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Ovarian cancer (OC) is the second leading cause of death in gynecological cancer. Multiple
study have shown that the efficacy of tumor immunotherapy is related to tumor immune
cell infiltration (ICl). However, so far, the Immune infiltration landscape of tumor
microenvironment (TME) in OC has not been elucidated. In this study, We organized
the transcriptome data of OC in the Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases, evaluated the patient’s TME information, and constructed the
ICl scores to predict the clinical benefits of patients undergoing immunotherapy. Immune-
related genes were further used to construct the prognostic model. After clustering
analysis of ICl genes, we found that patients in ICl gene cluster C had the best
prognosis, and their tumor microenvironment had the highest proportion of
macrophage M1 and T cell follicular helper cells. This result was consistent with that of
multivariate cox (multi-cox) analysis. The prognostic model constructed by immune-related
genes had good predictive performance. By estimating Tumor mutation burden (TMB), we
also found that there were multiple genes with statistically different mutation frequencies in
the high and low ICI score groups. The model based on the ICI score may help to screen
out patients who would benefit from immunotherapy. The immune-related genes screened
may be used as biomarkers and therapeutic targets.

Keywords: ovarian cancer, immune cell infiltration, tumor mutation burden, immunotherapy, prognosis

Abbreviations: OC, ovarian cancer; ICI, immune cell infiltration; TME, tumor microenvironment; TCGA, the cancer genome
atlas; GEO, gene expression omnibus; multi-cox, multivariate cox; TMB, tumor mutation burden; TPM, transcripts per kilobase
of exon model per million mapped reads; GO, gene ontology; GSEA, gene set enrichment analysis; ROC, receiver operating
characteristic; uni-cox, univariate cox; KEGG, kyoto encyclopedia of genes and genomes; PCA, principal component analysis;
ICB, immune checkpoint blocking.
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INTRODUCTION

Ovarian cancer (OC) is one of the deadliest gynecological
malignancies. Owing to the lack of specific symptoms and
early detection methods, approximately three-quarters of
patients are already in stage III/IV at the time of diagnosis
(Cheng et al., 2021). OC is the second most common cause of
death in gynecological cancer. Globally, the number of deaths due
to OC each year is nearly 152,000, accounting for 4.3% of all
cancer deaths (Lheureux et al., 2019). In the past 30 years, the 5-
year relative survival rate of most cancers has increased by one-
fifth, but that of OC has not changed significantly (Siegel et al.,
2018).

Cancer immunotherapy, based on the mechanism of immune
escape, was rated as Breakthrough of the Year by Science (Xiang
et al, 2019). Immunotherapy, including adoptive cell and
checkpoint inhibitor therapy, which is often applied in the
treatment lymphoma, melanoma, lung cancer, breast cancer
and others, has become an indispensable method for the
treatment of many cancer types (Lauss et al., 2017; Hirayama
et al,, 2019; Chalabi et al., 2020; Melosky et al., 2020). Tumor
mutation burden (TMB), also known as tumor mutational load, is
an emerging feature of cancer, which represents the number of
somatic mutations (per one million bases) (Zehir et al., 2017). A
growing body of literature has suggested that TMB can be used as
a biomarker to identify patients suitable for immunotherapy
(Steuer and Ramalingam, 2018; Klebanov et al, 2019). The
tumor microenvironment (TME), composed of a variety of
immune and non-immune cell populations, plays an crucial
role during tumor initiation and progression. Many factors
secreted within TME drive tumor biological processes such as
immune  suppression, pro-angiogenesis, and  chronic
inflammation (Pitt et al, 2016; Bader et al., 2020). The
changes in the proportion of different immune cell
populations and stromal cell populations in TME are related
to the occurrence, metastasis, chemoresistance and progression of
tumors (Turley et al., 2015). However, the overall landscape of
immune cells and non-immune cells in the TME of OC is not
yet clear.

In this study, we analyzed OC transcriptome data from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
databases to obtain the comprehensive outlook on 22 types of
immune-related cells in the TME of OC patients through
“CIBERSORT” and “estimate” packages. According to the
immune cell infiltration (ICI) landscape, we divided patients
with OC into 8 independent subtypes, and further established
the ICI scores and immune-related gene prognosis model to
predict the prognosis.

MATERIALS AND METHODS

OV Datasets and Samples

Through the TCGA database (https://portal.gdc.cancer.gov/) and
GEO array express database (https://www.ncbi.nlm.nih.gov/geo/
), we obtained six data sets (GSE18520, GSE26193, GSE19829,
GSE30161, GSE63885, and TCGA-OV), and collected a total of

Immune landscape of Ovarian Cancer

723 OC patient samples’ transcriptome data. In order to perform
unified analysis of data sets from different databases, we
converted the expression value of the TCGA-OV data set into
TPM (Transcripts Per Kilobase of exon model per Million
mapped reads) value (Wagner et al., 2012). Furthermore, we
reduced the possibility of batch effects between data sets due to
non-biotechnology biases through the “ComBat” algorithm
(Johnson et al., 2007).

Consensus Clustering

We used the leukocyte signature matrix gene signature and the
“CIBERSORT” algorithm to quantify the proportion of 22
immune cells in OC samples. Through the “ESTIMATE” R
package, the immune and matrix cell content of each OC
sample was evaluated (Yoshihara et al., 2013). We performed
the “ConsensuClusterPlus” R software package based on the
unsupervised clustering method to perform ICI cluster analysis
on the OC data set to determine the appropriate number of
clusters.

DEGs Associated With the ICI Subgroup
With absolute multiple change> 1.5 and adjusted p < 0.05 as the
screening conditions, the Differentially expressed genes (DEGs)
between ICI subgroups were identified through the “limma” R
package (Ritchie et al.,, 2015).

Dimensionality Reduction and Generation
of ICI Score

First, according to the expression value of DEGs of the
sample, the patients in the data set were classified by the
unsupervised clustering method. DEGs contained in ICI
feature gene sets A and B that were positively correlated
and negatively correlated with patient classification,
respectively. Next, the dimensionality reduction analysis of
ICI feature gene sets A and B was performed by the “Boruta”
R package (Kursa and Rudnicki, 2010). Then, we obtain
feature scores through principal component analysis.
Finally, the ICI score of each patient was obtained through
the algorithm similar to the gene expression grade index. The
specific calculation formula is as follows:

ICI score = Z PCl, — Z PCl;

This formula was based on the Gene expression grade index
algorithm, which was used to summarize the similarity
between expression profile and tumor grade (Sotiriou
et al., 2006).

Functional and Pathway Enrichment

Analysis

The genes in different ICI feature gene sets were respectively
subjected to Gene Ontology (GO) enrichment analysis. Then, we
observed the difference of the signal pathways enriched in
different ICI score groups through gene set enrichment
analysis (GSEA).
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Collection of Somatic Alteration Data
We downloaded and calculated the number of non-synonymous

mutations in TCGA-OV patients. According to the ICI scores, the
somatic mutations of the driver genes in different groups of patients
were evaluated accordingly. We identified the driver genes in OC
patients by “maftool” package. The top 20 driver genes with the
highest mutation frequency were analyzed, respectively.

Analyze the Predictive Performance of the
ICI Scores and TMB Model

We constructed the Receiver Operating Characteristic (ROC)
curve to analyze the predictive performance of the ICI score
model. The TMB and ICI score models were combined through
univariate cox (uni-cox), lasso, and multivariate cox (multi-cox)
analysis, and ROC curve and Kaplan-Meier curve were used to
analyze its prediction performance.

Construction and External Verification of
Prognostic Models of Immune-Related

Genes

Uni-cox analysis was used to screen out the ICI characteristic genes
related to the patient’s prognosis. The lasso regression algorithm was
used to delete the genes with higher correlation to prevent
overfitting. We constructed the prognostic model through multi-
cox analysis. The OC data (GSE140082) was used for external
verification. The ICI scores, TMB and immune genes were used
to construct a prognostic model (uni-cox, lasso, multi-cox).

Statistical Analyses

All statistical analyses were performed by SPSS Version 21.0
software. The data comparison between the two groups used
unpaired Student’s t test for statistical significance, and the non-
normally distributed variables used Mann-Whitney U test. For the
data comparison between the above two groups, the parametric
method and the non-parametric method used one-way analysis of
variance and Kruskal-Wallis test, respectively. The correlation
coefficient was calculated by Spearman correlation analysis and
distance correlation analysis. The survival curve of each subgroup
was drawn by Kaplan-Meier method. The log-rank test was used to
evaluate whether the difference is statistically significant. Only when
the two-tailed p-value is < 0.05, the difference is considered to be
statistically significant.

RESULTS

Landscape of OC TME

We converted the expression value of the TCGA-OV data set to
TPM value and merged the data of GSE18520, GSE26193,
GSE19829, GSE30161, and GSE63885 (Supplementary Table
S1). The ratio of 22 immune cells in OC samples was calculated
by executing the CIBERSORT algorithms (Supplementary Table
§2). The “ConsesusClusterPlus” R package clustered OC patients
into 8 subtypes through an unsupervised clustering method
(Supplementary Figure S1).

Immune landscape of Ovarian Cancer

Figure 1 In order to clarify the inherent biological differences of
different clinical phenotypes of OC samples, We divided patients
into 8 ICI subgroups (Figure 2A). Figure 2B showed the
distribution of 22 types of tumor cells in 8 ICI subgroups
through the heat map. The correlation between the 22 types of
tumor cells was further analyzed, and a map of correlation coefficient
was constructed (Figure 2C). As shown in Figure 2D, the median
survival time of each subtype was different. ICI subtype D patients
had the longest median survival period, which was characterized by
high infiltration of T cells regulatory, NK cells activated, plasma cells,
and T cells follicular helper. The median survival time of patients
with ICI subtype G was the shortest, which was characterized by the
highly infiltrating cells Macrophages M2, Neutrophils, and
Monocytes. Further analysis of the differences in the proportion
of 22 types of tumor cells among the 8 ICI subtypes revealed that
only in the four types of cells were no statistical difference between
the subgroups (Figure 2E).

Identify Immune Gene Subtypes and GO

Enrichment Analysis

We screened the differentially expressed genes among eight immune
subtypes by “limma” R software. According to the obtained 817
differentially expressed genes, the OC patients were divided into five
gene subgroups by using the “ConsensuClusterPlus” R package
based on the unsupervised clustering algorithm (Supplementary
Figure S2, Figure 3A). As shown in Figure 3C, we found patients in
the ICI gene C group had the best prognosis, while those in the E
group had the worst.

The 205 genes positively related to the gene subgroup were
called ICI gene signature set A, while the 612 genes positively
related to the gene subgroup were called ICI gene signature set B
(Supplementary Table S3). Drew the expression of these 817
characteristic genes in OC samples through the “pheatmap” R
package (Figure 3B). We performed dimensionality reduction
analysis to reduce redundant genes, and finally got 37 and 237
genes, respectively (Supplementary Table S4). Through
“clusterProfiler” R package we performed GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis on the ICI gene signature sets A and B after
dimensionality =~ reduction  analysis  (Figures  3D,E,
Supplementary Figures S3E-F). Supplementary Table S5
provides detailed GO and KEGG enrichment analysis results.
As shown in Figure 3F, the ICI gene subgroup C with the best
prognosis showed the highest proportion of T cell follicular
helper, monocytes, and macrophages M1, while the ICI gene
subgroup E with the worst prognosis showed the highest
proportion of naive B cells and the lowest proportion of
regulatory T cells.

Construction of the ICI Score

We used principal component analysis (PCA) algorithm to
analyze the ICI landscape of patients with OC. After
calculation, we finally got the ICI prognostic landmark score.
According to the ICI scores of patients with OC, we used the
“survminer” R package to find the best cut-off value, and divided
the patients into two groups with high and low scores. Then, the
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download the transcriptome sequencing data of 723 ovarian
cancer patients from the database (GSE18520, GSE26193,
GSE19829, GSE30161, GSE63885, and TCGA-OV)

Y

Iimmune cellinfiltration (ICI) information of 723 ovarian cancer
patients from the database (GSE18520, GSE26193, GSE19829,
GSE30161, GSE63885, and TCGA-OV)

v

[ identify ICI type A-H (ConsensuClusterPlus) ]

[identify differentially expressed genes related to ICI]

[ identify ICI gene type A-E (ConsensuClusterPlus) ]

[ ICI feature gene A ]

[ ICI feature gene B ]

[ brouta algorithm ]

[ PCA algorithm ]

I

v

[ prognostic model of ICI score ]

(1cI score =Y PC1A-5 PC1B ]

v

[prognostic model of immune-related gene]

[ uni-cox, lasso, multi-cox ]

verify the prognostic value of the model of ICI score
in 723 ovarian cancer patients

verify the prognostic value of the medel of immune-
related gene in 723 ovarian cancer patients
(external verification in GSE140082 datasets )

FIGURE 1 | Flow chart.

expression of immune-related genes in the two groups with high
and low ICI scores was searched. The distribution of patients in
five gene clusters was represented in Figure 4A. In this study, we
selected the immune checkpoint-related genes and the immune
activity-related genes for display. As shown in Figure 4B, the
expressions of these 15 genes were statistically different between
the two groups. In addition, the results of GSEA showed that in
the high ICI group, jak-stat and chemokine signaling pathways
were significantly enriched, while in the low ICI group, RNA
polymerase and ribosome signaling pathways were significantly
enriched (Figure 4C; Supplementary Table S6). We analyzed the
relationship between the patient’s ICI scores and survival time
through the “survival” R package, and found that in the OC
patient cohort of the TCGA database, patients with high ICI
scores had poorer prognosis (Figure 4D). Further we analyzed
the relationship between the ICI scores and prognosis of all OC
patients included in this study and found that was consistent with
the relationship obtained by TCGA-OC patients (Figure 4E).

TME Characteristics of the TCGA Subtype
and Cancer Somatic Genome

At present, Immune Checkpoint Blocking (ICB) therapy had been
applied to a variety of tumor diseases, improving the overall survival
rate of patients (Hodi, 2010; Borghaei et al,, 2015; Nghiem et al,

2016; Tom, 2018). A number of studies had shown that to mutation.
Tumor mutation burden (TMB) could be used to predict the efficacy
of ICB, and it has become a biomarker for various cancer types to
identify patients who will benefit from immunotherapy (Rizvi et al,
2015; Timothy et al,, 2015; Hugo et al., 2016; Carbone et al., 2017;
Chan et al,, 2019). Based on the important clinical significance of
TMB for immunotherapy (Supplementary Table S7), we further
explored the inner link between TMB and ICI scores to clarify the
genetic information of ICI subgroups. Correlation analysis revealed a
positive correlation between TMB and ICI scores (Spearman
coefficient: » = 0.13, p = 0.026; Figure 5A). We found the best
cutoff value by “survminer” R package, and divided the patients into
high and low groups. By analyzing the relationship between TMB
and patient prognosis, we found that the prognosis of patients in the
high TMB group was better (p = 0.024; Figure 5B). We combined
the patient’s TMB and ICI scores information for analysis. It was
found that patients with high ICI score and low TMB group had the
best prognosis, while patients with high ICI score and high TMB
group had the worst (p < 0.001; Figure 5C).

We obtained the driver genes of OC and evaluated the somatic
mutations of patients in different ICI subgroup. Figures 5D,E showed
respectively the mutation distributions of the 20 driver genes with the
highest frequency of changes in the high and low ICI subgroups. These
results might provide new directions for studying the mechanisms of
immunotherapy, gene mutations, and tumor ICI distribution.
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The Predictive Performance of the ICI
Scores and TMB Model

We found that the prediction performance of the ICI scores
model was poor by establishing the ROC curve (Supplementary
Figures S3A,B). Further analysis of the predictive performance of
the ICI scores and TMB combined model, through ROC curve
and Kaplan-Meier curve found that its predictive performance
was average (Supplementary Figures S3C,D).

Construction and External Verification of
Prognostic Models of Immune-Related

Genes

Through uni-cox analysis, a total of 44 genes related to the prognosis of
OC patients and immunity were obtained (Figure 6A). In order to
prevent overfitting, the lasso analysis was used to further screen the
genes related to the patient’s prognosis. As shown in Figures 6B,C, the
value of the intersection point corresponding to the log(\) of —3.5 was
the smallest, and the corresponding values were 18. Therefore, we
screened out 18 genes for subsequent analysis. The multi-cox analysis
was performed on these 18 genes, and the results were shown in
Figure 6D. The results of the multi-cox analysis were displayed in the
nomogram (Figure 6E). The results of each step of the analysis were
saved in Supplementary Table S8.

We tested the prognostic model of immune-related genes. The
survival curve showed that the prognosis of patients in the low-

risk group was better, and there were statistical differences
between the groups (Figure 7A). We observed the forecasting
performance of the model through the ROC curve. As the
forecasting time increased, the forecasting effect of the model
showed an upward trend (Figure 7B). We sorted the samples of
OC patients according to the risk score and found that as the
score increased, the risk of death was higher (Figure 7C). We also
obtained good prediction performance in the externally verified
GSE140082 data set (Figures 7D-F; Supplementary Table S9).

Combining ICI scores, TMB, and immune genes (uni-cox,
lasso, multi-cox), we further built a prognostic model
(Supplementary Figure S4), and found that the prediction
performance of this model was basically the same as that of
immune-related gene models. The results of each step of the
analysis were saved in Supplementary Table S10.

DISCUSSION

Cancer is a global public health problem and the second leading
cause of death (Siegel et al., 2020; Huang et al., 2021b). In the last
few years, a variety of specific immunotherapy drugs have been
used in the clinical treatment of cancer patients.
Immunotherapy, which uses the patient’s immune capacity to
treat cancer and prevent recurrence, has become the first-line
treatment for some types of tumors (Kruger et al., 2019; Szeto
and Finley, 2019). Immunotherapy has made remarkable
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progress in the treatment of tumors, but it still faces many
challenges. The first obstacle is that only a few patients can
benefit from immunotherapy. In 2018, it was estimated that
two-fifths of the United States patients treated tumors with
immune checkpoint inhibitor-related drugs, but the immune
response rate was only 13% (Haslam and Prasad, 2019). Drug
resistance might appear during chemotherapy, which greatly
reduces the efficacy of treatment (Huang et al., 2021a). In this
study, we established the model for predicting the immune
benefit of OV patients and the immune prognosis evaluation
model, which may provide help for immunotherapy of patients
with ovarian cancer.

OC is classified as “immunogenic tumor”. Immune cell
populations in tumors, peripheral blood and ascites fluid,
including T and B lymphocytes, natural killer cells, etc., have
great significance in the treatment of OC (Santoiemma et al,,
2016; Yang et al,, 2020). Non-immune cells in the TME may
also have an impact on the efficacy of immunotherapy
(Rodriguez et al., 2018). We divide the samples into eight
different immune subtypes based on the content of 22
immune cells in OC patients. Further analysis found that
the proportion of 18 immune cell populations between
immune subtypes was statistically different. The
proportion of follicular helper T cells, M1 macrophages,
M2 macrophages, mast cells activated and the established
ICI score model had the strong correlation with prognosis
(Supplementary Figure S5). The tumor suppressor effect of
follicular helper T cells was related to its ability to promote
B cell maturation, affinity maturation and antibody secretion
(Bindea et al., 2013; Crotty, 2014; Gu-Trantien et al., 2017).
In addition, follicular helper T cells could promote the
survival of CD8 T cells related to the prognosis of OC
patients by secreting IL-21 (Zeng et al., 2005; Sondergaard
et al., 2010; Kroeger et al., 2016). M1 macrophages could
promote T cell immunity and played an anti-cancer effect,
while M2 macrophages had the anti-inflammatory effect and
played the cancer-promoting effect (Galli et al., 2011; Tamura
et al, 2018). The relative proportion of M1 and M2
macrophages were closely related to the immunity of
T cells, which had a major influence in the immune
checkpoint blocking therapy of tumors (Galli et al.,, 2011).
Mast cells in the tumor mass could inhibit tumor
proliferation and angiogenesis, but their presence in the
area around the tumor might promote tumor progression
(Johansson et al., 2010). The positive and negative regulatory
relationships between these four types of cells and tumor
progression were opposite to the coefficient of multi-cox
analysis, which was consistent with the conclusion that
patients with low ICI scores in this study had a better
prognosis.

Differences in gene expression during tumor formation
might lead to changes in information transmission between
immune cells, thereby affecting the occurrence of immune
responses in the human body (Chen and Mellman, 2017). In
this study, in order to have more in-depth understanding of
the gene characteristics related to the immune system in
patients with OC, we first extracted immune-related genes

Immune landscape of Ovarian Cancer

and performed the cluster analysis on patients with OC. ICI
gene cluster C with the highest Macrophages M1 and T cells
follicular helper content had the best prognosis. We
speculated that OC patients with ICI gene cluster C could
benefit from immunotherapy, and the gene cluster used in
this study may provide new targets for precision
mmunotherapy. ICI gene cluster E with higher
Macrophages M2 and lower T cells follicular helper
content had the worst prognosis. These were consistent
with the results of the previous multi-cox analysis of the
proportion of 22 immune cells. Therefore, we speculated that
macrophage M1, macrophage M2, and T cell follicular helper
cells might have important implications for the
immunotherapy of OC.

Due to the large differences in individual immune
environments, we quantified the ICI score of patients with
OC. We used dimensionality reduction analysis on ICI gene
feature sets A and B. The GO enrichment analysis results of ICI
gene feature sets A and B were related to macrophages and
T cells, respectively, which played extremely important roles in
immunotherapy. Through GSEA, we discovered that
chemkine, neurotrophin, and jak-stat signaling pathway
might play significant roles in the occurrence and
development of OC. Clinical studies have found that gene
mutations were related to the clinical benefits of
immunotherapy and could be used as potential biomarkers
for immunotherapy (Wang et al,, 2019; Pan et al, 2021).
Recently, the United States Food and Drug Administration
approved pembrolizumab as a clinical drug for high TMB-H
solid tumors (>10). Survival analysis found that TMB was
related to patient prognosis. The joint analysis of TMB and ICI
scores found that patients with high TMB and low ICI score
had the best prognosis, while patients with H-TMB and high
ICI score had the worst. It meant that ICI score and TMB
might play a role in different aspects of OC immunotherapy.
The low correlation between ICI score and TMB also
confirmed this statement.

CONCLUSION

By analyzing the ICI characteristics of OC patients, we found
that follicular helper T cells, mast cell activation, M1
macrophages and M2 macrophages may affect the patient’s
immunotherapy, and established an ICI score to predict the
patient’s clinical benefit Provide a basis. We have further
identified immune-related genes, which can be used as
biomarkers for immunotherapy evaluation and targets for
personalized immunotherapy.
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