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Pancreatic ductal adenocarcinoma (PDAC) is a hostile solid malignancy coupled with an
extremely high mortality rate. Metastatic disease is already found in most patients at the
time of diagnosis, resulting in a 5-year survival rate below 5%. Improved comprehension
of the mechanisms leading to metastasis is pivotal for the development of new targeted
therapies. A key field to be improved are modeling strategies applied in assessing
cancer progression, since traditional platforms fail in recapitulating the complexity of
PDAC. Consequently, there is a compelling demand for new preclinical models that
mirror tumor progression incorporating the pressure of the immune system, tumor
microenvironment, as well as molecular aspects of PDAC. We suggest the incorporation
of 3D organoids derived from genetically engineered mouse models or patients as
promising new tools capable to transform PDAC pre-clinical modeling and access new
frontiers in personalized medicine.

Keywords: metastasis, pancreatic cancer, organoids, metastasis models, PDAC – pancreatic ductal
adenocarcinoma, GEMMs

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) has the worst 5-year relative survival rate in comparison
to all other solid tumors and has been prognosed to become the second leading cause of cancer-
related mortality in the United States by 2030 after lung cancer (Chu et al., 2017; McGuigan
et al., 2018). More than 90% of pancreatic cancers are exocrine tumors, being the most frequent
type, PDAC. Other tumors like neuroendocrine tumors (PNET) are often indolent and treatable
(Antonello et al., 2009). The poor outcome is correlated to late diagnosis, a result of non-specific
symptoms, poor specificity of tumor markers, and non-accessible sites for routine palpation.
Further, the PDAC is associated with a high capacity of metastatic dissemination to adjacent organs
already in small tumor sizes. Common sites of dissemination are the liver, with metastases present
in 76–80% of patients, peritoneum (48%) and the lungs (45%; Yachida et al., 2012). Even though
surgical resection of the primary tumor is the only treatment with curative intention, 85–90% of
patients are not eligible due to the systemic nature of the disease and a lack of early diagnosis. Even
in the less than 20% operable cases, where the primary tumor has been completely removed (R0)
and no manifestation of metastasis at resection, 75% of the patients will die of metastatic relapse in
then 5 years after being operated (Chu et al., 2017; McGuigan et al., 2018).
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Genetics
Pancreatic ductal adenocarcinoma is a complex genetic disease,
mainly determined by oncogenic activation of Kirsten rat
sarcoma virus (KRAS) and mutations in tumor suppressor
genes such Cyclin Dependent Kinase Inhibitor 2A (CDKN2A),
Transformation Related Protein 53 (TP53), Lysine Demethylase
6A (KDM6A), Breast Cancer Gene (BRCA1/2), and SMAD
Family Member 4 (SMAD4; Yachida and Iacobuzio-Donahue,
2009). The signature mutations of PDAC were identified in
precursor lesions namely pancreatic intraepithelial neoplasia
(PanIN), mucinous cystic neoplasia (MCNs), and intraductal
papillary mucinous neoplasm (IPMNs; Hruban et al., 2001).
Activation of oncogenic Kras in pancreatic epithelial cells
triggers initiation of PDAC in mouse models and when
combined with Trp53, Cdkn2a, or Smad4 mutations PDAC
progression is accelerated, recapitulating many characteristics
of the human disease (Izeradjene et al., 2007; see section
“Genetically engineered mouse models”).

Subtypes
Using bulk tumor samples, separate studies identified at
least two subtypes of PDAC (Collisson et al., 2011; Moffitt
et al., 2015; Bailey et al., 2016; Chan-Seng-Yue et al., 2020),
differentiated by markers of epithelial differentiation state, being
the less differentiated subtype (“basal-like,” “squamous,” or
“quasi-mesenchymal”) the one correlating with worse prognosis
compared to the better differentiated subtypes (“classical” or
“progenitor”; Dreyer et al., 2021a).

In primary patient-derived cell lines and bulky tumors
of the various PDAC cohorts, a replication stress signature
linked with the squamous subtype was identified. This is
linked with functional impairments in replication of DNA
and might also be utilized as biomarkers and give alternative
therapeutics choices to standard care platinum chemotherapy
for patients with DNA replication abnormalities (Dreyer et al.,
2021b). The squamous subtype has also been defined by
a distinct metabolic phenotype due to loss of genes that
specify endodermal lineage, Hepatocyte Nuclear Factor 4 Alpha
(HNF4A), and GATA Binding Protein 6 (GATA6). This subtype
is therefore more sensitive to Glycogen synthase kinase 3
beta (GSK3β) inhibition except for a subgroup with distinct
chromatin accessibility which acquires rapid drug resistance
(Brunton et al., 2020).

Employing laser capture microdissection and RNA
sequencing on PDAC epithelia and adjacent stroma defined
two stromal subtypes differing in the immune-associated and
extracellular matrix-associated processes. This study showed that
across the same tumors, epithelial and stromal subtypes were
partially linked [Extracellular Matrix (ECM) rich stroma was
associated with Basal-like epithelium and Immune-rich stroma
was found more often in association with Classical epithelia],
showing potential dependence in the evolution of the tissue
compartments in PDAC (Maurer et al., 2019).

Another study, based on the methylation patterns of the tumor
genomes, defined two different origins of adenocarcinomas. One
type of tumor is formed directly from ductal cells lining the

ductal system of the pancreas, whereas the other develops from
glandular cells and is less aggressive (Espinet et al., 2021).

Despite the current classification consensus, Juiz et al. showed
that Basal-like and Classical cells coexist in PDAC as described by
single-cell analysis on pancreatic cancer organoids derived from
biopsies indicating that both subtypes can coexist in the same
patient (Juiz et al., 2020).

Chemotherapy
Even though clinical decision-making based on histopathological
criteria is widely established in several cancer types, subtypes
of PDAC currently do not guide treatment decisions (Collisson
et al., 2019). The only treatment with curative intent is surgery,
which can be preceded by a neoadjuvant treatment and followed
by adjuvant therapies such as gemcitabine monotherapy.
However, recurrence rates in operated patients are still high and
long-term survival is limited (Bijlsma, 2021).

The current standard of care for metastatic PDAC includes
highly toxic chemotherapeutic cocktails with limited specificities.
Gemcitabine has become a widely used drug for advanced
and metastatic PDAC since it was reported (Burris et al.,
1997), despite its low influence on patient survival. There
are two gold-standard combination regimens for metastatic
PDAC: 5-fluorouracil/leucovorin with irinotecan and oxaliplatin
(FOLFIRINOX; Conroy et al., 2011), and gemcitabine with nab-
paclitaxel since 2011 (Peixoto et al., 2017). A detailed review
of PDAC chemotherapy can be found elsewhere: (Zeng et al.,
2019; Singh and O’Reilly, 2020). According to developments
and advances in other cancer types, it is expected that
improvements in PDAC treatment are likely to come from
the combination of classical cytotoxics with novel targeted
agents against PDAC. Important matters in hand related to new
therapeutic approaches include immunotherapy, DNA damage
repair strategies, targeting the stroma, as well as cancer-cell
metabolism (Dreyer et al., 2021b).

Current targeted therapies in PDAC undergoing Clinical
Trials are divided into three approaches (Table 1). Firstly,
inhibition of dysregulated oncogenes such as KRAS, c-MYC,
Neurotrophic tyrosine receptor kinase, Neuregulin 1, and
related molecules. Since these options have not led to an
improvement of patient survival, alternative strategies are being
developed to target these oncogenes, namely modification of
mutant residues by small molecules, simultaneously inhibiting
multiple molecules or pathways, and RNA interference. Secondly,
reactivate tumor suppressors or modulate related molecules
such as TP53, CDKN2A, SMAD4, KDM6A, and BRCA1/2. In
addition to genetic event-guided treatment, immunotherapies
such as antibody-drug conjugates, chimeric antigen receptor T
cells (CAR-T), and immune checkpoint inhibitors also indicate
the potential to target tumors precisely. Nonetheless, targeted
therapies have been largely unsuccessful in PDAC. Currently,
the only targeted therapeutic agent approved for PDAC is
Erlotinib, which only slightly prolongs survival in metastatic
disease (Moore et al., 2007; Sinn et al., 2017) but showed negative
results in the adjuvant setting (Bijlsma et al., 2017). A possible
reason for the unsuccessful outcomes of targeted agents in PDAC
is incorrect patient selection. Interestingly, when tumor samples
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TABLE 1 | Potential therapeutic targets in PDAC undergoing Clinical Trials.

Gene alterations
(Targets)

Mutation rate (%
af all tumors)

Potential target Therapeutic mechanism Promising agents Combination partner Study phase Reference Clinical
Trial

KRAS 90% EGFR KRAS inhibition Nimotuzumab Gemcitabine Phase II OSAG101-PCS07,
NCT00561990

Afatinib Capecitabine Phase I NCT02451553

Erlotinib Gemcitabine Phase III CONKO-005,
DRKS00000247

Inhibits the intracellular
phosphorylation of tyrosine
kinase associated EGFR

Erlotinib Selumetinib Phase II NCT01222689

KRAS G12D/G12V Small interfering RNA siG12D LODER Gemcitabine + nab-
Paclitaxel
Folfirinox

Phase II NCT01676259

KRAS G12C Small-molecule inhibitor MRTX849 (Adagrasib) Afatinib Pembrolizumab
Cetuximab

Phase I-II NCT03785249,
NCT04330664

AMG 510 (sotorasib) anti PD-1/L1 Phase I-II NCT03600883

PI3K-PLK1 Disrupts RAF and PI3K
family binding to RAS

ON 01910.Na (Rigosertib) Gemcitabine Phase III NCT01360853

Allosteric AKT inhibitor MK-2206 Selumetinib Phase II NCT01658943

CDKN2A 60% CDK4-6 Cell cycle blockade via pRb Ribociclib Trametinib Phase I-II NCT02703571

LY2835219 (Abemaciclib) LY3023414 Gemcitabine
Capecitabine

Phase II NCT02981342

SMAD4 50% TGFβ Inhibits signaling through
TGFβ-I receptor

Galunisertib Gemcitabine Phase I-II NCT01373164

BRCA1/2 5% PARP PARP inhibition Olaparib Phase III POLO trial:
NCT02184195

MSIH/dMMR 1% PD1 PD-1/PD-L1Immune
checkpoint inhibition

Pembrolizumab BL-8040 Onivyde/5-FU/LV Phase II KEYNOTE-158,
NCT02628067
COMBAT,
NCT02826486

NRG1 0.5% ERBB3 Targets the HER2:HER3
heterodimer

MCLA128
(zenocutuzumab)

Phase I-II NCT02912949

NTRK 0.3% TRK TRK inhibition Entrectinib Larotrectinib Phase I-II trials NCT02122913
NCT02097810
NCT02568267

NTRK mutations inhibition Selitrectinib Repotrectinib Phase I/II trials NCT03215511
NCT03093116

c-MET 0.3% MET ALK/ROS inhibitor Crizotinib Phase I/II trials NCT04693468

CXCR4 0.3% CXCR4 Chemokine receptor
inhibitor

BL-8040 (Motixafortide) Pembrolizumab
Onivyde/5-FU/LV

Phase II COMBAT,
NCT02826486

All the Clinical Trials described include patients with locally advanced or metastatic disease except the CONKO-005 trial which is focused on R0-resected pancreatic cancer.
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from several of the CONKO-005 trial participants were re-
analyzed, a subgroup of patients with a combination of SMAD4
loss and low Mitogen-Activated Protein Kinase 9 (MAPK9)
expression benefited from the addition of Erlotinib (Hoyer et al.,
2021). Therefore, not only novel targeted therapies are needed
but also integration with genomic profiling along with a full
understanding of the tumor microenvironment and immunology
(Qian et al., 2020). It is expected that in the future, comprehensive
tumor analysis should become an essential part of diagnostic
routines and guide treatment choice.

Since most PDAC patients succumb due to metastatic cancer,
this accentuates the crucial need to develop novel therapies that
target, not only the primary tumor, but also the vulnerabilities of
metastatic cells (Singh and O’Reilly, 2020). The last results of the
COMBAT/KEYNOTE-202 Trial showed that Triple combination
of motixafortide, pembrolizumab and chemotherapy are safe,
well tolerated and showed signs of efficacy in a population with
poor prognosis and aggressive PDAC (Bockorny et al., 2021).
Promising new anticancer compounds are tested pre-clinically
into in vitro and in vivo models. However, 90% of those fail
when moving to clinical trials (Lai et al., 2019), showing the
need for more consistent and representative models for drug
testing, recapitulating better genetics, immunology, physiology,
and metabolism from the human disease. Recent studies have
highlighted the use of patient-derived organoids (PDOs) as
a personalized model suitable for High throughput screening
(HTS) which might help overcome some of the current model
limitations (Tiriac et al., 2019).

Stroma
Pancreatic ductal adenocarcinoma is characterized by dense
desmoplasia, which can compose up to 80% of the whole tumor
volume and low tumor cellularity, while metastases in the liver
have less stroma and more tumor cellularity than primary tumors
resulting in less overall survival (Rucki, 2014).

A complex network of inflammatory cells, fibroblasts, ECM
and vasculature maintain tissue homeostasis in the stroma of
normal epithelial tissues. In Contrast, around pancreatic cancer
tissues, neoplastic cells corrupt the stroma to form a tumor-
promoting environment which, at the same turn, promotes
cancer cell proliferation and migration, and provides a reservoir
for growth factors and cytokines.

The three dominant entities in the PDAC stroma are the
vasculature, ECM, and cancer-associated fibroblasts (CAFs).
Molecular subtypes of pancreatic CAFs have been described
(Öhlund et al., 2017), most remarkably myofibroblastic CAFs and
inflammatory CAFs, which have been speculated to participate in
active crosstalk with cancer cells and pro-tumor and antitumor
properties, respectively. Tumor progression is linked with
disruption of the basement membrane integrity and desmoplastic
reaction with enhanced production of type I collagen (Öhlund
et al., 2009; Shields et al., 2012). Moffitt et al. (2015) by
digitally separating tumor, normal and stromal gene expression,
defined “normal” and “activated” stromal subtypes, which are
independently prognostic of PDAC. Using a Hedgehog inhibitor,
the decrement of stroma was beneficial in mouse models due
to the blockade of stromal growth factors and elimination of

the barrier for therapeutic delivery (Olive et al., 2009). Despite
those observations, several strategies to target the ECM have
been pursued in the last years but have so far failed to show
an increase in patient survival (Hosein et al., 2020; Tomás-
Bort et al., 2020). Experimentally manipulating stromal matrix
content led to lower tissue stiffness, and increased tumor growth,
resulting in decreased overall survival. Similarly, a multitude
of anti-angiogenesis agents have been unsuccessful in late-
stage clinical trials of PDAC probably due to hypovascularity
(Hosein et al., 2020).

Since desmoplasia promotes hypovascularity and
immunosuppression it results in a hypoxic environment
due to limited oxygen diffusion through the tumor (Tuveson and
Neoptolemos, 2012). In-depth research has shown that hypoxia
modulates tumor biology promoting malignancy through
hypoxia inducible factors (HIFs), which should be considered
for targeted therapy (Shah et al., 2020). Hypoxia signaling also
affects stromal cells, enhancing activation of macrophages, CAFs,
stem cells, and secretion of specific ECM factors to produce
widespread stroma of PDAC (Keith et al., 2012).

Metastasis
Metastasis is characterized by a sequential process initiated by the
invasion of carcinoma cells into the basement membrane into
the neighboring stroma, followed by invasion and survival into
circulation (blood, lymph), extravasation into the parenchyma
of distant tissues, and lastly by the reestablishment of foci
of neoplastic cells at remote sites, even after a period of
dormancy (Massagué and Obenauf, 2016; Massagué et al.,
2017; Figure 1). Accordingly, a central step in the metastatic
process is the gain of migratory and invasive phenotype. This
demands pancreatic cancer cells to switch many of their epithelial
characteristics for mesenchymal traits through a cellular program
named epithelial to mesenchymal transition (EMT). The opposite
process, mesenchymal to epithelial transition (MET), happens
when colonies are re-established at the secondary organ
(Beuran et al., 2015).

The decisive promoters of PDAC metastasis are not yet
sufficiently understood, notably since the genetic composition of
most metastases closely resembles the one of the complementary
primary tumors (Campbell et al., 2010; Yachida et al., 2010;
Makohon-Moore et al., 2017). The most studied drivers of
metastasis in PDAC are: TP53 (Morton et al., 2010), SMAD4
(Ahmed et al., 2017), aberrant Wnt signaling (Yu et al., 2012),
and aberrant ECM gene expression (Harris et al., 2017). Also,
reduced expression in Liver Kinase B1 (LKB1) is correlated with
liver metastasis, vascular invasion and thus, worse overall survival
(Yang et al., 2015, 1). It has been suggested that Transforming
growth factor beta (TGF-β) promotes invasion and migration
via the initiation of EMT (Padua and Massagué, 2009; Aiello
et al., 2017). Molecular perturbations coupled with this transition
combine the loss of epithelial markers such as cytokeratins,
E-cadherin, occludin, and claudin, with the gain of mesenchymal
markers namely N-cadherin, fibronectin and vimentin (Maier
et al., 2010), loss of cell-cell contacts and polarity leading to
the gain of a mesenchymal migratory behavior (Thiery, 2002).
Further, cells that have transitioned to the mesenchymal state
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FIGURE 1 | Stages of Metastatic Progression with candidate genes responsible per each stage. (1) Normal epithelial pancreatic ductal cells acquire an aggressive
phenotype through serial mutations that transform them firstly to PanIN and lately to PDAC. (2) Transformed cells are capable of detaching and colonizing the
Peritoneum forming Ascites or Pleural Effusion. (3) PDAC cells have enhanced motility due to EMT that allows them to invade blood or lymphatic vessels. (4) CTCs in
circulation are abundant, but only few survive this pressure. (5) Several CTCs have tropism for the pre-metastatic niche (PMN) and are able to extravasate to a
secondary organ where they might remain dormant (6) for several years and eventually relapse and form overt metastasis (7).

embrace a spindle-like shape instead of a columnar one and have
elevated invasiveness, migratory capacity, enhanced resistance to
apoptosis and increased production of ECM factors (Rhim et al.,
2012). It has been described that the PDAC EMT program is
defined by an intermediate cell state “partial EMT” consisting
of the maintenance of an epithelial program only at the protein
level (Jolly, 2015). Partial EMT cells can migrate individually or
as clusters while complete EMT cells mainly migrate in isolation
(Duda et al., 2010; Grigore et al., 2016; Saitoh, 2018). The various
mechanisms of dissemination (single cancer cells or clusters)
seem to affect the metastatic capacity of cancer cells, since single
cells do not have such a high metastatic capacity as tumor clusters
(Friedl et al., 2012; Cheung and Ewald, 2016). Tumor clusters
can be heterogeneous and integrated of stromal cells, such as
CAFs, co-migrating with cancer cells to remote sites (Wang et al.,
2016). Overall, in PDAC, the EMT program has been proved
to enhance tumor-initiating potential (Rasheed et al., 2010) and
drug resistance (Zhou et al., 2017).

When epithelial cells undergo EMT and enter circulation
become circulating tumor cells (CTCs; Figure 1). CTCs isolated
from patient blood express a cell motility gene signature
consisting of upregulation of EMT and motility inducing genes
such as Vinculin, Engulfment and cell motility protein 1,
Autocrine Motility Factor Receptor, TFGß1 or p38 (Sergeant

et al., 2012). CTCs necessarily contain the precursors of
distant metastatic foci; thus, they may be characterized to
identify drivers of dissemination, correlate gene set metastatic
signatures, and develop targeted therapies to the “seeds” of
metastasis (Franses et al., 2020). Using primarily CTCs collected
from Genetically engineered mouse models (GEMMs), Growth
Arrest Specific 2 Like 1 has been identified as a potential
biomarker of CTCs in PDAC (Zhu et al., 2020). Contrary to
the previous acceptance that PanINs are not able to undergo
EMT, it has been reported that also low-grade PanINs, harboring
only activating KRAS mutations, show indication of cells
that have exfoliated and become CTCs expressing CD24 and
CD44 (Rhim et al., 2012). Inflammation enhances the amount
of circulating pancreatic preneoplastic cells, supporting the
association between inflammation and PDAC (Mazur and Siveke,
2012). Consistently, treatment with anti-inflammatory agents
reduces the amount of circulating PanIN cells and diminishes the
number of PanINs in tissue (Tuveson and Neoptolemos, 2012).

The anatomical position of the primary tumor is a crucial
determinant in the formation of peritoneal metastasis (Yachida
and Iacobuzio-Donahue, 2009; Baretti et al., 2019). In some cases,
the exfoliated cells directly attach to and invade organs and tissues
in the peritoneal cavity (Jayne, 2007; Yachida and Iacobuzio-
Donahue, 2009; Avula et al., 2020). It has been reported that
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intraperitoneal metastases can also take place via blood vessels
or lymphatic absorption through the hematogenous route (Jayne,
2007; Ge et al., 2017). Peritoneal spread of disease is found
in around a third of patients with PDAC, which may lead to
ascites accumulation in up to 20–30% cases or pleural effusion
in around 15% of patients (Golan et al., 2017). Symptomatic
retention of fluid with viable cells usually occurs late in the course
of the disease, at the clinically treatment resistant phase (Baretti
et al., 2019). A detailed analysis of molecular pathways leading to
Peritoneal metastasis is reviewed in: (Avula et al., 2020). Briefly,
E-cadherin loss, especially in a KRAS mutated background, and
HGF/c-Met [hepatocyte growth factor (HGF)/mesenchymal–
epithelial transition factor (c-MET)] pathway lead to EMT and
cell detachment from the pancreas (Furuyama et al., 2000;
Takiguchi et al., 2017; Sato et al., 2020). It is still a challenge
to effectively treat peritoneal metastasis, thus further efforts
in revealing its mechanism should be addressed in the future.
Although there is extensive literature describing ovarian and
gastric cancer cell immune evasion through the transition of
the peritoneal cavity, this issue has not been exhaustively
studied in PDAC.

Several studies prove that the hostile milieu of the liver
is particularly preconditioned early to favor the engraftment
and growth of disseminated tumor cells (DTCs), so-called pre-
metastatic niche (PMN) formation. The formation of PMNs is
directed by an intricate series of mutual interactions among the
TME and tumor cells, along with the exploitation of recruited
and resident cells in secondary target organs. Extracellular
vesicles and soluble factors are secreted by the primary tumor
or premalignant lesions, even before the initiation of PDAC
dissemination. They help to form a supportive niche in the
liver by providing vascular docking sites for CTCs enhancing
vascular permeability, remodeling the ECM and gathering
immunosuppressive inflammatory cells (Houg and Bijlsma,
2018). Hepatic metastases show unique characteristics, such
as increased proliferation (Ki67), M2 macrophage infiltration,
3p21.1 loss, downregulation of EMT, and metabolic rewiring
(Yang et al., 2021). Reichert et al. (2018) demonstrate, using
multiple mouse models, that liver metastases highly depend
on P120CTN-mediated stabilization of membranous E-cadherin,
while the lung seems permissive to colonization by cells
that are not MET-capable. Interestingly, PDAC patients with
recurrent lung metastases show significantly better overall
survival compared with patients with metastasis at other sites
(Yamashita et al., 2015).

Next-generation genome sequencing of untreated pancreatic
primary tumors and the corresponding patient metastasis
showed that cells triggering distant metastasis are genetically
indistinguishable with the different metastatic locus bearing
the same driver gene mutations (Makohon-Moore et al.,
2017). This implies that post-transcriptional or transcriptional
modifications are pivotal to support the intricated series of
biological bottlenecks that must be surpassed for PDAC to
metastasize (Fidler, 2003; Lambert et al., 2017). DTCs display
clonal diversification according to the location of the metastatic
foci. Lineage tracing studies revealed that metastases in the lung
and liver tend to be monoclonal, while those in the peritoneum

and diaphragm exhibit polyclonality due to a different via of
dissemination (Kleeff et al., 2016; Knaack et al., 2018). These
observations suggest that heterotypic interactions between tumor
subclones as well as site-specific selective pressures are both
central to influencing metastatic initiation and progression.

Since CTCs do not express β2-integrins, they form clusters
with blood cells using them as a linker to attach the capillaries
and extravasate to distant organs (Charles Jacob et al., 2021).
Extravasation may be controlled by E-selectins, N-cadherin, or
galectin-3 from endothelial cells (Yadavalli et al., 2017). Once
CTCs extravasate to the secondary organ, they remain dormant
with high resistance to current therapies (Sosa et al., 2014). TGF-
β and BMPs stromal signals have been identified as promoters
of tumor dormancy by enforcing quiescence and inhibiting self-
renewal of DTCs (Gao et al., 2012). The perivascular niche has
also been reported to induce cancer cell dormancy (Ghajar et al.,
2013). In contrast, contexts rich in fibronectin or type 1 collagen
inhibit dormancy (Massagué and Obenauf, 2016). A lack of
stromal growth factors and an abundance of growth-inhibitory
signals can favor metastatic dormancy in experimental models.
DTCs are also kept in a dormant state due to constant pressure
from the immune system. However, the acquisition of further
mutations, inflammation, microenvironmental alterations, as
well as immune and stromal signals can promote arouse of
dormant cells inducing local relapse or metastases still after
curative therapy (Aiello et al., 2017; Lenk et al., 2018; Park and
Nam, 2020). Dormany explains why most patients that were
resected with no margin experienced a relapse and died of
metastatic disease. Thus, it is a future goal to fully understand the
pathways leading to metastasis outgrowth and improve current
adjuvant combinations to not only eliminate the primary tumor
but also to eradicate the dormant foci to prevent relapse.

The formation of metastatic foci occurs with a transition
from mesenchymal to epithelial phenotype, leading to enhanced
proliferation and metastatic tumor deposit (Makohon-Moore
et al., 2017). The aim of adjuvant chemotherapy is the
prevention of metastatic relapse. Nonetheless, the current
pharmacological armory employed attacks proliferating tumor
cells instead of targeting metastasis. Avoiding metastasis in
high-risk patients would be ideal rather than treating them.
However, the few approved drugs targeting the stroma of
metastasis (bisphosphonates, Zometa, anti-RANKL antibody,
and denosumab) have not yielded an improvement in the
adjuvant setting (Smith et al., 2015; Perrone et al., 2019). Hence,
the current standard of care does not instruct any agent to prevent
metastasis (Massagué et al., 2017). There are several undergoing
clinical trials of targeted agents designed specifically with patients
suffering from locally advanced disease or metastasis (Table 1)
hoping to improve patients’ overall survival.

Conclusion
The early dissemination capacity of PDAC, even at the PanIN
stage, explains why most patients have already found significant
metastasis to the liver, lungs, peritoneum or lymph nodes at the
time of diagnosis, and subsequent median survival is less than
1 year (Kleeff et al., 2016; American Cancer Society, 2021). Even
though we hold an improved understanding of PDAC biology
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and progression, the translation for patient benefit has been
slow. On this subject, a possible contributing factor may be the
lack of solid trustworthy models of human PDAC for preclinical
testing and research.

IN VITRO PRECLINICAL MODELS

2D Cell Lines
Compared to other models, 2D cell culture is the simplest,
fastest and most economic form to study metastasis and invasion.
There are 49 PDAC cell lines described in Cancer Cell Line
Encyclopedia with specific mutations and from different tumor
sites (Table 2). Many PDAC cell lines from patients and murine
tumors accompanied by different mutations of KRAS, p53,
p16, and SMAD4 are widely used in PDAC metastasis research
(Sun et al., 2001).

Several migration and invasion assays can be performed in
cell lines to study metastasis. A fast method to assess migration
in 2D cell culture is the wound healing assay, where a scratch
is performed in the middle of confluent monolayer cells, and
the measurement of cell migration is quantified via microscopy.
Using this method several groups were able to identify genes
that promote motility namely Yes1 associated transcriptional
regulator (YAP1), H19 imprinted maternally expressed transcript
(H19) or C-X-C motif chemokine ligand 12 (CXCL12; Cecati
et al., 2021; Gao et al., 2021; Luo et al., 2021). However, this
method is not able for non-adherent cells and the scratch can
cause cell damage. Alternatively, invasion can also be studied
using inserts in which cells are seeded on top and invasive cells are
able to pass through such as the Transwell or Boyden chamber.
To reproduce ECM degradation, it is possible to add a layer
of ECM in the inserts (Kramer et al., 2013). Several studies
analyzed the invasive capacities of PDAC cell lines through
several substrates. Quite unanimously, Capan-1 and Mia Paca-2
have the higher invasion rates followed by PANC-1 and BxPC-3
with slight variations between groups due to subtle differences
in methodology (Deer et al., 2010). It is also possible to study
the morphology, directionality and velocity of migrating cells
using optical mobility assays such as the TAXIScan (Yamauchi
et al., 2017). Using this method, it has been shown that only a
few cells are able to invade the ECM but they up-regulate the
expression of invasion-promoting pathways such as PI3K-AKT
(Fujita et al., 2014).

Another benefit of 2D cultures is the capacity to co-
culture cancer cells with stromal cells, and model the signals
from the TME. For example, co-culturing cancer cells with
Pancreatic stellate cells (PSCs) showed that cancer cells had
enhanced EMT markers and migration (Kikuta et al., 2010).
Recently, the development of microfluidic assays has allowed
investigating the biophysical parameters in PDAC metastasis
modeling the chemical gradients, flow/shear stress and the
complex interactions between several cell types (Kramer
et al., 2019). Using PDAC cell lines and combining the
previously mentioned assays with CRISPR-Cas9 technique has
revolutionized the field of metastasis research. Currently, there
are available genome-wide or custom made sgRNA CRISPR

libraries that have helped identify genes promoting migration,
chemoresistance or radioresistance such as Histone Deacetylase
1, ATP binding cassette subfamily G member 2, Endoplasmic
reticulum-associated protein degradation (Du et al., 2021;
Ramaker et al., 2021).

Lack of germline DNA and missing clinical annotation are
general problems when working with established cell lines. Since
2D cell lines are separated from tissue and cultured on a flat cell
culture surface, they undergo several in vitro selection steps. They
will divide abnormally, become flat, and lose their differentiated
phenotype (Kapałczyńska et al., 2016). Thus, some cell types are
not well-represented and the tumor heterogeneity is reduced.
Recently, single-cell sequencing technologies showed that there
is a high degree of heterogeneity in commonly used PDAC cell
lines, induced by culturing identical PDAC cell lines in different
laboratories. They also question the use of immortalized, non-
transformed pancreatic lines as control lines in the experiments
(Monberg et al., 2021). Despite their limitations, cell lines have
been pivotal tools for screening in pre-clinical settings the genes
promoting migration and survival in PDAC as well as chemo- or
radioresistance.

Spheroids
Despite being time and cost-effective, 2D cell cultures do
not represent the architecture and structural complexity of
human tissues. 3D culture of normal cells and their neoplastic
counterparts was introduced in the 1970s (Emerman and Pitelka,
1977). Since the development of the hanging drop technique,
spheroids have been utilized to study morphogenesis together
with the composition and architecture of malignant tissues (Kelm
et al., 2003) using several techniques summarized in Table 3.
In semisolid matrices resembling the basement membrane, cell-
cell contacts and cell-matrix interactions allow epithelial cells
to develop polarized structures. Abounding ECM components
namely collagen, fibronectin and laminin are necessary to
support these cultures. Interestingly, studies that have compared
transcriptomes between 2D and 3D cultures have shown that cells
are highly influenced by cell-matrix interactions. Several PDAC
cell lines are able to grow in spheroids but it is unclear their ability
to reflect the properties of the human tumor since they undergo
deep transcriptomic transformations in transitioning from 2D to
3D (Monberg et al., 2021).

Pancreatic stellate cells are the main source of stromal
fibrosis, interacting closely with cancer cells to produce a
supportive environment that drives local and remote neoplastic
development. By co-culturing PDAC spheroids with ECM
components, it is possible to model PDAC-stroma interaction.
Some groups have shown that PSC co-cultured spheroids reflect
PDAC chemotherapeutic responses (Lee et al., 2018; Wong et al.,
2019; Liu et al., 2021). For instance, PSC/PDAC spheroids showed
enhanced resistance to gemcitabine in comparison to PDAC-
only spheroids, while c-MET inhibitors crizotinib, tivantinib,
and PHA-665752 were similarly effective in both models (Firuzi
et al., 2019). Recently, other groups also proved the increased
chemosensitivity from heterospecies spheroids to gemcitabine,
paclitaxel and SN38. Interestingly, this group also showed that
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TABLE 2 | Most common Human derived pancreatic cancer cell lines and metastatic activity in orthotopic transplantation model.

Cell line Mutation Sample collection
site

Metastasis in vivo
(orthotopic)

References Histology COSMIC ID

KRAS TP53 SMAD4 CDKN2A

PANC-1 G12D R273H WT Hom. Del. Pancreas Liver, lungs Loukopoulos et al., 2004;
Zhang et al., 2020

Ductal carcinoma 1366282

AsPC-1 G12D C135Afs*35 R100T L78Hfs*41 Ascites Lung, Liver, Lymph nodes Loukopoulos et al., 2004 Ductal carcinoma 910702

BxPC-3 WT Y220C Hom. Del. Hom. Del. Pancreas Lung, Liver, Lymph nodes Loukopoulos et al., 2004;
Razidlo et al., 2015

Ductal carcinoma 906693

CAPAN-1 G12V A159V S343* Hom. Del. Liver Lung Liver Lymph nodes Loukopoulos et al., 2004 Ductal carcinoma 753624

CAPAN-2 G12V/- T125 WT T18A19dup Pancreas Liver Loukopoulos et al., 2004 Ductal carcinoma 910915

CFPAC-1 G12V/- C242R Hom. Del. –; promoter
methylation

Liver Lung, Liver, Lymph nodes Loukopoulos et al., 2004 Ductal carcinoma 906821

HPAC G12D G187R D52Rfs*2 p.E120* Pancreas Lung, liver, peritoneum Kuo et al., 2021 Carcinoma 1298136

HPAF-II G12D/- P151S WT R29A34del Ascites Lung, Liver, Lymph nodes Fujisawa et al., 2009;
Massey et al., 2019

Ductal carcinoma 724869

Hs766T Q61H WT Hom. Del. WT Lymph node Lymph, Liver, peritoneum,
ascites

Fujisawa et al., 2009 Carcinoma 1298141

MIA-PaCa-2 G12C R248W WT Hom. Del. Pancreas Lung, Liver, Lymph nodes,
Peritoneum

Higuchi et al., 2017 Ductal carcinoma 724870

MZ1-PC G12V R209Kfs*6 – R80* Pleural Effusion – – Ductal carcinoma 753595

PANC-02–03 G12D/- R248Q R135* Y44* Pancreas – – Carcinoma 1298475

PANC-03–27 G12V/- c.375 + 5G > T – Hom.Del. Pancreas – – Ductal carcinoma 925346

PANC-04–03 G12D/- G245S – Y44* Pancreas – – Carcinoma 1298476

PANC-08–13 G12D – C123Mfs*2 – Pancreas – – Ductal carcinoma 925347

PANC-10–05 G12D/- I255N/- – – Pancreas – – Ductal carcinoma 925348

PA-TU-8902 G12V/- C176S – – Pancreas – – Carcinoma 1298526

PA-TU-8988T G12V R282W Hom.Del. – Liver Liver, kidney (SC) Miao et al., 2020 Carcinoma 1240201

PL18 WT E171del, R267W – – Pancreas – – Pancreatic
adenocarcinoma

1240208

PL4 G12D G266V – – Pancreas – – Carcinoma 1298533

PSN1 G12R K132Q Hom.Del. Hom.Del. Pancreas Liver Eyres et al., 2021 Ductal carcinoma 910546

SU8686 G12D G245S, p.G360V – Hom.Del. Liver Primary Liu et al., 2020 Carcinoma 1240218

SUIT-2 G12D R273H – E69* Liver Liver, Lung, Kidney,
Peritoneum

Higuchi et al., 2017 Carcinoma 1240219

SW1990 G12D P191del – Hom. Del. Spleen – – Ductal carcinoma 910907

YAPC G12V/- H179R R515Dfs*2 – Ascites – – Ductal carcinoma 909904

Hom.Del. homozygous deletion, ∗ deletion, WT Wild Type, and – unknown.
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TABLE 3 | Three-dimensional spheroid models for PDAC research and their applications in metastasis.

Technique Application References

PDAC Spheroids model Modified Hanging drop PDAC-stroma interaction analysis and HT automated drug
screening assays

Ware et al., 2016

PANC-1 co-culture with mPSCs Test chemosensitivity to gemcitabine, paclitaxel, and SN38 Liu et al., 2021

Co-culture (type I collagen) Stroma-mediated cell motility and drug resistance Lee et al., 2018

Co-culture (CS-HA coated plates) Cellular interaction, migration, and drug resistance Wong et al., 2019

Co-culturing with microtissues A testing platform for anticancer drugs in Tissue-on-chip
technology

Brancato et al., 2017

User-defined tumor compartment embedded in
3D matrix

A High-throughput testing platform for anticancer drugs
screening

Puls et al., 2018

upon co-culture mPSC induces a shift from classical to a basal-
like phenotype to PANC-1 spheroids showing the importance of
TME in patient prognostic and metastasis development (Liu et al.,
2021). CAFs are activated to myofibroblast and tumor-dependent
lymphocyte infiltration is observed on co-culture reproducing
the desmoplastic reaction of PDAC and providing a valuable
tool for anticancer drug testing (Brancato et al., 2017; Tsai et al.,
2018).

Immune cells interfere in treatment response and tumor
progression (Qiu and Su, 2013). 3D approaches admit the
inclusion of human immune cells in contrast to patient-derived
xenografts (PDXs) which are established in immunodeficient
mice. When T cells were added to monocyte and fibroblasts
co-cultured with PDAC spheroids overexpressing Doublecortin-
like kinase 1 -isoform 2, M2 monocytes were polarized via
cytokine release which then inhibits CD4+ and CD8 + T cell
activation and proliferation (Kuen et al., 2017; Chandrakesan
et al., 2020). Since knockdown of DCLK-isoform2 resulted in
enhanced CD8 + T cell activation and decreased pancreatic
cancer cell viability—this study with spheroids suggested DCLK-
isoform2 as a novel therapeutic target in PDAC (Chandrakesan
et al., 2020). Importantly, another triple co-culture platform
has been developed combining PANC-1, endothelial cells
(HUVEC) and fibroblasts (MRC-5) which also mimicked the
resistance to treatments observed in vivo to doxorubicin and
gemcitabine hence proving the key role of a complex tumor
microenvironment (Lazzari et al., 2018).

With additional therapies for stroma targeting and 3D patient
models that replicate a patient’s specific TMEs, it is an exciting
time for PDAC research. Several Clinical Trials target the tumor
microenvironment of PDAC (Tomás-Bort et al., 2020). 3D cell
cultures, and specially PSC/PDAC spheroids, are important tools
for screening of cancer and stroma targeting drugs permitting a
validation step preceding animal testing and reduce the number
of animals required (Ishiguro et al., 2018). 3D modeling of cell
culture may aid in drug discovery and biological treatment. While
current 3D spheroid invasion models more precisely replicate
tumor invasion compared to conventional 2D models, they have
limitations such as low reproducibility and the difficulty to
interact with high-throughput (HT) systems.

To overcome this limitation, Puls et al. developed a 3D tumor-
tissue invasion model for HT phenotypic drug screening. In
short, PDAC cell lines are embedded in an Oligomer in suitable
plates for HTS where it is possible to monitor invasion into the

surrounding tissue. When CAFs were added this highly enhanced
PDAC invasion, as is expected to occur in vivo. Additionally,
they showed that gemcitabine inhibited proliferation while not
fully eradicating the tumor or blocking invasion. These results
line up with those from PDAC xenograft models which show
gemcitabine substantially arrests tumor growth and proliferation
but does not induce apoptosis or reduction of remote metastases
and invasion related markers (Puls et al., 2018). Although
3D spheroids have proven useful in cancer cell research, it is
acknowledged that a passive environment does not adequately
represent the cellular development of these cancer cells. The
tumor cells grew throughout time without being suppressed by
the drugs; however, it is not clear how much of the development
was hindered or accelerated as a result of static media supply
(Holub et al., 2020).

Organoids
Inferring results from model systems to humans has been
a major barrier in the drug discovery process. In the last
decade, a surrogate in vitro 3D model for human and mice
tissues, named organoids, has been refined. Unlike spheroids,
organoids are not derived from cell lines but from primary cells.
Moreover, organoids allow studies of tissue function since tissue-
like structures are preserved (Marsee et al., 2021). Stem cells are
isolated from mouse or human adult tissues and embedded in
3D matrices where they self-organize into epithelial structures
(Tuveson and Clevers, 2019; Kim et al., 2020). They also maintain
intra-tumor heterogeneity, cell polarity and interact with the
ECM, resembling the molecular features of the original tumor.
Not long ago, organoid cultures of pancreatic epithelium have
allowed the culture of normal and neoplastic pancreatic epithelial
cells for both humans and mice (Huch et al., 2013; Hindley et al.,
2016; Boj et al., 2018).

To establish organoid cultures, it is necessary to mimic
the homoeostatic surrounding of the normal tissue stem cells.
For this purpose, cells are encapsulated in Matrigel, which
contains the crucial components of the basement membrane,
and complemented with the minimal essentials for sustainable
growth of pancreatic epithelial cells left out mesenchyme. Since
the majority of PDAC samples have high penetrance of KRAS
activation (Yachida and Iacobuzio-Donahue, 2009), it is possible
to apply selective pressure conditions withdrawing EGF or
adding EGFR inhibitors to obtain a pure neoplastic culture.
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Since organoids are genuine epithelial populations, they
bypass the stromal suppression that primary tumors retain,
allowing comparisons to normal ductal pancreatic cells
(Boj et al., 2018). They can be established in several weeks even
from small fine needle aspiration biopsies acquired from patients
with advanced PDAC, enabling therapeutic testing and tumor
response during treatment or disease progression. Employing
a large cohort of PDOs, Tiriac et al. (2018) have developed a
platform for testing single and targeted agents. They display, in
retrospective case studies, that organoid response to therapeutic
testing correlates with patient sensitivity to chemotherapy.
By correlating the transcriptome and drug sensitivity profile
of each organoid in the cohort, they defined transcriptomic
signatures of chemosensitivity with prognostic clinical outcomes
in treated cohorts of PDAC patients. Other authors found
the same concordance when testing similar platforms (Huang
et al., 2015; Romero-Calvo et al., 2019; Dreyer et al., 2021b).
In PDOs obtained over multiple years in a metastatic PDAC
patient, it was possible to show increased organoid resistance
to chemotherapy in accord with treatment refractory cases
(Tiriac et al., 2018). Organoid work has also shown that Beta-1,4-
galactosyltransferase 1 (B4GALT1) promotes PDAC progression
and chemoresistance via stabilization of CDK11p110 (Chen et al.,
2021, 110). In the biomarker field, organoids showed that higher
EV release is coupled to a high cell proliferation rate, promoted
by Wnt pathway activation (Sándor et al., 2021).

Since their implementation, organoids have been able to
demonstrate good genomic parallelization with the primary
PDAC tumors (Tiriac et al., 2018; Gendoo et al., 2019; Romero-
Calvo et al., 2019). Also, PDAC subtypes have been identified in
independent cohorts of PDOs implying that the transcriptional
programs are preserved. Seino et al. (2018) defined functional
subtypes of PDAC and demonstrated an inverse correlation
between and strict requirement for WNT-signaling and GATA6
expression (linked with classical subtype), thus implying that
GATA6 acts as a key regulator of niche-dependency. This
emphasizes the call for precision methods to select patients
when considering Wnt pathway therapeutic approaches, for
example with the porcupine clinical trials. In addition, organoids
are genetically manageable for viral infection and transfection,
allowing targeted evaluations of particular genes or genetic
screening (Michels et al., 2020).

Co-cultures of organoids with PDAC stromal cells helped
understand fibroblast heterogeneity and suggested new
approaches for treating PDAC by blocking the fibroblasts
that support the tumor and promoting tumor restraining
fibroblasts (Öhlund et al., 2017; Tsai et al., 2018; Biffi et al.,
2019). These co-culture conditions have also shown that CAFs
modify the EMT phenotype and drive gemcitabine resistance
induced by HGF derived from CAFs. Furthermore, high stromal
expression of Paired related homeobox 1 (Prrx1), a transcription
factor critical for activating CAFs, is displayed in the squamous
subtype (Feldmann et al., 2021). Using organoids and mice,
Walter et al. showed that MEK inhibition suppresses TGFβ-
induced EMT and migration in vitro and eventually results
in a greater decrease in CTCs in vivo (Walter et al., 2019).
Further studies in PDAC metastasis have been achieved by

creating organoid derived xenografts (ODX; section “Organoid
derived xenografts”).

The recent findings prove that organoids should be a focal
point of future studies of PDAC. Overall, organoids recapitulate
the human disease much closer than spheroids or cell lines.
They allow tissue function studies and co-culture. Since it is
possible to culture the normal and neoplastic compartment,
organoids are well suited for therapeutic testing and have
intermediate scalability. However, organoids are still a complex
model that requires a lot of technical training and represent a
high cost to establish and maintain (Marsee et al., 2021). Despite
showing correlation with patient transcriptomics subtypes and
chemoresistance signatures, it has been shown that there are
transcriptomic switches during ex vivo passage that may restrict
their predictive abilities (Monberg et al., 2021), thus correct
passage monitoring is required. To bring to the clinic fast
organoid testing of PDAC patients, further work is required in
accelerating organoid establishment and testing techniques of
valuable compounds.

Recently, a consortium named PRECODE (European
Commission, 2021) was established where several laboratories
collaborate working on Pancreatic Cancer Research in Organoids
in different fields helping to push forward the understanding
of this disease and get closer to the development of an effective
treatment for PDAC.

IN VIVO PRECLINICAL MODELS

In vivo models are key to study alternative and innovative
treatment approaches. Despite the great advantages of in vitro
research, namely cost-efficiency and simplicity, these models are
lacking a microenvironment, immune system and don’t represent
tumor heterogeneity. Thus, in vivo models have been widely
used to overcome these limitations for metastasis research and
allow the understanding of the complex crosstalks involved in
metastasis and defining its stages.

Genetically Engineered Mouse Models
Transgenic models, using tissue or cell-type specific promoters,
allow the ectopic and temporal expression of target genes in
the mouse genome. Different pancreatic cancer lineage specific
promoters have been employed in GEMMs like pancreatic
and duodenal homeobox 1 (Pdx1), neurog3 (Ngn3), elastase
(Ela), among others.

While several chemical and genetic approaches to generate
PDAC in mice date back to the 1980s (Longnecker, 1984),
it was the establishment of the KrasLSL.G12D mice (Johnson
et al., 2001) in 2001 that permitted tissue-specific expression of
oncogenic Kras under physiological control from the endogenous
mouse locus. This model developed Lung cancer but not PDAC.
After this, several GEMMs faithfully recapitulating the genetic,
molecular, histological, and clinical hallmarks of human PDAC
have been established (Table 4). A full review of GEMMs for
PDAC is available in: (Westphalen and Olive, 2012).

While transgenic mice are fast to develop and permit the
expression of human genes (Qiu and Su, 2013), the expression
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TABLE 4 | Genetically engineered mouse models of pancreatic cancer summary of the most common GEMMs of PDAC driven by KrasG12D.

Name Mutation Phenotype References

KC model (KrasLSL.G12D/+; PdxCre) Oncogenic Kras Pre-invasive PanIN to PDAC Hingorani et al., 2003

KrasLSL.G12D/+; Cdkn2alox/lox ; PdxCre Oncogenic Kras, homozygous or
heterozygous deletion of Cdkn2a

Rapid metastatic PDAC Aguirre, 2003

KPC model (KrasLSL.G12D/+; p53R172H/+; PdxCre) Oncogenic Kras, heterozygous deletion
of Trp53

Pre-invasive PanIN to metastatic PDAC Hingorani et al., 2005

(KrasLSL.G12D/+; Ink4a/Arflox/+; PdxCre) Oncogenic Kras, heterozygous deletion
of Ink4a/Arf

Rapid metastatic PDAC Bardeesy et al., 2006b

(KrasLSL.G12D/+; Tgfβr2flox ; PdxCre) Oncogenic Kras, homozygous deletion
of Tgfbr2

PDAC with liver metastasis Ijichi et al., 2006

KD model (KrasLSL.G12D/+;Dpc4flox/+;p48Cre/+) Oncogenic Kras, heterozygous deletion
of Smad4/Dpc4

MCNs to metastatic PC Izeradjene et al., 2007

KPCZ model (KPC; Zeb1fl/fl ) Oncogenic Kras, heterozygous deletion
of Trp53, and homozygous deletion of
Zeb1

Decreased local invasion and reduced
metastatic competence

Krebs et al., 2017

occurs under foreign promoters. To circumvent these limitations,
conditional models are used expressing the desired mutations
within the endogenous locus by interbreeding mice carrying the
mutant allele downstream of a “Lox-STOP-Lox” (LSL) cassette
with Cre driver mice (Magnuson and Osipovich, 2013). In 2003
(Hingorani et al., 2003) by crossing PdxCre or p48Cre mice to
KrasLSL.G12D mice the expression of KrasG12D was specifically
targeted to the pancreas. In the KrasLSL.G12D/+; PdxCre model
(KC model), mice are born with normal pancreas but develop
PanIN at 8 weeks and slowly increase in grade, with a subset
of those developing PDAC. The KC model proved that Kras
mutations are enough to initiate PDAC formation in mice while
targeted conditional mutations in Cdkn2A, Smad4, or p53 did
not lead to PanIN or tumor development with PdxCre expression.
However, this long latency, background tumors and sporadic
progression to metastasis hampered the utility of the KC model
for preclinical applications.

By combining oncogene activation and tumor suppressor
inactivation, it has been successful to generate metastatic PDAC
models resembling human disease. Aguirre (2003) showed that
homozygous deletion of Cdkn2a in the context of Kras mutation
in the pancreas (KrasLSL.G12D/+; Cdkn2alox/lox; and PdxCre) led
to the rapid development of metastatic PDAC. Similarly, the
loss of the Ink4a/ARF locus in Kras mutant mice promotes
NF-kB, Notch signaling and metastasis (Bardeesy et al., 2006a).
Conditional expression of p53R172H also accelerated KrasG12D

pancreatic tumorigenesis. Although KrasLSL.G12D/+; p53R172H/+;
and PdxCre mice (KPC mice) are born with histologically
normal pancreas, they rapidly develop PanIN lesions, and die
of PDAC in 5.5 months with ∼80% metastasis (Hingorani
et al., 2005). This model showed indices of widespread genomic
alterations, a characteristic that was previously missing in
most GEMMs. Since KPC mice mirror the dynamics of the
human TME, they are useful to study tumor-stroma interactions
as well as disease progression and testing immunotherapies.
Other models addressed the deletion of Smad4 in Kras mutant
pancreatic cells but the histology of those tumors was more
similar to MCNs or IPMNs (Bardeesy et al., 2006b; Izeradjene
et al., 2007). Interestingly, homozygous deletion of transforming

growth factor beta receptor 2 (Tgfbr2) combined with KrasG12D

formed PDAC with metastasis with special tropism to the
liver, suggesting that activated Ras signaling and hampered
TGF-β signaling cooperate to advance PDAC progression
(Ijichi et al., 2006).

Classical Cre-loxP GEMMs depend on a single Cre-mediated
step of recombination to activate oncogenic Kras expression
not allowing sequential multistep tumorigenesis and tumor
heterogeneity, which are important hallmarks of PDAC. With a
dual-recombinase system (Schönhuber et al., 2014), Krebs et al.
(2017) generated the KPC; Zeb1fl/fl mice (termed KPCZ) model
and discovered that the EMT-TF Zinc Finger E-Box Binding
Homeobox 1 (Zeb1) is a crucial factor for driving metastasis.

Genetically engineered mouse models have enlightened the
biology of PDAC, elucidated potential therapeutic and diagnostic
targets, and accentuated the importance of the tumor stroma
for pancreatic cancer immune evasion, maintenance, and drug
resistance. Nonetheless, it is an expensive and labor-intensive
model to generate and maintain. In addition, gene mutations
are brought into the germline of mice, while they occur
somatically and gradually in human tumors. Nonetheless, these
limitations may be overcome by the use of CRISPR-Cas9 in
mouse models. Recently, CRISPR-Cas9 technology has allowed
more precise genome editing (Doudna and Charpentier, 2014;
Platt et al., 2014). Using this method, Ideno et al. developed
the Ptf1-Cre; LSL-Cas9 mouse model, which recapitulates
human PDAC features such as PanIN or IPMN with potential
advancement to PDAC (Ideno et al., 2019). Ischenko et al.
(2021) used CRISPR-Cas9 to inactivate Kras in mice and
demonstrated that in advanced tumors, Kras tumor growth
dependence is diminished and is shown in the suppression of
antitumor immunity.

All these models prove the crucial role of KRAS in the biology
of pancreatic cancer; even though efforts to target KRAS directly
have not been successful to date. Thus, Ras effector pathways
namely Phosphatidylinositol 3-kinase (PI3K)- Protein Kinase
B (AKT) and Raf- Mitogen-activated protein kinase kinase
(MEK)- Extracellular signal-regulated kinase (ERK) have been
investigated as potential surrogates (Mann et al., 2016). Following
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this line, by crossing to KC mice and analyzing transposon
insertions in the resulting tumors, it has been described a large
number of candidate genes that may promote tumor progression
in KrasG12D initiated pancreatic tumors namely TGF-β and
p16/CDKN2A. Genes implicated in chromatin remodeling were
identified, including Ubiquitin Specific Peptidase 9 X-Linked
(Usp9X), which plays an important role in the pathogenesis of
PDAC (Pérez-Mancera et al., 2012; Mann et al., 2012). Several
groups followed Usp9X and showed its association with worse
prognosis in PDAC (Liu et al., 2017b; Pal et al., 2018).

The grade of aneuploidy in human tumors leads to a
great variety of intertumoral gene modifications, with a
completely different appearance as in mice. Overall, these
species-related differences hamper the capacity of GEMMs to
predict the true therapeutic response of PDAC patients in
clinical trials. To overcome these limitations, transplantation
models might be used.

Transplantation Models
Transplantation models consist of the engraftment of mouse
or human cells/spheroids/organoids/tissues into recipient mice.
This provides the benefit of tractability and a relatively lower
and more predictable tumor latency than transgenic models.
The transplantation can be orthotopic (in the pancreas),
or heterotopic (subcutaneous, intraperitoneal, intravenous,
intrasplenic, or intra-cardiac) according to where the cells are
implanted. Cells engrafted via orthotopic transplantation may
spread from the primary tumor to remote organ sites, hence
permitting the modeling of the entire metastatic cascade; whereas
when injected heterotopically into circulation it is possible
to reproduce the steps of dissemination, extravasation, and
colonization (Gómez-Cuadrado et al., 2017). Different sites of
vascular injection define the site of colonization. For example,
injection of cancer cells in the tail vein leads to the development
of lung metastases since the cells are rapidly trapped in the
microvasculature of the lung. Intrasplenic injection leads to
the formation of micrometastasis in the liver. On the other
hand, intracardiac injections allow systemic dissemination and
are used to model brain or bone metastasis (Khanna, 2004).
Moreover, transplantation models can be xenogeneic (xenograft)
or syngeneic (allograft).

Allograft transplantation models are established by the
transplantation of mice derived neoplastic cells and tumors into
mice. They permit the study of metastatic dissemination with
an intact immune system, and hence more closely recapitulate
the TME. Allografts from isolated cancer cells or tumor pieces
derived from GEMMs were characterized by a faster and more
consistent development of primary tumors and up to 90%
metastasis in the liver compared to GEMMs (Li et al., 2019). The
abundance of metastasis in this model is probably a result of focal
disease formation, closely mimicking the random mutations in
KRAS present in human disease (Tseng et al., 2010).

In contrast to allograft models, xenografts require
the implantation of human tumors or cancer cells into
immunocompromised mice. Pancreatic cancer cell lines or
spheroids are a frequent source for transplant. Nonetheless, as
phenotypic and molecular properties may switch in culture,

xenograft models of cancer cell lines do not always anticipate
clinical responses (Garcia et al., 2020) and thus 3D models are a
better alternative.

Cell Line Derived Xenografts and
Spheroid-Based Xenografts
One of the solutions to address the many shortcomings of 2D cell
lines is to establish cell line derived xenografts (CDX). PDAC cell
lines are implanted into mouse models to research and test the
efficacy of anti-cancer therapies in vivo and metastasis formation.
Several studies produced allograft models with C57BL/6, such as
TB 32047 (Lu et al., 2020), KPC cell line (Torres et al., 2013), or
Pan02 (Jiang et al., 2014). In contrast to allograft models, human
PDAC CDX are established by transplanting PDAC cell lines into
immunocompromised mice. Resuspended cells in Matrigel for
injection to establish an orthotopic mouse model of PDAC is a
common method. The orthotopic injection of SUIT-2 cells into
the pancreas can induce a process similar to the spread of human
PDAC (Higuchi et al., 2017). 3–14 days after inoculation, Higuchi
et al. observed intraperitoneal dissemination, extrapancreatic
invasion, and further hematogenous organ metastases of SUIT-2
cells (Table 1).

The lung and liver are the most common sites of metastatic
PDAC at diagnosis. Most CDX models are generated by
subcutaneously injecting PDAC cells into immunodeficient mice.
However, subcutaneous xenograft tumors rarely metastasize and
thus orthotopic models are a better alternative (Table 1). PANC-
1 and KP3, AsPC-1 and KP2 develop liver metastases while only
AsPC-1 showed signs of lung metastases (Zhang and Du, 2019).
Interestingly, multinucleated cells and spindle cells have been
observed in liver and lung metastases playing an important part
in metastasis formation. There is also a lung metastasis model
by injecting PDAC cells via the tail vein (Kong et al., 2020).
Metastatic tumors can be observed in the lungs and other organs
after about a month.

Pancreatic ductal adenocarcinoma orthotopic metastasis
mouse models are successfully established by injection 2D cells
into pancreas. There have also been some studies that xenografted
3D spheroids from PDAC cells (Durymanov et al., 2019; Azmi
et al., 2020). 3D spherical culture, as opposed to classic monolayer
cell culture, more nearly replicate in vivo conditions inside
a microenvironment, which can improve the defects of 2D
culture (Liu et al., 2021). Furthermore, in contrast to their
cell-based counterparts, spheroid-based xenografts (SDX) show
increased expression of pro-fibrotic and pro-survival PDAC
hallmarkers (Durymanov et al., 2019). Orthotopic implantation
can progress pancreatic tumor to liver and lung metastasis
tumor, which is similar to humans. But some PDAC cell lines
are difficult to metastasize. Tail vein and splenic injection can
easily perform metastasis, but it doesn’t produce a primary
tumor. Secondly, immunodeficient mice successfully avoided
rejection during xenotransplantation, but it also limits the study
of metastasis progress since adaptation to the immune system
plays an important role in the selection of metastatic mutations
(Gonzalez et al., 2018). Another drawback of the CDX-SDX
models is that they may not achieve the medical requirements
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of individualization and precision. Cell lines cannot accurately
reflect the complexity of tumor heterogeneity and can only
represent patients with certain types of cancer (Xu et al., 2018).

Organoid Derived Xenografts
Orthotopic transplantation of human pancreatic tumor
organoids into immunocompromised mice mimics the full
spectrum PDAC progression, forming PanIN-like stages
and advancing to invasive and metastatic PDAC (Boj et al.,
2018). The only difference is that PanIN-like structures are not
intraductal epithelial structures within the pancreas of the mouse.
Conventional CDXs only repopulate the host environment but
do not form any PanIN-like structure. In addition, ODXs
closely recapitulate the dense collagen deposition present in
human PDAC tissues and tumors from GEMMs, another
feature missing in CDXs (Kim et al., 2009; Olive et al., 2009;
Raimondi et al., 2020).

It is still unknown how engrafted PDAC organoids form
PanIN-like structures. As organoid cultures can better retain
tumor cell heterogeneity, it is possible that recovering several
stem cells better mimics the different stages of disease progression
upon implantation. In addition, it could be the organoid culture
conditions that better reflect the cellular plasticity and epigenetic
changes upon transplantation. The interaction of the matrix
with pancreatic cancer cells in organoid cultures may help to
switch into a PanIN-like biological stage (Hwang et al., 2016).
Differentially from other xenograft models, ODXs offer a unique
chance to study PDAC progression in vivo and early biomarkers.
Undergoing research will evaluate the benefits of the ODXs
for therapeutic and diagnostic development in comparison to
classical PDAC models.

Patient-Derived Xenografts
Patient-Derived Xenografts have been established as a rising
tool to recapitulate tumor heterogeneity, genetics, and cancer
microenvironment of PDAC. PDXs are used to identify new
biomarkers, enhance therapeutic outcomes and also as tools for
personalized treatments of PDAC patients.

Patient-derived xenografts from patient tumor tissue
represent a more favorable alternative to CDX, SDX, or ODX
since there is no in vitro selection. Patient tumor pieces are
implanted into immunocompromised mice orthotopically or
subcutaneously for propagation in vivo, followed by passage
of tumor fragments in subsequent generations (Tentler et al.,
2012). PDAC PDXs develop between one and 4 months after
transplantation, with an engraftment rate between 20 and
80% (Garcia et al., 2020). They have been shown to conserve
metastatic potential and histology of the original tumor (Hidalgo
et al., 2014) and closely mirror drug responses in human patients
(Voskoglou-Nomikos et al., 2003). This may represent the fact
that PDXs are not composed of cancer cell populations separated
from human tumors and adapted to culture conditions. Since
PDX models are established from tumor fragments, the tumor
neoplastic cell architecture is retained (Loukopoulos et al.,
2004; Rubio-Viqueira and Hidalgo, 2009). Although the initial
human stroma is gradually replaced with cells of the murine
host, these models can recapitulate the complexity of the

TME in PDAC (Duda et al., 2004). Also, successively passaged
PDXs normally show consistent biological properties and
homogeneous histological and molecular phenotypes (Aparicio
et al., 2015). Since it is necessary to use immunocompromised
mice when generating xenografts, this represents a major
drawback to study metastasis, since the adaptive immune
system plays a crucial role in the selection of metastatic variants
(Gonzalez et al., 2018).

Chick Chorioallantoic Membrane
Xenografts
Chick chorioallantoic membrane (CAM) is a deeply vascularized
extraembryonic membrane formed after embryonic day 5 rich
in type IV collagen and laminin, which are similar to the
human basement membrane. Chick embryos are not immune-
competent until day 18 (Ribatti, 2016). More and more studies
have confirmed that the CAM model can efficiently sustain
tumor cell proliferation, making it a simple and rapid model for
studying initial tumor development. It can reproduce all stages of
tumor formation in a shorter amount of time as tumors can be
detected after only 4 days of cancer cell injection (Komatsu et al.,
2019). It has been shown that firefly luciferase-labeled primary
PDAC cells can be engrafted onto the CAM with >80% success.
A comparison of tumors harvested from the CAM with original
human tissues by immunohistochemical staining showed similar
positive staining for the PDAC markers cytokeratin, Cytokeratin
19, Cytokeratin 7, mucin-1, and Alcian blue. Importantly, the
percentages of positive/negative cells within each model are very
consistent (Rovithi et al., 2017). In addition to using fluorescently
labeled cells, cell invasion can be analyzed by Alu PCR to estimate
the presence of metastatic human cancer cells in the organs
of the chick embryo. Li et al. extracted genomic DNA from
chick CAM and liver, respectively, and Alu sequences in human
cells were specifically detected by Alu PCR revealing that 31%
of CAM and 0% of liver tissue were Alu positive in embryos
with untreated Aspc-1 cells. After dexamethasone treatment, the
invasion rate of Aspc-1 tumor cells to CAM and liver increased
metastasis to 85% and 60%, respectively (Mira et al., 2002; Liu
et al., 2017a).

In summary, CAM-assay is a flexible, cost-efficient,
reproducible and rapid approach that can evaluate the
metastatic capacity and aggressiveness of different PDAC
cells within a short time in vivo. With the help of physiological
and histological characteristics of PDAC, it is easy to assess
the key features of tumor metastasis such as angiogenesis,
intravasation and spontaneous metastasis. Therefore, CAM
assay is an attractive metastasis model. Immune deficiency
of chick embryos is up to 18 days, so the short observation
periods (3–9 days) become an important limitation of CAM-
assay. In addition, it cannot examine cancer-immune cell
interactions. Another limitation to this system is that chick
embryos are extensively vascularized organisms characterized
by fast morphological changes (Lokman et al., 2020). CAM-
assay for tumor research is also limited in its monitoring
capabilities of tumor size. Because the tumor is encased by a
radiopaque eggshell and has a modest structural size, it can
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only be monitored from above, posing a challenge to existing
imaging modalities. Even though repetitive ultrasonography
can monitor tumor growth and vascularization, it also
relies on the experience of the experimenter in ultrasound
(Eckrich et al., 2020).

ZebraFish Model
Recently, the value of the zebrafish model has been
appreciated. Teleost zebrafish (Danio rerio) shows large
levels of physiologic and genetic analogies to mammals,
closely resembling the clinical setting and allowing the
natural history of the tumor to be monitored (Wu et al.,
2017). Fishes are routinely maintained at 28◦C, but the
most favorable temperature for tumor cell proliferation
is 37◦C (Cabezas-Sainz et al., 2018). When engrafted
zebrafish are raised at a compromise temperature (≤34◦C),
cancer cells do not proliferate at the same rate as when
cultured in mice or humans. The Protein Kinase, DNA-
Activated, Catalytic Subunit (prkdc) and Interleukin 2
receptor (il2rga) deficient zebrafish model can be raised at
37◦C and can engraft a wide range of human malignancies
(Yan et al., 2019). CRE/LOX technology and GAL4/UAS
systems were combined to create the first kras-initiated
PDAC model in zebrafish that highly recapitulates human
PanIN development (Oh and Park, 2019). A xenograft
model was established in zebrafish by transplanting human
pancreatic cancer cells into the perivitelline cavity of
48 h post-fertilization zebrafish embryos (Guo et al.,
2015). Subsequently, they observed that cells with kras
mutations displayed significant proliferative and migratory
behaviors invading the zebrafish vasculature system. Then
xenotransplanted larvae were exposed to an inhibitor that targets
the KRAS signaling pathway named U0126. There were fewer
metastases in the bodies of the larvae in the following U0126
treatment group while the mock-treatment group displayed
recurrent metastasis.

Zebrafish is a useful and economical in vivo animal model for
speedy analysis of invasion and metastatic behavior. Zebrafish
embryos are transparent, so it is easy to follow the invasion,
circulation of tumor cells in blood vessels, migration and
micro metastasis formation in real-time (Marques et al.,
2009). The entire genome of zebrafish has been determined
completely, and the genetic background is clear. Therefore,
it can be used for large-scale genetic background screening
(Gut et al., 2017). Zebrafish are highly reproductive, with
a pair of zebrafish typically producing around 200 embryos
(Hoo et al., 2016), and there is little difference between
individuals, so they can be used for mass drug screening, such
as anti-metastasis drugs (Nakayama et al., 2021). However,
the most obvious shortcoming of zebrafish is that it is not a
mammal. It is significantly different from humans directly and
cannot fully simulate the type of human disease. In addition,
antibodies against zebrafish protein are still lacking on the
market compared to mice or humans (Hason and Bartùnìk,
2019). In the process of zebrafish xenograft, the temperature
of embryo incubation, the different sites for implantation
of tumor cells, the interaction between cells and host in

embryo, and the changes of tumor microenvironment all affect
the experimental results of cell proliferation, invasion and
metastasis (Cabezas-Sáinz et al., 2020). Therefore, the technology
of xenograft still needs to be improved in different aspects.

CRISPR/Cas9 for Metastasis Research
of Pancreatic Ductal Adenocarcinoma
CRISPR/Cas9 research technology has been developing in
recent years and has become a versatile tool for making
changes to the genome of many organisms. Here describes
some research on CRISPR technology in PDAC metastasis.
It has been reported that Mucin 16 (MUC16) contributes
to the metastasis of PDAC through FAK mediated Akt and
ERK/MAPK pathway. MUC16 knock-out cells generated by
CRISPR/Cas9 also exhibit reduced mesenchymal expression
and enhanced epithelial expression in PDAC cells and inhibit
cell metastasis (Muniyan et al., 2016). Vorvis et al. merged
genetic and microRNA profiling analysis with CRISPR/Cas9
technology and identified that transcription factor Forkhead box
A2 (FOXA2) is implicated in PDAC pathogenesis. Furthermore,
suppression of FOXA2 levels by CRISPR/Cas9 in vitro resulted
in the activation of the Plasminogen activator, urokinase
receptor gene known to be implicated in invasive malignancy.
These results were consistent when FOXA2 expression was
blocked by siRNA (Vorvis et al., 2016). Core 1 synthase,
glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase
1 was disrupted in human PDAC cells (T3M4 and CD18/HPAF)
by CRISPR/Cas9 leading to enhanced O-glycosylation truncation
on MUC16, which increases the formation of aggressive PDACs
and metastasis in KPC mice. Stock, al. generated two cortactin
knockout lines (PANC-1 and BxPC-3) using CRISPR/Cas9
technology to study the functional role of cortactin in PDAC
(Chugh et al., 2018). In PDAC metastases, they detected more
expression of cortactin and Tyr421-phosphorylation than the
original tumor. Cortactin activation and the migratory ability of
the PDAC cells both decreased significantly after treatment with
an inhibitor of the Src family kinase. CRISPR/Cas9 technology is
also applied to PDAC modeling and therapeutic research using
a variety of animals. An individual mouse strain expressing
Cas9 in the adult pancreas under a p48 promoter has been
established to generate PDAC GEMMs of complicated genotypes
with high efficiency (Ideno et al., 2019). By the use of an
adeno-associated virus to transfer multiplexed RNA guidelines
(sgRNAs) to an adult pancreas of p48-Cre; LSL-Cas9 mice,
they produce a mutated Kras G12D allele using homology
directed repair in combination with CRISPR-induced disruption
of cooperative alleles [Trp53, AT-rich interaction domain 1A
(Arid1A) and Lkb1].

Overall, CRISPR-Cas9 engineering provides new
opportunities to model PDAC development. It allows the
production of syngeneic and humanized mice which can help
to eliminate transplant rejection by the host immune system
without needing immunocompromised animals (Krempley
and Yu, 2017). As a result, these models are particularly useful
for researching immunotherapies, allowing to investigate
several unanswered problems. For instance, it would be
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FIGURE 2 | Overview of the current models to study metastasis in PDAC. The color scale indicates whether a model is more suitable (green) or less (red) for each
purpose.

compelling to see if tumors with distinct histopathological
features reported in the model have substantial variations
in target allele frequency and/or if further mutations have
accumulated and how this model’s total mutational and
neoantigen load correlates to other GEMMs and human PDAC
(Jørgensen and Hogg, 2016).

DISCUSSION

Several preclinical models for PDAC are accessible for basic and
translational studies, which permit the description of the global
genetic features of this disease (summarized in Figure 2).

Pancreatic ductal adenocarcinoma is characterized by an
early and fast metastatic process partially related to the
location of the pancreas leading to peritoneal, liver or lung
metastasis. Nonetheless, a deep molecular insight into the
metastatic process of PDAC is still missing since very few
studies have studied the mechanisms behind PDAC metastatic
organotropism. This is pivotal since the location of the
metastases determines the clinical outcome of the patient.
Each PDAC preclinical model described above (2D cell lines,
spheroids or organoids, GEMMs, and PDXs models) has pros
and cons, and the model of choice will vary according to
experimental goals.

The correct combination of currently available models is
necessary for the development of more trustworthy therapeutic
strategies against PDAC. A good strategy is a combination
of the methods in each step of the experimental process.
Namely, 2D cell lines, PDCL or spheroids are good tools

for HTS, studying tumorigenesis and progression. Organoids
offer similar benefits as cell lines, adding a step closer to
personalized medicine. In vivo models are useful to model the
TME and immune response, key players in PDAC transformation
and progression. Murine models are ideal platforms for
understanding PDAC progression, pathophysiology and testing
therapeutic modalities. Once candidates are selected, more
relevant models like ODXs or PDXs models are suitable for
functional validation.
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