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X-chromosome inactivation (XCI) and random monoallelic expression of autosomal
genes (RMAE) are two paradigms of gene expression regulation where, at the single
cell level, genes can be expressed from either the maternal or paternal alleles.
X-chromosome inactivation takes place in female marsupial and placental mammals,
while RMAE has been described in mammals and also other species. Although the
outcome of both processes results in random monoallelic expression and mosaicism at
the cellular level, there are many important differences. We provide here a brief sketch
of the history behind the discovery of XCI and RMAE. Moreover, we review some of the
distinctive features of these two phenomena, with respect to when in development they
are established, their roles in dosage compensation and cellular phenotypic diversity,
and the molecular mechanisms underlying their initiation and stability.

Keywords: X-chromosome inactivation, random monoallelic expression, epigenetic silencing, LINE-1 elements,
cellular diversity, stochasticity, dosage compensation

INTRODUCTION

In diploid organisms, the two alleles of a gene are usually expressed. However, the expression
levels of each allele are not necessarily equal, and allelic imbalance (AI) in transcript levels can
occur due to genetic differences in the regulatory sequences or the stability of the transcripts.
There are, however, special cases not explained by in cis differences in the sequence of the
alleles. These have been lumped under the umbrella term “monoallelic expression.” In a
broad sense, all genetic expression is epigenetic, but if we use a conservative definition of
epigenetics to include all heritable (during mitosis or meiosis) changes in gene expression
that occur without any changes in the underlying DNA sequence, then monoallelic expression
becomes the poster child of epigenetics. Known cases of monoallelic expression include
genomic imprinting, X-chromosome inactivation (XCI), and random monoallelic autosomal
expression (RMAE). Genomic imprinting affects all cells of an organism the same way,
i.e., it is always the same allele that is expressed, depending on the parent of origin
(Barton et al., 1984; McGrath and Solter, 1984; Surani et al., 1984). The fate (expression
or silencing) is defined during the formation of the gametes in the progenitor. Thus,

Abbreviations: AI, allelic imbalance; IL, interleukin; iPSC, induced pluripotent stem cell; LINE-1, long interspersed nuclear
element-1; OR, olfactory receptor; PAR, pseudoautosomal region; RMAE, random monoallelic autosomal expression; SNP,
single nucleotide polymorphism; TCR, T-cell receptor; Xa, active X; XCI, X-chromosome inactivation; Xi, inactive X.
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despite the associated fascinating molecular mechanisms,
evolutionary theory (Haig, 1993), and relevance for development
and diseases (Ferguson-Smith and Bourc’his, 2018), genomic
imprinting is merely a case of transgenerational gene expression
that is reset each generation during the formation of the
oocyte and sperm cells. XCI and RMAE differ from genomic
imprinting because they give rise to mosaicism: in the same
organism, some cells express the maternal allele and other
cells express the paternal allele. Over the last decades, this
common feature has recurrently tempted many to draw parallels
between XCI and RMAE, both in reviews or opinion pieces [e.g.,
(Efstratiadis, 1995; Goldmit and Bergman, 2004; Chess, 2016;
Gendrel et al., 2016)] and original articles [e.g., (Mostoslavsky
et al., 2001; Pereira et al., 2003)]. But much like the confusion
created by false cognates or “faux amis” between two languages,
the parallels between two phenomena often prevent us from
seeing the obvious and meaningful differences; parallels can
illuminate but also deceive. Thus, here we propose to critically
evaluate the relevance of the parallels drawn between XCI and
RMAE, and expose their key differences at the cellular and
molecular levels.

HISTORICAL BACKGROUND

XCI and RMAE were described in the same decade.
X-chromosome inactivation, also named “Lyonisation,” was
first proposed in 1961 by mouse geneticist Mary Lyon in a short
report with no figures, where she laid the fundamental principles
of XCI based solely on mouse genetics and earlier cytological
evidence (Lyon, 1961). A few years later, individual B cells were
shown to express only one immunoglobulin allele, both for the
heavy and the kappa chains (Cebra and Goldstein, 1965; Pernis
et al., 1965), two autosomal genes. Retrospectively, these three
papers were seminal, but Lyon’s work immediately created a
new field, whereas the RMAE of antigen receptors remained
essentially a pet subject for a niche of scientists.

Mary Lyon was examining the inheritance and the phenotype
of different mutations in X-linked genes affecting coat color
in mice. She observed that heterozygous females had mosaic
or variegated phenotypes, with patches of normal and mutant
color, unlike males. This, coupled with the knowledge that
female mice with only one X chromosome were viable and
fertile (Welshons and Russell, 1959) and that female cells
exhibit one condensed X chromosome in their nuclei (Ohno
et al., 1959; Ohno and Hauschka, 1960), led her to the
XCI hypothesis. The key principles underlying this hypothesis
were the genetic inactivation of the X chromosome of either
paternal or maternal origin, the early inactivation during
embryogenesis, and the clonal inheritance of the inactive
state through cell division (Lyon, 1961). Soon after, other
scientists correlated the genetic observations made by Mary
Lyon with experimental studies, such as the presence of
two red blood cell populations or protein variants associated
with mutations in the G6pd X-linked gene in female cells
(Beutler et al., 1962; Davidson et al., 1963). In 1962, Mary
Lyon published a much longer report focusing on human

X-linked syndromes, providing evidence that XCI is present in
other mammals, such as humans, and is the basis for dosage
compensation between the sex chromosomes (Lyon, 1962). XCI
is still often referred nowadays to as the “Lyon hypothesis,”
although it should be considered as a fully established law
(Gendrel and Heard, 2011).

The finding that the immunoglobulin chains are expressed
monoallelically at the cellular level predates the discovery of the
mechanism of V(D)J recombination that sets apart the antigen
receptor genes (Hozumi and Tonegawa, 1976), including the
immunoglobulin and T-cell receptor genes. Over the years, it was
found that monoallelic expression – more commonly described
in this literature as “allelic exclusion” – is a feature of most
antigen receptor genes only partly explained by the relatively high
frequency of non-productive sequences (with frameshifts leading
to premature stop codons) generated by V(D)J recombination
and that the percentage of cells with monoallelic expression varies
considerably depending on the antigen receptor gene [reviewed
in Vettermann and Schlissel (2010)].

The collection of genes under allelic expression expanded
beyond the antigen receptor genes only in the 1990s. The
olfactory receptor (OR) genes form the largest gene family in
mammals; in the mouse, there are 1,296 OR genes (Zhang and
Firestein, 2002). Remarkably, each neuron expresses only one
gene and, taking advantage of the OR gene polymorphisms
found in Mus musculus x M. spretus F1 mice, it was found that,
in a given neuron, only one of the two alleles of the chosen
expressed gene is transcribed (Chess et al., 1994). Soon after
this finding, using allele-specific antibodies, the Ly49 genes of
natural killer cells were also shown to display a monoallelic
expression pattern in mice (Held et al., 1995) and a few years
later, a pheromone receptor, similar to the OR genes, was shown
to display RMAE in the neurons of the accessory olfactory system
(Rodriguez et al., 1999).

The end of the 1990s would mark the beginning of a short
controversy on the expression patterns of the interleukins (ILs).
In T cells, IL-2 was reported to be monoallelically expressed in
T cells (Hollander et al., 1998), whereas for IL-4 the expression
was described as biallelic or monoallelic, depending on the clone
(Bix and Locksley, 1998) or the strength of the signal delivered
through the TCR (Rivière et al., 1998). Four subsequent studies
on IL-2 reached different conclusions: whereas IL-2 was found
to be biallelically expressed in human T cell clones (Chiodetti
et al., 2000; Bayley et al., 2003), in mice heterozygous for an IL-2-
GFP transgene (Naramura et al., 1998) and in single-cell RT-PCR
experiments (Rhoades et al., 2000), most cells expressed both IL-2
alleles but there were also single expressors. Overall, the data for
IL-2 seem consistent with the data for IL-4: under optimal and
continuous stimulation, cells will tend to express both alleles, but
at suboptimal levels of expression, there may be cells expressing
only one of the alleles.

The list of genes under monoallelic expression grew slowly
until the mid-2000s based on additional reports focused on
single genes [e.g., (Endo et al., 1995); Table 1], but in 2007,
the application of genome-wide transcriptomics to a collection
of human lymphoblast clonal cell lines revealed that over 5%
of expressed genes display patterns of random monoallelic
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TABLE 1 | List of autosomal genes under random monoallelic expression reported in studies focused on single genes.

Gene Cell type/tissue Species In vitro/in vivo Year References

Immunoglobulin receptor genes B and T lymphocytes rabbit
mouse

in vivo 1965
1976
1985

Cebra and Goldstein, 1965; Pernis
et al., 1965; Hozumi and Tonegawa,

1976; Goverman et al., 1985

Olfactory receptor (OR)
genes

sensory neurons mouse in vivo 1994 Chess et al., 1994

HUMARA (human
androgen receptor) gene

colonic crypts human in vivo 1995 Endo et al., 1995

Ly49 receptor genes natural killer cells mouse in vivo 1995 Held et al., 1995

Interleukin genes (IL2, IL4, IL5,
IL10, IL13)

T cells mouse in vitro 1998, 2000,
2006

Bix and Locksley, 1998; Hollander
et al., 1998; Kelly and Locksley, 2000;

Calado et al., 2006

Pax5 early progenitors and mature B
cells

mouse in vitro 1999 Nutt et al., 1999

VRi2 sensory neurons of the
vomeronasal system

mouse in vivo 1999 Rodriguez et al., 1999

Nubp2, Igfals, and Jsap1 bone marrow stromal cells and
hepatocytes

mouse in vitro 2001 Sano et al., 2001

Variable lymphocyte receptors
(VLRs) genes

lymphocytes lamprey in vivo 2004 Pancer et al., 2004

Protocadherin genes Purkinje cells mouse
human

in vitro/in vivo 2002
2005
2006

Tasic et al., 2002;
Wang et al., 2002;
Esumi et al., 2005;
Kaneko et al., 2006

Tlr4 B cells mouse in vitro 2003 Pereira et al., 2003

KIR genes natural killer cells human in vitro 2003 Chan et al., 2003

Cd4 CD4 + lymphocytes mouse in vitro 2004 Capparelli et al., 2004

p120 catenin pre-B clonal cell lines mouse in vitro 2005 Gimelbrant et al., 2005

lymphoblastoid lines human

Gfap (glial fibrillary acidic
protein)

cortical astrocytes mouse in vitro 2008 Takizawa et al., 2008

rDNA loci lymphoblasts human in vitro 2009 Schlesinger et al., 2009

Krt12 limbal stem cells mouse in vivo 2010 Hayashi et al., 2010

IGF2BP1 B cells human in vitro 2011 Thomas et al., 2011

ASAR6 P175 cell line (derived from
HTD114 fibrosarcoma cell line)

human in vitro 2011 Stoffregen et al., 2011

Cubilin renal proximal tubules and
small intestine

mouse in vivo 2013 Aseem et al., 2013

ASAR15 P268 cell line (derived from
HTD114 fibrosarcoma cell line)

human in vitro 2015 Donley et al., 2015

Gata3 hematopoietic stem
cells and early T-cell progenitors

mouse in vitro/in vivo 2015 Ku et al., 2015

FOXP2 B lymphoblastoid cell lines and
clonal T-cell lines

human in vitro/in vivo 2015 Adegbola et al., 2015

Bcl11b T cells mouse in vitro/in vivo 2018 Ng et al., 2018

expression across the collection of clones (Gimelbrant et al.,
2007). Over the subsequent years, several independent reports
on clonal cell lines confirmed that the number of genes under
random monoallelic expression was higher than previously
thought (Table 2).

Technological progress allowing transcriptomics at the
single-cell level revealed that stochastic bursts of transcription
occurring independently at the allelic level may lead to the
presence of RNA from only one of the alleles at a given time
(Deng et al., 2014). We will not cover these cases because RMAE

due to transcriptional bursting is not expected to be stable over
time and is not observed at the clonal level.

HOMOGENEOUS VERSUS
HETEROGENEOUS PHENOMENA

XCI is usually perceived as a homogeneous process. It affects
an entire chromosome leading to silencing of nearly all genes,
with a few notable exceptions, and therefore sets the basis for a
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TABLE 2 | A summary of reports based on genome-wide transcriptomics analysis in different cell types.

Cell type Experimental assay Species Genotypes % of RMAE Number of
clones analyzed

References

Lymphoblastoid cells
(in vitro)

SNP-sensitive
microarrays

Human NA 5-10 12 Gimelbrant et al., 2007

Mouse 129S X CAST;
Balb/c X C57BL/6J

15.6 11 Zwemer et al., 2012

Fibroblasts (in vitro) SNP-sensitive
microarrays

Mouse 129S X CAST 2.1 2 Zwemer et al., 2012

RNA-seq Mouse CAST X 129S 0.52-1.9 6 Pinter et al., 2015

Neural stem cells
(in vitro)

SNP-sensitive
microarrays

Human NA 1.4-2.0 9 Jeffries et al., 2012

RNA-seq Mouse C57BL/6 X JF1 2.4 4 Li et al., 2012

SNP-sensitive
microarrays

Human NA 0.63 3 Jeffries et al., 2016

RNA-seq Mouse C57BL/6 X JF1 4.6 4 Branciamore et al., 2018

Neural progenitor cells from
embryonic stem cells
(in vitro)

RNA-seq Mouse C57BL/6 X CAST 3.0 6 Eckersley-Maslin et al.,
2014

129S X CAST 2.5 8 Gendrel et al., 2014

Embryonic stem cells
(in vitro)

RNA-seq Mouse C57BL/6 X CAST 0.5 6 Eckersley-Maslin et al.,
2014

iPSC (in vitro) SNP-sensitive
microarrays

Human NA 0.88 2 Jeffries et al., 2016

Neural stem cells from
iPSC (in vitro)

SNP-sensitive
microarrays

Human NA 0.65-0.84 2 Jeffries et al., 2016

Astrocyte-like cells
(in vitro)

RNA-seq Mouse C57BL/6 X JF1 6.4 4 Branciamore et al., 2018

robust monoallelic expression of these genes. The inactivation
is established in all cells in a random manner early during
embryogenesis and is then stably inherited during mitotic cell
divisions throughout life; all cells therefore carry an inactive X
(Xi) and active X (Xa) chromosome, and females are mosaic
individuals with cell populations expressing genes from either
the maternal or the paternal X chromosome (Figure 1). Most
genes that are subject to XCI stay stably repressed during
development and adulthood, and rarely become biallelically
expressed, except under specific circumstances discussed below
(Galupa and Heard, 2018).

In clear contrast with XCI, which has defined physical
boundaries (the X chromosome), a precise timing during
development, a phylogenetic association with female marsupial
and placental mammals, and a master player (the Xist long
non-coding RNA), genes under RMAE are scattered throughout
autosomal chromosomes, are expressed at different times and
in different tissues, can be biallelically expressed and are
found in animals other than mammals, including jawless
vertebrates (Pancer et al., 2004), trypanosomes (Borst, 2002),
and perhaps even in diatom algae (Hoguin et al., 2021)
(Figure 1). Additionally, there is no evidence that they are
regulated by a single factor and no clear molecular signature
that could suggest the existence of a common mechanism
regulating RMAE has emerged. Although the first examples
of genes under RMAE were of cell surface receptors, which
remain an over-represented class, this group is diverse in
terms of function.

TIMING

XCI is initiated during early embryogenesis in mammals. In
mice, random XCI starts around the time of implantation
(E5.5) and is complete by E6.5 in all cells in embryonic
tissues (Mak et al., 2004). In humans, the timing of XCI
has been complicated to address owing to obvious difficulties
to access relevant material. Nevertheless, studies showed that
random XCI is initiated around the implantation stage and,
compared to mice, appears to be a much more gradual process
during the first four weeks of embryonic development (Tang
et al., 2015; Zhou et al., 2019). This process is absolutely
essential, as failure to induce XCI results in early embryonic
lethality at around day 10 of development for mouse embryos
(Takagi and Abe, 1990).

Whereas XCI is established early in development, RMAE
can occur early or late, depending on when the gene is
first expressed. For instance, in the case of OR genes,
the critical events leading to RMAE, namely the stochastic
expression of a single OR allele from a pool of OR genes
silenced with heterochromatic marks, occurs in the maturing
olfactory sensory neurons of the mouse olfactory epithelium
(Magklara et al., 2011). However, for most genes under
RMAE, it is unknown if the choice of which allele to express
is pre-determined in progenitor cells long before the gene
becomes expressed. In 2001, that possibility was suggested
for the antigen receptor genes based on the finding that
these genes replicate asynchronously (Mostoslavsky et al.,
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FIGURE 1 | Schematic representation illustrating the features of different types of random monoallelic expression: X-chromosome inactivation (XCI) and random
monoallelic autosomal expression (RMAE). Xp, X chromosome of paternal origin, Xm, X chromosome of maternal origin; p, paternal autosome, m, maternal
autosome.

2001). Asynchronous replication is a feature of monoallelically
expressed genes because, typically, transcribed genes (or alleles)
undergo replication before silenced genes (or alleles). The
authors drew parallels between XCI and the pattern of
asynchronous replication in autosomal genes in their study. In
both processes, the epigenetic marks are erased in the morula,
re-established around the time of implantation randomly and
then clonally maintained. However, in subsequent publications
from the same group and others, these parallels fell apart
(Farago et al., 2012; Alves-Pereira et al., 2014). Notably, in
mice reconstituted with a single hematopoietic stem cell,
it was shown that the immunoglobulin heavy chain alleles
rearrange independently, i.e., without any evidence for an
epigenetic mark (Alves-Pereira et al., 2014). Whether such
mark is eventually established later in development and before
V(D)J rearrangement is an open question. In the kappa
light chain, this pre-determination has been proposed (Farago
et al., 2012), but for the heavy chain no evidence was
found (Alves-Pereira et al., 2014). In any case, the advantage

of such clonal pre-determination long before the genes are
expressed is not obvious.

ROLE

The main purpose of XCI is to enable dosage compensation of
X-linked genes products to correct for the imbalance between
XX females and XY males in mammals (Graves, 2016). The
lethality resulting from failure of XCI is a consequence of the
absence of dosage compensation. However, it remains unclear
whether dosage compensation is critical for all X-linked genes
or only a fraction of them. It is also not known whether
compensation of dosage-sensitive genes is necessary in all
tissues and all developmental stages. Transcriptome analysis of
pre-implantation embryos and differentiating embryonic stem
cells indicate that absence of XCI leads to failure to exit
the pluripotent state, aberrant expression of extra-embryonic
factors, and inappropriate expression of developmental genes,
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which leads to compromised development and differentiation,
hence early lethality (Schulz et al., 2014; Chen et al., 2016;
Borensztein et al., 2017).

Besides dosage compensation, XCI is also able to generate a
significant level of biological diversity both within and between
female individuals (Figure 1). This was exemplified by a study
that built topographic maps of XCI mosaicism at single cell
resolution, using female mice carrying X-linked fluorescent
reporters on each X chromosome (Wu et al., 2014). The authors
observed that some organs or tissues are particularly prone
to deviations from the expected 50:50 inactivation ratio. In
particular, the brain stands out as one organ where the diversity
conferred by XCI could have an important functional impact for
the stimulus-response amplitude of neuronal networks, especially
when considering heterozygosity for an X-linked gene expressed
in the brain (Wu et al., 2014). Given the level of genetic variation
on the human genome including the X chromosome, XCI
could generate a remarkable level of intra- and inter-individual
differences in the human central nervous system.

RMAE is thought to have evolved exclusively to increase
the biological (or phenotypic) diversity at the cellular level.
Assuming polymorphisms within a gene, heterozygous cells with
a biallelic pattern of expression will be phenotypically identical,
whereas partial RMAE will produce three types of cells within the
organism: single paternal allele-expressing cells, single maternal-
expressing cells, and biallelic expressing cells (Figure 1). The
most exuberant cases of phenotypic diversity are found in
the OR and antigen receptor genes. In the former, RMAE is
coupled with the selection of a single gene from the largest
gene family for expression at the single-cell level, leading to
the generation of hundreds or thousands of different sensory
olfactory neurons, depending on the species (Niimura et al.,
2014). In the latter, thousands of allelic forms are generated
during the organism’s life by V(D)J recombination that will be
monoallelically expressed to ensure the single cell-single receptor
rule, thus facilitating the processes of negative and positive
selection that shape the immune repertoires. The potential
phenotypic diversity for the average gene served by only two
alleles is much lower than that of OR and antigen receptor genes,
but for phenotypes determined by multiple genes under RMAE
there is a considerable combinatory potential (3n phenotypes,
where n is the number of relevant polymorphic genes under
RMAE). However, outside of OR and antigen receptor genes,
the importance of RMAE-driven phenotypic diversity remains
to be demonstrated, and it is a complicated problem to tackle
experimentally. As explained below, particular cis-regulatory
sequences play a role in RMAE. Thus, a feasible approach
would be to replace these sequences with regular promoters,
but even in this case the interpretation of the data would not
be clear-cut because the expression of multiple receptors at the
surface of the cell would decrease the density of any particular
receptor compared to its density in a cell with RMAE. Since the
manipulation of master epigenetic regulators is unlikely to be
sufficiently specific, a proof of principle will probably be obtained
using CRISPR/Cas tools that allow epigenetic manipulations
at the allele-specific level. An alternative approach would be
to generate aggregation chimeras of cells expressing different

receptors or other relevant proteins for the quantitative response
to be tested. In the absence of such data, other hypotheses can be
raised, such as a role for RMAE in dosage compensation (Gendrel
et al., 2016). However, the finding that genes under RMAE
have increased genetic diversity (polymorphisms) in humans
compared to biallelically expressed genes remains a powerful
indication that RMAE evolved to increase phenotypic diversity
at the cellular level (Savova et al., 2016).

MOLECULAR MECHANISMS

Stochasticity
One has to recognize that stochasticity is the key feature common
to XCI and RMAE: how come identical or quasi-identical
sequences (the X chromosomes or autosomal alleles) sharing
the same nuclear environment undergo completely opposite
fates (expression or silencing)? This stochastic component is
at the core of the appeal these phenomena have to biologists,
but there is a critical difference between XCI and RMAE
worth mentioning. It has been proposed that each individual X
chromosome has an independent probability to be inactivated
that is directly proportional to the X: ploidy ratio. Selection in
favor of cells keeping one active X chromosome per diploid
genome eliminates cells with two inactive X or two active
X chromosomes (Monkhorst et al., 2008; Sousa et al., 2018).
Thus, XCI involves the inactivation of one X chromosome and
counterselection at the cellular level. In contrast, the stochastic
component in OR genes, antigen receptor genes, and possibly
other autosomal genes under RMAE involves the activation of
alleles in a default state of silencing, and cell counterselection
is not thought to play a major role in shaping the pattern
of monoallelic expression; in fact, B lymphocytes genetically
engineered to express two different immunoglobulin heavy
chains at the surface were shown to be fit and able to generate
a normal B cell compartment (Sonoda et al., 1997).

Feedback
A key aspect of RMAE in antigen receptor genes is the
feedback mechanism that prevents the recombination of the
second allele once the protein encoded by the first allele to
rearrange productively is expressed at the surface. When the exon
encoding the transmembrane domain of the immunoglobulin
chain is disrupted, the cell is no longer able to trigger this
feedback mechanism and the second allele is given the chance to
recombine (Kitamura and Rajewsky, 1992). A similar mechanism
has been described for the beta chain of the TCR gene (Aifantis
et al., 1997) and the OR genes (Serizawa et al., 2003). The
overall picture, then, is the coupling of a stochastic process of
gene activation that is sufficiently slow for negative feedback
mechanisms to act, preventing further rearrangements (antigen
receptors) or gene activation (OR genes). Because the feedback
mechanism implies a time-window during which the two alleles
can be activated, it also explains the generation of biallelic cells;
a slow feedback mechanism will produce many biallelic cells,
whereas biallelic cells are rare when the time-window is narrow.
However, it is not clear whether such feedbacks are involved for

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2021 | Volume 9 | Article 740937

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-740937 September 20, 2021 Time: 16:10 # 7

Barreto et al. XCI and RMAE: Faux Amis

other genes under RMAE and additional mechanisms have been
described, which we discuss below.

Epigenetics
The process of XCI can be divided in two distinct stages: initiation
and maintenance. During the initiation phase, XCI is dependent
on the expression of the long non-coding RNA Xist, which
induces transcriptional silencing in cis and ultimately coats the
entire inactive X chromosome (Loda and Heard, 2019). However,
Xist is no longer essential for the maintenance of XCI, as deletion
of Xist in somatic cells in culture does not lead to Xi reactivation
(Brown and Willard, 1994). Following Xist accumulation on the
Xi, one of the first observable events is the formation of a 3D
silent nuclear compartment excluding RNA polymerase II and
transcription factors, likely to be important for Xist spreading
and the initiation of gene silencing (Chaumeil et al., 2006;
Clemson et al., 2006; Pandya-Jones et al., 2020). Xist interacts
with several RNA-binding proteins, in particular SPEN, which
acts as a bridge between Xist RNA and repressor complexes that
mediates the removal of histone modifications associated with
active genes (H3K27ac, H3K9ac, H4ac), a crucial early step for
the initiation of gene silencing (Żylicz et al., 2019; Dossin et al.,
2020). Following this, a number of chromosome-wide chromatin
changes occur on the Xi to lock in the silenced state, such as
deposition of repressive histone modifications (H2AK119Ub and
H3K27me3) mediated by the Polycomb repressive complexes 1
and 2 [reviewed in Boeren and Gribnau (2021)]. The late or
maintenance phase is characterized by a switch to late replication
timing, incorporation of the histone variant macroH2A and DNA
methylation of X-linked gene promoter regions by the DNA
methyltransferase Dnmt3b [reviewed in Strehle and Guttman
(2020)]. These changes ensure the stable and heritable silencing
of the majority of genes on the Xi, over hundreds of cell divisions.

By definition, epigenetic modifications, namely histone
modifications and DNA methylation, and non-coding RNAs,
have been shown to be associated with genes under RMAE
(Gendrel et al., 2016). However, unlike XCI, there is no master
regulator, and several scenarios have been reported, such the
initial repression of both alleles followed by activation (e.g., OR
genes and murine Ly49 genes) or the initial activation of both
alleles followed by the inactivation of one allele (e.g., human
KIR genes).

Long Interspersed Nuclear Element-1
One puzzling question in XCI has been the nature of the X-linked
cis-acting elements important for the binding and spreading of
Xist along the X chromosome, prior to gene silencing. Because
of the higher density of long interspersed nuclear element-1
(LINE-1) retrotransposons in the X chromosome compared to
autosomes (Boyle et al., 1990; Ross et al., 2005), with her so-called
“repeat hypothesis,” Mary Lyon postulated that these sequences
could act as booster elements for the spreading of the inactive
signal along the chromosome and efficient silencing (Lyon,
1998). However, we now know that Xist does not bind directly
LINE-1 sequences nor associate with LINE-1-enriched regions.
Xist rather exploits the 3D conformation of the X chromosome
to spread first to sites that are spatially proximal to the Xist

gene at the onset of XCI and is then found enriched over gene-
dense regions that are depleted of LINE-1 sequences (Engreitz
et al., 2013; Simon et al., 2013). Yet, studies of Xist spreading
on autosomal chromatin in X:autosome translocations (Sharp
et al., 2002; Popova et al., 2006) or using Xist transgenes on
autosomes (Chow et al., 2010; Tang et al., 2010; Loda et al.,
2017) all show a good correlation between LINE-1 density,
efficiency of spreading, and gene silencing. These observations
suggest that LINE-1 elements may contribute to the process of
XCI, either by facilitating gene silencing locally in some regions,
reinforcing the long-term maintenance of XCI and/or influencing
heterochromatin reorganization. This, however, remains to be
formally tested using, for example, functional approaches to
perturb LINE-1 expression or enrichment on the X chromosome.

Whether genes under RMAE have a DNA sequence signature
remains unclear. It has been proposed that these genes are
surrounded by an increased density of LINE-1 elements, which
are evolutionarily more recent and less truncated than the
LINE-1 elements around biallelically expressed genes (Allen et al.,
2003). How exactly LINE-1 elements could contribute to RMAE
is not known, but their association to RMAE would be one
of the few potential parallels with XCI. However, the overlap
between predicted RMAE genes based on the presence of LINE-1
elements and the collection of genes under RMAE generated by a
genome-wide approach is not statistically significant (Allen et al.,
2003; Gimelbrant et al., 2007).

It has been known for decades that the X chromosome
and autosomal genes under RMAE replicate asynchronously
(Taylor, 1960; Chess et al., 1994) and that this mitotically
stable pattern is established early in development. Asynchronous
replication was even found to be a property of autosomal
chromosomes (Singh et al., 2003), reinforcing the parallel with
the X chromosome. Whether the asynchronous replication of
autosomes is absolutely stable is not clear, and it has been
found that RMAE is not coordinated at the chromosome level,
i.e., the alleles from different genes under RMAE on the same
chromosome can be active or silent (Gimelbrant et al., 2007).
However, an autosomal gene named asynchronous replication
and autosomal RNA on chromosome 6 (ASAR6) was shown to
encode a non-coding RNA under RMAE, which when expressed
leads to the silencing of nearby alleles and remains associated
with the chromosome from which it is expressed. Moreover,
the disruption of this locus results in delayed replication
timing and reactivation of previously silent alleles of nearby
genes (Stoffregen et al., 2011; Donley et al., 2013). There is
an obvious parallel with XIST, which is also monoallelically
expressed, silences most of the genes on the X chromosome
in cis and, when deleted, also alters replication timing (Diaz-
Perez et al., 2005). Interestingly, a LINE-1 retrotransposon
located within ASAR6, in antisense orientation, was then
found to control the replication timing (Platt et al., 2018).
This constitutes one of the most solid evidence that LINE-1
elements could be involved in the spreading of inactivation also
on autosomal chromosomes. Another locus, ASAR15, displays
features similar with ASAR6 (Donley et al., 2015). However, it is
not known how frequent this type of regional silencing occurs
on autosomes, and, unlike XIST, the ASAR6 RNA does not
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seem to coat the entire chromosome 6 and is not expressed in
adult tissues (Stoffregen et al., 2011). A thorough and granular
reappreciation of the impact of LINE-1 elements in RMAE
would be welcomed.

Bivalent Promoters
Several histone modifications influence gene expression,
including H3K4me3 and H3K27me3, which are associated with
gene activation and repression, respectively. Although active
and repressive histone marks are typically imagined as being
mutually exclusive, in 2006 two groups reported the existence of
regulatory regions – named bivalent domains – that have both
(Azuara et al., 2006; Bernstein et al., 2006). Genes with bivalent
promoters in embryonic stem cells are expressed at low levels
but thought to be poised for rapid activation upon differentiation
cues. Interestingly, about 80% of the genes under RMAE in
differentiated cells, identified by transcriptomics or the presence
of activation and repression histone marks on different alleles,
were found to have bivalent promoters in precursor cells (Nag
et al., 2013) (Figure 2). Thus, the rapid and timely activation
ensured by bivalent promoters seems to increase the probability
of RMAE, as if the alleles resolve their status stochastically,
leading to cells that activate only the paternal or maternal allele
and cells that activate both (Nag et al., 2013).

Bidirectional Promoters and Other
Switches
Two cases of RMAE dissected in considerable detail are the
murine Ly49 receptor genes of natural killer cells and the
human KIR genes [reviewed in Anderson (2014)]. Both rely on
cis probabilistic bidirectional promoter switches that produce
sense and antisense transcripts associated with expression and
silencing, respectively (Figure 2). In the case of the murine Ly49
receptor genes, the default condition is silencing. Transcription
starts if the sense non-coding transcripts of a distal bidirectional
promoter (Pro1) activate a downstream promoter (Pro2); the
antisense transcripts of the bidirectional promoter do not lead
to gene activation (Saleh et al., 2002, 2004). In the case of
the KIR genes, the default condition is activation and the
role of the stochastic switch, located close to the ATG start
codon, is to produce a sense transcript that correlates with the
maintenance of the activation state or an antisense piRNA that
silences the allele. The murine Ly49 and the human KIR genes
illustrate how a probabilistic bidirectional promoter can create a
mitotically stable asymmetry between two alleles. Whether these
are two exceptional cases or examples of a frequent solution to
generate RMAE has not been addressed. Notably, divergently
transcribed gene pairs represent more than 10% of the human
genes (Trinklein et al., 2004; Yang et al., 2007), and thorough

FIGURE 2 | A schematic representation of mechanisms responsible for X-chromosome inactivation (XCI) and mechanisms possibly responsible for random
monoallelic autosomal expression (RMAE). The gray arrow represents a potential parallel between XCI and RMAE associated with LINE-1 (L1) elements.
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analyses of tissue-specific sense and antisense transcripts from
the same locus [e.g., (Hu et al., 2014)] could reveal additional
candidate genes to be under RMAE due to bidirectional promoter
or other complex arrangements of regulatory sequences leading
to genetic switches.

STABILITY

Once established, XCI is believed to be extremely stable
and irreversible. Genes that are subject to XCI rarely show
reactivation and biallelic expression, as silencing is maintained
through multiple layers of epigenetic control. However, there are
some exceptions and some genes can be expressed from both the
Xa and the Xi. This is the case for genes that have a Y-linked
homolog, including genes from the pseudoautosomal regions
(PAR1 and PAR2, short regions of homology between the X and
Y chromosomes, which undergo recombination during meiosis),
for which there is no requirement for dosage compensation.
Several genes not located in the PAR regions have also retained a
functional Y paralog and would thus appear not to require dosage
compensation. However, other genes do not have a Y-linked
copy yet still have the ability to escape XCI (Berletch et al.,
2010). In some cases, this may be due to a highly controlled
process permitting escape where the gene product is required in
increased dose, while in other cases, it may be due to leaky or
inefficient XCI.

Escape from X inactivation is rather limited in the mouse, with
around 3% of genes displaying such behavior in somatic cells
(Yang et al., 2010; Pinter et al., 2012). In humans, the situation is
different, as 15% of genes (excluding the PAR) have been reported
to escape XCI (Carrel and Willard, 2005). Intriguingly, an
additional 10% of X-linked genes appear to show heterogeneous
inactivation and escape, varying between lineages and from one
individual to another (Carrel and Willard, 2005). Such candidates
seem to display accessible promoter regions on the Xi (Kucera
et al., 2011), suggesting that they may be poised for expression
in some cell lineages and that the Xi allele becomes active under
specific circumstances. In the mouse, lineage-specific escape has
also been found, for example in the case of the Atrx gene, which
is fully inactivated in embryonic tissues but escapes inactivation
in specific subsets of extraembryonic cells (Garrick et al., 2006).
The Atrx protein is actually enriched on the Xi in extraembryonic
tissues (Baumann and De La Fuente, 2009; Sarma et al., 2014),
suggesting that its escape from XCI might occur in a regulated
manner in tissues where a higher dose of the protein is necessary
(Corbel et al., 2013).

Interestingly, some of the phenotypes observed in Turner
(X0) syndrome patients are believed to be due, in part, to
the reduced expression levels of escapees given the lack of the
second X chromosome (Berletch et al., 2010). This indicates
that expression of a double dose is essential for some X-linked
genes and that escape for these genes is a highly controlled
process. Escape or reactivation of genes from the Xi can
also occur more sporadically, but it is currently unknown
whether this is caused by inefficient XCI or associated with a
controlled mechanism.

Sporadic reactivation of genes from the Xi has been observed
in non-pathological contexts, in specific tissues (Gendrel et al.,
2014) or lineages (Wang et al., 2016), during aging (Migeon et al.,
1988; Sharp et al., 2000) and also in disease contexts (Youness
et al., 2021). In normal contexts, both the brain and the lymphoid
lineage appear to stand as exceptions. In the brain, the Mecp2
gene, which is associated with Rett syndrome, was shown to
display biallelic expression in a significant proportion of neural
stem cells in the subventricular zone in the neonatal brain of
inbred female mice (Gendrel et al., 2014). This could be indicative
of a certain relaxation of epigenetic control of the Xi in these
cells at least for this gene or a need for an increased dose of
the protein, given that MeCP2 is a highly abundant protein
in the brain (Skene et al., 2010). Moreover, Xist conditional
deletion in adult mice leads to a global erasure of repressive
histone modifications from the Xi, and more importantly, a
mild loss of dosage compensation in 2-5% of neurons (Adrianse
et al., 2018), highlighting again the peculiarity of the brain and
neuronal lineages. Other studies have also reported partial Xi
reactivation following Xist conditional deletion in adult tissues
(Yildirim et al., 2013; Yang et al., 2016, 2020).

In the female lymphoid lineage, the maintenance of XCI
is atypical and it has been hypothesized that this could
predispose females to autoimmunity (Wang et al., 2016; Syrett
et al., 2019). It was shown that both human and mouse
naive B and T lymphocytes miss the typical XIST/Xist RNA
domain within the nuclei. Instead, Xist shows an unusual and
dispersed pattern, associated with a structure lacking some of
the canonical hallmarks of heterochromatin of the Xi, such
as H3K27me3, H2AK119ub1 and macroH2A. However, this
state appears transient as both Xist and repressive histone
marks are relocalized to the Xi upon B/T cell activation
(Savarese et al., 2006; Wang et al., 2016; Syrett et al., 2019).
This state was shown to be correlated with modest biallelic
expression and increased expression of X-linked immunity-
related genes (Wang et al., 2016; Souyris et al., 2018). The role of
reactivation/increased expression of these genes and whether this
is a cause of the atypical maintenance of XCI during lymphocyte
differentiation remain unclear. However, enhanced expression of
these genes could contribute to higher susceptibility of females to
autoimmune disorders, such as systemic lupus erythematosus if
not properly regulated (Youness et al., 2021).

Concerning RMAE, by definition all the examples of
monoallelic expression discovered in clonal cell lines are
mitotically stable. However, most reports have focused on
cells that are also phenotypically stable, i.e., cells that during
the period of the study do not go through major steps of
differentiation. Thus, it remains to be addressed if RMAE
is as stable as XCI, which is known to keep the status of
the X chromosomes established early in development even
after hundreds of cell divisions and extensive differentiation.
Unfortunately, the antigen receptor and OR genes, which have
been thoroughly investigated over decades, do not shed much
light on this issue. The monoallelic expression pattern of
antigen receptor genes is in part established by the process
of V(D)J recombination and in developing lymphocytes, when
recombination is active, the second allele is given the chance to
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FIGURE 3 | Intersections of autosomal gene collections identified as random monoallelically expressed in the genome-wide studies described in Table 2 (except
Jeffries et al., 2012, which is not publicly available). (A) Half-matrix showing all pairwise intersections. (B) Upset plot (Conway et al., 2017) showing gene collection
intersections of the same studies. The lower part of the panel has a horizontal bar plot showing the number of elements on each study collection, and a right section
with a dot matrix. Each dot represents unique gene intersections, i.e., each gene is represented only once in the dot matrix. The upper vertical bar plot is related to
the dot matrix, showing the number of unique genes in each intersection (for instance, there are 500 MAE genes in the Gimelbrant et al. (2007) dataset, but only 388
of those are uniquely present in that dataset; similarly, the Li et al. (2012) dataset shares more than 40 MAE genes with Eckerley-Maslin (2014) NPC dataset, but
those 40 are uniquely shared between those two sets). Intersections of size smaller than 4 are not represented. For a complete description of the intersections and
gene listing, see the Supplementary File provided with this review. ASL, Astrocyte-like cells; NSC, Neural stem cells; NPC, Neural progenitor cells; ESC, Embryonic
stem cells; SPC01, Clonal Neural stem cells (before epigenetic reprogramming); iPSC, induced Pluripotent stem cells after epigenetic reprogramming of SPC01.
Note that “NPC” on Jeffries et al. (2016) are derived from iPSC. Colors represent instances where a different cell/tissue type was studied more than once. To obtain
intersections, gene ids were manually curated for immediate inconsistencies (e.g., gene name-to-date conversions when data was originally provided in microsoft
excel format). All gene sets were then parsed with the gprofiler2 R package (Raudvere et al., 2019) for gene id consistency, using transcript ids as query whenever
possible, and ENSEMBL gene ids as target (performed July 12th, 2021). Orthology conversion (from human to mouse) was performed with the same package for
datasets involving human data. For Gimelbrant et al. (2007) and Zwemer et al. (2012) gene collections, MAE classes I, II and III were used to retrieve RMAE genes,
and for Gendrel et al. (2014), the “NPC_random_catalog” classification was retrieved as RMAE.

recombine if the rearrangement of the first allele did not lead
to the production of a receptor. In other words, the stability
is not achieved before the expression of the receptor on the
surface. Furthermore, the kappa immunoglobulin undergoes a
process of receptor editing during which it can replace at its
surface one protein by the protein encoded by the other allele
(Casellas et al., 2001, 2007). It is only in mature lymphocytes
that the pattern of monoallelic expression is stable, because the
process of V(D)J recombination is permanently shut down and
the silenced allele is epigenetically repressed and repositioned
in the nucleus. With respect to OR genes, the patterns of
monoallelic expression are stable, but it should be kept in
mind that the cells are post-mitotic and terminally differentiated
(Monahan and Lomvardas, 2015).

EXCEPTIONS

In mammalian females, under normal physiological conditions
cases of two active X chromosomes are only found in
undifferentiated cells and primordial germ cells before meiosis
entry. All other cells have only one active X chromosome, because
the double X dosage interferes with differentiation (Schulz et al.,
2014). In contrast, biallelic expression of genes under RMAE

is common and ranges from rare cells, such as in the case of
the immunoglobulin heavy chain (Barreto and Cumano, 2000),
to biallelic populations as frequent as the monoallelic ones
(Gimelbrant et al., 2007). In the case of genes under RMAE
with a low frequency of biallelic expression, these exceptions
could correspond to the rare cases in which the two alleles
become activated within the time-window allowed, before a
negative feedback is triggered. Cases with a sizable population of
biallelic expression could result from a relatively high individual
probability of allele activation if the fitness of the cell is not
compromised by the dual expression.

CONCLUDING REMARKS

X-chromosome inactivation (XCI) is a well-established specific
silencing mechanism that ensures dosage compensation between
the sexes in marsupial and placental mammals. At the heart of
this process lies the long non-coding RNA Xist, which is capable
of orchestrating structural changes and recruiting chromatin and
repressor complexes to ensure transcriptional gene silencing at
the level of an entire chromosome, early in development. XCI has
clear implications in disease, as illustrated by the Turner (X0) and
Klinefelter (XXY) syndromes, as well as the severe phenotypes or
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lethality in males and variable phenotypes in females associated
with X-linked disorders (e.g., Duchenne muscular dystrophy,
hemophilia, and Rett syndrome). In contrast, RMAE evolved
independently in a wide range of organisms beyond mammals,
mostly to increase phenotypic diversity at the cellular level.
RMAE lacks a master regulator and various mechanisms can
establish it at different times during cellular differentiation. The
collection of target genes encompass many cell types, showing
some degree of overlap (Figure 3 and Supplementary File), but
have been reported to be largely tissue-specific (Gendrel et al.,
2016). Finally, the extent of the bias in monoallelic expression
varies widely amongst RMAE genes. In addition, there is so
far no obvious link between the RMAE of autosomal genes
and disease, although a number of RMAE genes are associated
with autosomal dominant diseases. X-chromosome inactivation
and RMAE are essentially different phenomena that share the
stochastic component and perhaps the asymmetric silencing
of chromosomal regions dependent on the presence of LINE-
1 elements. But it is not known whether and how exactly
LINE-1 elements boost XCI and if a similar process explains a
considerable fraction of genes under RMAE.
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