2
‖ aL − y ‖2

2 (6)

The process of training DNN is to minimize the loss function.
The parameters of DNN model is shown in Table 1.

Due to the small sample set, DNN is used as a weak
classifier. In order to make the model more accurate, we
introduced AdaBoost.

First, set the initial weight of each sample to 1/N. Then,
training samples to get the first DNN model, test this DNN
model, increase the weight of the unclassified correct samples
and reduce the weight of the classified correct samples. At
the same time, the weight of the DNN model is obtained.
Repeating the above process, we can get multiple DNN
models and corresponding weights, thereby obtaining the final
strong classifier.

The error rate of each model can be calculated as following:

errm =
N∑
i=1

wmi||(Gm(xi) 6= yi) (7)

The weight of the model is:

am =
1
2

log
1− errm
errm

(8)

The final model is the summary of all DNN models:

G(x) = arg max
∑

m: Gm(x)=y

am (9)

TABLE 1 | The parameters of DNN model.

Structure Parameters

Layer 1 Units: 256
Activation function: Tanh
Dropout rate: 0.3

Layer 2 Units: 128
Activation function: Tanh
Dropout rate: 0.2

Layer 3 Units: 2
Activation function: Tanh

Loss function Binary cross entropy

Optimizer RMSprop
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FIGURE 3 | ROC curves of different numbers of DNN models.

RESULTS

Since we used DNN as a weak classifier and the number of DNN
models is set by experience, we used 5-cross validation to find
the best number of DNN models of ADNN. The process of 5-
cross validation is to divide whole sample set into five groups.
We used one group for testing and four groups for training each
time. After repeating five times, each group has been tested once
and trained four times. We use 10, 20, 50, and 100 DNN models
to build ADNN, respectively. The experiment results are shown
as Figure 3.

In Figure 3, the AUC are 0.73, 0.79, 0.85, 0.86 for 10, 20, 50,
100 DNN models, respectively. As shown in Figure 3, the AUC
of 50 and 100 DNN models are very close. However, constructing
100 DNN models is twice time consuming than 50 DNN models.
Therefore, we used 50 DNN models to build ADNN model.

In order to show the superiority of ADNN, we compared it
with several other methods such as DNN, ASVM, ANB, Random
Forest (RF). ASVM is the fusion of Adaboost and Support
Vector Machine (SVM). ANB is the fusion of Adaboost and
Naïve Bayes (NB).

The comparison results is listed in Table 2.
Compared ADNN with ASVM, we can find that DNN is more

suitable than SVM in prioritizing susceptible genes for thyroid

TABLE 2 | Comparison of ADNN and other methods.

Method AUC AUPR

ADNN 0.85 0.81

DNN 0.69 0.65

ASVM 0.82 0.79

ANB 0.76 0.71

RF 0.78 0.76

cancer. Compared ADNN with DNN, we can find that Adaboost
can significantly increase the accuracy of prioritizing susceptible
genes for thyroid cancer.

CONCLUSION

Genetic factors are an important cause of thyroid cancer.
Exploring the susceptibility genes of thyroid cancer is the key to
understanding the pathogenesis and developing new treatment
options. Collecting samples from patients and healthy individuals
and analyzing differential gene expression is very costly and
time-consuming. After years of research, researchers have found
only 147 genes related to thyroid cancer. The role of these
genes in thyroid cancer is unknown. In addition, there are more
genes associated with thyroid cancer. To prioritize susceptible
genes of thyroid cancer in large-scale, we proposed a novel
method, named ADNN, to identify TC-related genes by gene
interaction network. We constructed gene interaction network
based on known TC-related genes and used RW to encode the
features of genes. Then, we fused Adaboost with DNN to classify
whether a gene is related to TC and obtain the probability of
genes associated with TC. We get the best number of DNN
models needed to construct ADNN through experiments. Finally,
we compared ADNN with several other methods. Overall, we
propose a precise and efficient method for prioritizing susceptible
genes for thyroid cancer.
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