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ADP-ribosylation is a widespread posttranslational modification that is of particular
therapeutic relevance due to its involvement in DNA repair. In response to DNA damage,
PARP1 and 2 are the main enzymes that catalyze ADP-ribosylation at damage sites.
Recently, serine was identified as the primary amino acid acceptor of the ADP-ribosyl
moiety following DNA damage and appears to act as seed for chain elongation in
this context. Serine-ADP-ribosylation strictly depends on HPF1, an auxiliary factor of
PARP1/2, which facilitates this modification by completing the PARP1/2 active site. The
signal is terminated by initial poly(ADP-ribose) chain degradation, primarily carried out
by PARG, while another enzyme, (ADP-ribosyl)hydrolase 3 (ARH3), specifically cleaves
the terminal seryl-ADP-ribosyl bond, thus completing the chain degradation initiated by
PARG. This review summarizes recent findings in the field of serine-ADP-ribosylation, its
mechanisms, possible functions and potential for therapeutic targeting through HPF1
and ARH3 inhibition.

Keywords: DNA damage, PARP, ADP-ribosylation, cancer, PARG, neurodegeneration, posttranslational
modification (PTM), ARH3

INTRODUCTION

ADP-ribosylation refers to the transfer of ADP-ribose (ADPr) moiety from NAD+ onto substrate
proteins or nucleic acids by enzymes termed (ADP-ribosyl)transferases (ARTs; Figure 1; Liu
and Yu, 2015; Wei and Yu, 2016; Munnur and Ahel, 2017; Zarkovic et al., 2018; Munnur
et al., 2019; Groslambert et al., 2021). ADP-ribosylation can occur as mono- or poly(ADP-
ribosyl)ation (MARylation or PARylation, respectively) and is a highly conserved and widespread
posttranslational modification (PTM) that controls many cellular processes, including cell
proliferation and differentiation, the cellular stress response, maintenance of genome stability,
behavior, viral infection, and microbial metabolism (Perina et al., 2014; Wei and Yu, 2016; Cohen
and Chang, 2018; Palazzo et al., 2019; Crawford et al., 2021; Mikolčević et al., 2021). Proteins
participating in ADPr signaling are often described in terms of “writers,” i.e., ARTs, “readers”
that contain ADPr-binding domains, and ”erasers” which modify or remove the ADP-ribosylation
signal (Gupte et al., 2017).

One of the ART families, the diphtheria toxin-like ARTs (ARTDs), consists of seventeen
members in humans, of which PARP1-3 are directly involved in the DNA damage response
(DDR)(Schreiber et al., 2002; Boehler et al., 2011; Liu et al., 2017; Lüscher et al., 2021). The
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FIGURE 1 | Ser-ADPr is a reversible and complex modification. The reaction involves the transfer of the ADPr moiety from β-NAD+ under inversion at the anomeric
carbon, thus resulting in a modification in the α-conformation. The initial modification of a serine residue is catalyzed by the PARP1/2:HPF1 complex (box 1), while
further chain extension is catalyzed by PARP1/2 alone. The latter occurs as linear, ribose(1′′→2′)ribose (box 2), or infrequently branched,
ribose(1′′→2′′)ribose(1′′→2′)ribose (box 3), continuations leading to a large and diverse polymer structure. Linear polymers are primarily degraded by PARG, and to
a lesser extend ARH3, while branch pruning, hydrolysis of the 1′′→2′′ bond, is carried out solely by PARG and precedes the cleavage of the 1′′→2′ bond at branch
points. In contrast, the proximal seryl-ADP-ribosyl bond can only be cleaved by ARH3. Identified target proteins in the context of the DDR include PARP1 and 2
themselves (automodification), histones (primarily H2B, H3, H4, and H1), FEN1, LIG3, and NUCKS1.

latter, also termed DNA repair PARPs, are specifically activated
by binding to DNA lesions and subsequently ADP-ribosylate a
variety of different targets within the vicinity of the damage site
(Langelier et al., 2012; Eustermann et al., 2015; Pascal, 2018).
Unlike most other PARPs, PARP1 and 2 can PARylate proteins
by elongating pre-existing MARylation sites (Figure 1). (ADP-
ribose)polymers come in varying lengths and morphologies,
linear or branched, which was shown to have physiological
effects including the alteration of gene expression, affecting
PAR reader recruitment, and signal persistence (Hatakeyama
et al., 1986; Aberle et al., 2020; Rack et al., 2021; Reber and
Mangerich, 2021). Amongst the DNA repair PARPs, PARP1 is
the earliest and most prolific DNA damage sensor with sub-
second recruitment onset in laser micro-irradiations experiments
(Haince et al., 2008) and is responsible for up to 90% of
DNA damage-induced PAR in cells (D’Amours et al., 1999).
Targets of the modification include PARP1 automodification
as well as other chromatin and repair associated proteins,
such as histones (Chapman et al., 2013; Zhang et al., 2013;
Daniels et al., 2014; Pic et al., 2014; Teloni and Altmeyer, 2016;
Bonfiglio et al., 2017; Palazzo et al., 2018). The locally generated
ADP-ribosylation signal serves as a recruitment scaffold for a
variety of PAR-binding factors and supports the assembly of the
DNA repair machinery (Teloni and Altmeyer, 2016). Moreover,
ADP-ribosylation has regulatory roles in the DDR, including

facilitating chromatin reorganization and altering transcription
(Wei and Yu, 2016; Polo et al., 2019). In comparison, PARP2,
a close homolog of PARP1, is recruited to DNA lesions at a
slower rate, potentially due to the absence of the N-terminal
zinc finger motifs that facilitate PARP1 damage recognition,
but persists longer than PARP1 (Perina et al., 2014; Liu et al.,
2017; Chen et al., 2018). While both PARP1 and 2 can
establish initial modification and elongate these into polymers,
the differences in recruitment dynamics and signal production
have been suggested to indicate that PARP1 and 2 play only
partly overlapping roles in the establishment of the complex and
context-specific “PAR code” (Mortusewicz et al., 2007; Liu et al.,
2017; Chen et al., 2018). Indeed, PARP1-derived linear PAR,
in addition to DNA damage, can activate PARP2 and stimulate
the PARP2-dependent production of branched polymers, which
are subsequently recognized by histone chaperone APLF and
facilitate effective DNA repair (Chen et al., 2018). How this
induction of branching is achieved, how it mechanistically differs
from the normal, stochastic PARP1 and 2 branching background,
whether the branch frequency of PARP1 can be altered, and
whether establishment of specific branching patterns is possible
remains, as yet, elusive.

Initially, PARP1-3 have been shown to modify
glutamate/aspartate residues (Sharifi et al., 2013; Zhang
et al., 2013; Daniels et al., 2015; Gibson et al., 2016). Lysine
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residues have been also suggested, but many of the suggested
sites turned out to be mis-assignments (Crawford et al., 2017).
Recently, serine residues have been identified as the most
abundant acceptor of ADP-ribosylation, especially in the
context of DDR (Leidecker et al., 2016; Bonfiglio et al., 2017;
Larsen et al., 2018; Palazzo et al., 2018). It was shown that
PARP1 and 2 are required, but not sufficient, for serine-ADP-
ribosylation (Ser-ADPr). Histone PARylation Factor 1 (HPF1)
(Gibbs-Seymour et al., 2016) forms a non-obligate, transient
complex with either PARP1 or 2 (PARP1/2), thus enabling
modification of serine residues by extending the catalytic center.
Moreover, formation of the complex increases the efficiency of
the ADP-ribosylation reaction (Figure 1; Bonfiglio et al., 2017;
Prokhorova et al., 2021b). Importantly, Ser-ADPr is specifically
removed by a single enzyme, ARH3 (Fontana et al., 2017), in
conjunction with PARG that acts on PAR chains (Lin et al., 1997;
Slade et al., 2011).

This review focuses on Ser-ADPr as the most prominent
protein ADP-ribosylation type of the DDR and explains the
details of its synthesis and removal, influence on cellular
outcomes of DNA damage and the therapeutic potential of
targeting Ser-ADPr signaling.

HISTONE PARylation FACTOR 1 AS AN
AUXILIARY FACTOR OF PARP1/2

HPF1 was initially linked to DNA repair PARPs due to the
presence of a poly(ADPr)-binding zinc finger (PBZ) domain
in the orthologs from insects and molluscs (Ahel et al., 2008).
Later, it was shown that human HPF1 interacts specifically
with PARP1 and 2, and promotes their efficient modification of
histones (Gibbs-Seymour et al., 2016). The recruitment of HPF1
to DNA damage sites depends on direct physical interaction with
PARP1 and does not require the prior presence of an ADP-
ribosylation signal (Gibbs-Seymour et al., 2016; Suskiewicz et al.,
2020; Prokhorova et al., 2021b). Loss of HPF1 greatly increases
cellular sensitivity to treatment with DNA alkylating agents, such
as methyl methanesulfonate (MMS) and sensitizes cells to PARP
inhibition (Gibbs-Seymour et al., 2016). HPF1 was further shown
to limit PARP1 hyper-automodification in vivo and in vitro,
instead redirecting its catalytic activity toward histones and other
substrates (Gibbs-Seymour et al., 2016). HPF1 not only boosts
the ADP-ribosylation activity on histones and other targets (see
below), but also is the determining factor in shifting PARP1-
specificity from Glu/Asp residues to the generation of Ser-
ADPr (Bonfiglio et al., 2017). Proteomic and cell-based analyses
further confirmed that HPF1 is essential for the widespread Ser-
ADPr following DNA damage with targets including histones,
PARP1 and hundreds of other proteins (Bonfiglio et al., 2017;
Hendriks et al., 2021).

The interaction of HPF1 with PARP1 is strengthened by
DNA and NAD+, providing a potential mechanism how HPF1,
which is estimated to be twenty-times less abundant than
PARP1 (Hein et al., 2015; Gibbs-Seymour et al., 2016), could
be preferentially recruited to PARP1 molecules that become
activated upon detecting DNA damage (Suskiewicz et al., 2020).

PARP enzymes directly involved in DNA repair, PARP1-3, are
defined by their helical subdomain (HD), an autoinhibitory
domain that rapidly unfolds upon recognition of DNA damage,
thereby exposing the NAD+ binding site (Dawicki-McKenna
et al., 2015). Deleting the HD enhances the HPF1:PARP1/2
interaction both in vitro and in cells (Suskiewicz et al., 2020),
suggesting that this subdomain inhibits HPF1 binding and its
DNA-induced unfolding could explain the enhancement of the
interaction by DNA breaks.

Recently, the crystal and cryo-EM structures of HPF1 bound
to the PARP2 catalytic domain were solved, providing first
insights into the structural basis for the HPF1-mediated serine
switch (Bilokapic et al., 2020; Suskiewicz et al., 2020). These
data were confirmed by NMR and crystallographic analyses of
the HPF1:PARP1 interaction (Suskiewicz et al., 2020; Sun et al.,
2021). The HPF1:PARP1/2 interaction was found to critically
depend upon a conserved aspartate residue (Asp283) in the
C-terminal region of HPF1 that contacts His826 in PARP1
(His381 in PARP2) as well as the highly conserved leucine-
tryptophan C-terminal residues of PARP1/2 that lock into a
groove on HPF1 (Suskiewicz et al., 2020; Rudolph et al., 2021;
Sun et al., 2021; Suskiewicz et al., 2021).

Structural and mutational analysis of the HPF1:PARP2
complex also revealed that the HPF1-mediated amino acid
preference switch of PARP1/2 can be explained by the provision
of a catalytic glutamate residue by HPF1 (Suskiewicz et al.,
2020). PARP1 and PARP2 by themselves contain a single catalytic
glutamate residue (Glu988 and Glu545, respectively), which was
shown to be critical for PAR chain elongation (Marsischky et al.,
1995), but this is not sufficient for Ser-ADPr (Bonfiglio et al.,
2017). Interaction of HPF1 and PARP1/2 places Glu284 of HPF1
near the catalytic glutamate of PARP1/2 and the NAD+molecule,
allowing the formation of a composite active site that is capable
of catalyzing efficient Ser-ADPr (Suskiewicz et al., 2020). Glu284
of HPF1 could act as a general base in this reaction, abstracting a
proton from the acceptor serine residue in a substrate (Suskiewicz
et al., 2020) analogously to a conserved catalytic aspartate found
in protein-serine/threonine/tyrosine kinases (Endicott et al.,
2012). The deprotonation step is dispensable when the acceptor
is a glutamate or aspartate residue, possibly explaining why
ADP-ribosylation of acidic residues does not require HPF1.
The HPF1:PARP1/2 complex contains a putative peptide-binding
cleft with a strong negative charge provided by HPF1 (Suskiewicz
et al., 2020), which was suggested to explain the abundance of
Ser-ADPr within lysine-serine (KS) consensus motifs (Leidecker
et al., 2016; Bonfiglio et al., 2017).

Interestingly, HPF1 also limits auto-PARylation of PARP1/2,
leading to the formation of shorter polymers (Gibbs-Seymour
et al., 2016; Suskiewicz et al., 2020). Asp283 of HPF1 was
shown to occupy the negative-charge binding pocket, which
during the PAR chain elongation reaction recognizes the
pyrophosphate group of the acceptor ADPr unit (Suskiewicz
et al., 2020). As a result, HPF1 binding to PARPs is
mutually exclusive with PAR chain formation. This leads to
the idea of distinct PAR chain initiation and elongation steps,
catalyzed by HPF1:PARP1/2 or PARP1/2 alone, respectively.
Indeed, MARylation of histones primed by the HPF1:PARP1/2
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complex can be efficiently extended by PARP1 alone (Figure 1;
Prokhorova et al., 2021a).

REVERSAL OF
SERINE-ADP-RIBOSYLATION BY
(ADP-RIBOSYL)HYDROLASE 3

The consumption of the metabolic cofactor NAD+, associated
with the formation of extensive linear and branched
(ADPr)polymers following DNA damage, exerts a high energetic
cost, and hence has to be tightly regulated. This cost is partly
offset by the degradation of the polymer into free ADP-ribose
by macrodomain- or ARH-type hydrolases and subsequent
conversion into ATP by ADPr pyrophosphorylase, thus directly
supporting ATP-dependent repair processes (Tanuma, 1989;
Oei and Ziegler, 2000; Wright et al., 2016; Rack et al., 2020).
In addition, ADPr can feed into nucleotide salvage pathways
through the conversion into AMP by Nudix hydrolases (Dölle
et al., 2013; Rack et al., 2016). Poly(ADP-ribosyl)glycohydrolase
(PARG) is the dominant degrader of linear and branched
chains, which hydrolzes the ribose-ribose bonds within PAR
chains with high efficiency (Figure 1; Hatakeyama et al., 1986;
Alvarez-Gonzalez and Jacobson, 1987; Braun et al., 1994; Rack
et al., 2021). ARH3 can also degrade linear chains, albeit with
a one-to-two orders of magnitude lower activity than PARG
and is incapable of cleaving branched PAR (Figure 1; Oka et al.,
2006; Drown et al., 2018; Rack et al., 2021). Consequently, PARG
is the dominant force controlling PAR chain degradation in
cells (Fontana et al., 2017); however, PARG activity is lowered
on PAR chains shorter than four ADPr units (Hatakeyama
et al., 1986; Barkauskaite et al., 2013). Moreover, PARG cannot
hydrolyze the seryl-ADP-ribosyl bond (Slade et al., 2011; Fontana
et al., 2017) and ARH3 is the only known human enzyme that
can catalyze this reaction (Figure 1). This suggests that PAR
signaling is a multi-step process not only on the level of synthesis
(incl. initiation, elongation, and branching), but also on that
of reversal (incl. cleavage, branch pruning, and termination).
This complexity suggests that ADP-ribosylation signaling acts
not only as a generic repair factor recruitment scaffold, but
is utilized to fine-tune the DDR in a context specific manner.
This is further highlighted for example by the diversity of
PAR-substructure readers (Teloni and Altmeyer, 2016) or the
influence of polymer composition on its stability (Rack et al.,
2021). Furthermore, inactivation of both hydrolases is required to
induce uncontrolled PAR accumulation with severely increased
chain length and abundance (Prokhorova et al., 2021a).

Phylogenetically and mechanistically, PARG and ARH3
belong to distinct families of hydrolases, the macrodomains and
(ADP-ribosyl)hydrolases, respectively (Rack et al., 2020). ARH3
is a compact, mainly α-helical orthogonal bundle with a catalytic
binuclear Mg2+ center situated within the ligand-binding cleft
(Mueller-Dieckmann et al., 2006; Pourfarjam et al., 2018; Rack
et al., 2018; Wang et al., 2018). Substrate binding was proposed to
be gated by a conformationally flexible region, termed Glu41-flap
due to the presence of the catalytic Glu41 residue (Pourfarjam
et al., 2018). In the auto-inhibitory closed state, Glu41 interacts

with MgII, thus locking the active site and sequestering the
catalytic residue (Pourfarjam et al., 2018; Rack et al., 2018;
Wang et al., 2018). It was recently shown that substrate binding
not only displaces Glu41 from MgII leading to the opening of
the Glu41-flap, but actually positions Glu41 in close proximity
to MgI, where it contributes to activation of a water molecule for
the nucleophilic attack on the scissile bond, which initiates the
catalytic cycle (Rack et al., 2021). Moreover, substrate binding
induces changes in the coordination of MgII, which adopts
a higher-energy square-pyramidal geometry, thus contributing
to substrate activation (Rack et al., 2021). In contrast, the
PARG structure is composed of a three-layer α/β/α sandwich
with a substrate binding groove along the crest of the domain
(Slade et al., 2011; Dunstan et al., 2012; Tucker et al., 2012).
The catalytic mechanism involves the induction of a strained
substrate binding conformation as well as substrate activation by
a catalytic glutamate dyad (Patel et al., 2005; Slade et al., 2011;
Lambrecht et al., 2015).

Deficiency of PARG and ARH3 leads to sensitivity to DNA
damage (Cortes et al., 2004; Mashimo et al., 2013; Shirai et al.,
2013). PARG was found to be an essential gene, with deletion
leading to embryonic lethality in both mice and flies (Hanai et al.,
2004; Koh et al., 2004). Continued culture at 29◦C upon pupation
allowed a minority (<25%) of flies to survive into adulthood,
although these flies showed a progressive neurodegenerative
phenotype linked to PAR accumulation in neurons (Hanai et al.,
2004). In mice, knock-out of PARG110, the longest and primary
nuclear isoform, induces a hypersensitivity to exogenous DNA
damage (Cortes et al., 2004).

Loss of cellular ARH3 activity, recently described in
patients with the autosomal recessive disorder stress-induced
childhood-onset neurodegeneration with variable ataxia and
seizures (CONDSIAS), was linked with episodic infection-/stress-
associated neurological deterioration resulting in impaired
or declining cognitive development, physical impairments
including muscle weakness, seizures and gait ataxia, and in
several cases childhood lethality (Danhauser et al., 2018; Ghosh
et al., 2018). ARH3 localizes to the cytoplasm, nucleus, and
mitochondria (Oka et al., 2006; Niere et al., 2008), but it
has been suggested that its nuclear function is critical to
prevent neurodegeneration (Beijer et al., 2021). While the precise
molecular causes are not fully understood, accumulation of
both chromatin-linked and free PAR was observed (Danhauser
et al., 2018; Ghosh et al., 2018; Mashimo et al., 2019) and
both processes are linked to aberrant cellular functions. First,
cytoplasmic ARH3 protects cells from oxidative-stress induced
cell death (parthanatos) by preventing PAR-induced AIF release
from the mitochondria (Mashimo et al., 2013). ARH3 thus
counteracts PARG by degrading PARG-generated free PAR
chains induced by severe oxidative DNA damage (Mashimo
et al., 2013), providing a potential therapeutic target not only
for CONDSIAS patients, but also other forms of parthanatos-
induced cell death, for instance in ischemic brain injury
and other neurodegenerative illnesses (Mashimo et al., 2013,
2019). Second, histone ADP-ribosylation was shown to affect
other modifications, including acetylation and phosphorylation,
and to influence the local histone code (Bartlett et al., 2018;
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Palazzo et al., 2018; Hanzlikova et al., 2020). Recent cell
biological data further suggest that persistent chromatin serine
ADP-ribosylation can lead to dysregulated transcription and
abnormal telomere structure (Prokhorova et al., 2021a).

DISCUSSION

While the discovery of Ser-ADPr has greatly expanded the
research in the DNA-damage dependent ADP-ribosylation
signaling field, our understanding of the exact role of this PTM is
still in its infancy. One emerging role of Ser-ADPr is the control
of the chromatin state, which is supported by initial findings
of cross-talk between histone Ser-ADPr and other canonical
histone marks (Bartlett et al., 2018; Prokhorova et al., 2021a).
One example stems from histone H3, where neighboring Ser-
ADPr and acetylation marks were found to be mutually exclusive
(Bartlett et al., 2018; Liszczak et al., 2018). In addition, HPF1
was recently also implicated in regulation of replication. HPF1-
directed PARP1 activity was shown to be required for recruitment
of XRCC1/DNA ligase 3 complexes, which provide a back-up
mechanism for Okazaki fragment ligation, and thus promoting
repair of replication-associated DNA damage (Kumamoto et al.,
2021). HPF1 also cooperates with the methyltransferase CARM1
to stimulate PARP1 activity and thereby promotes slowing down
of replication fork progression (Genois et al., 2021).

So far, the only consequence of site-specific Ser-ADPr that is
understood is the effect of the PARP inhibitor response through
PARP1 automodification (Prokhorova et al., 2021b). Mutation
of PARP1 Ser499, Ser507 and Ser519, or loss of HPF1, leads to
greater sensitivity to PARP inhibitors by resulting in increased
PARP trapping on chromatin (Prokhorova et al., 2021b). As
such, HPF1 loss could be considered a potential biomarker
for cancer therapy.

Similarly, ARH3 also emerges as a potential cancer biomarker
and drug target, partially due to being the “opposing force”
to HPF1. Specifically, either HPF1 deficiency or ARH3
overexpression led to PARP inhibitor sensitivity (Prokhorova
et al., 2021b). In line with this, ARH3-deficient cells are

sensitive to PARG inhibitors and resistant to PARP inhibitors
(Prokhorova et al., 2021b). ARH3 deficiency is therefore a
potential novel PARP1 inhibitor resistance mechanism, similar
to what has been described for loss of PARG, which causes
PARP inhibitor resistance in cancer cells due to stabilization
of the PARylation signal (Gogola et al., 2018). Moreover,
pharmacological inhibition of ARH3 appears to negatively
impact DNA damage repair (Liu et al., 2020). With several
lines of evidence pointing at a protective role of ARH3 against
neurodegeneration there exists a further pathway to therapeutic
application of ARH3 antagonists that can be explored in the
future (Danhauser et al., 2018; Ghosh et al., 2018; Mashimo et al.,
2019). Deepening our understanding of the opposing forces
of HPF1 and ARH3 in the making and breaking of Ser-ADPr
will certainly aid our progress in many therapeutically relevant
avenues in the future.
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ribosylation systems in bacteria and viruses. Comput. Struct. Biotechnol. J. 19,
2366–2383. doi: 10.1016/j.csbj.2021.04.023

Mortusewicz, O., Amé, J.-C., Schreiber, V., and Leonhardt, H. (2007). Feedback-
regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to
DNA damage in living cells. Nucleic Acids Res. 35:7665. doi: 10.1093/NAR/
GKM933

Mueller-Dieckmann, C., Kernstock, S., Lisurek, M., Kries, J. P., von Haag, F., Weiss,
M. S., et al. (2006). The structure of human ADP-ribosylhydrolase 3 (ARH3)
provides insights into the reversibility of protein ADP-ribosylation. Proc. Natl.
Acad. Sci. U.S.A. 103, 15026–15031. doi: 10.1073/PNAS.0606762103

Munnur, D., and Ahel, I. (2017). Reversible mono-ADP-ribosylation of DNA
breaks. FEBS J. 284, 4002–4016. doi: 10.1111/FEBS.14297
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