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Delocalization of zonula occludens-1 (ZO-1) from tight junctions plays a substantial role in
epithelial cell plasticity observed during tumor progression. In vitro, we reported an impact
of ZO-1 cyto-nuclear content in modulating the secretion of several pro-inflammatory
chemokines. In vivo, we demonstrated that it promotes the recruitment of immune cells in
mouse ear sponge assays. Examining lung cancers, we showed that a high density of CD8
cytotoxic T cells and Foxp3 immunosuppressive regulatory T cells in the tumor
microenvironment correlated with a cyto-nuclear expression of ZO-1. Taken together,
our results support that, by affecting tumor cell secretome, the cyto-nuclear ZO-1 pool
may recruit immune cells, which could be permissive for tumor progression.
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INTRODUCTION

Epithelial cell plasticity, exemplified by Epithelial-Mesenchymal Transition (EMT), has crucial
implications in tumorigenesis and metastasis (Dongre and Weinberg, 2019; Yang et al., 2020). A key
event of EMT processes is the reorganization of intercellular junctions, particularly tight junctions
(TJ). TJs are composed of transmembrane proteins (occludin, claudins, and junctional adhesion
molecules) linked to the actin cytoskeleton through submembrane adaptor proteins including those
of the zonula occludens (ZOs) family (González-Mariscal et al., 2020; Otani and Furuse, 2020). ZO-1,
ZO-2, and ZO-3, belonging to the membrane-associated guanylate kinase homologs (MAGUK)
family, are scaffold proteins involved in numerous protein-protein interactions through specific
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conserved domains: 3 PSD95/DLG/ZO-1 (PDZ) domains, one
Src homology 3 (SH3) domain and one guanylate kinase
homologous (GK) domain. Additionally, ZOs are also known
as “shuttle” proteins harboring nuclear export signal (NES) and
nuclear localization signal (NLS) sequences that enable their
translocation from the membrane to the cytoplasmic-nuclear
compartment. We and others previously demonstrated that a
cytoplasmic/nuclear relocation of ZOs is associated with EMT
and high infiltrative capacities (Reichert et al., 2000; Polette et al.,
2007; Luczka et al., 2013; Kyuno et al., 2021).

ZO-1, the first described member of the ZOs, has generally
been considered a tumor suppressor with a reported diminished
expression for instance in breast or colorectal cancers (Kaihara
et al., 2003; Martin et al., 2004). ZO-1 is however found
overexpressed in different types of cancers including
pancreatic, gastric or melanoma (Kleeff et al., 2001; Resnick
et al., 2005; Smalley et al., 2005). Despite the influence of ZO-
1 expression levels, data have accordingly accumulated revealing
a dual role of ZO-1 depending on its subcellular localization
(Gonzalez-Mariscal et al., 2007; Polette et al., 2007; Bauer et al.,
2010; González-Mariscal et al., 2020). Using a growth factor-
induced EMT model, we previously reported that, a diminution
of membrane-associated ZO-1 and its cyto-nuclear relocation
correlated with enhanced expression of the pro-inflammatory
cytokine interleukine-8 (IL-8) in invasive breast cancer cells
(Brysse et al., 2012). Strengthening these findings, we further
reported that cyto-nuclear ZO-1 promoted angiogenesis through
a ZO-1/NFκB/IL-8 axis (Lesage et al., 2017).

In the last decade, the impact of EMT processes in generating a
pro-tumoral tumor microenvironment has been demonstrated,
notably through a differential activation or recruitment within the
tumor microenvironment of host cells including tumor-associated
macrophages (TAMs), tumor-associated neutrophils (TANs), tumor-
infiltrating lymphocytes (TILs), cancer-associated fibroblasts (CAFs)
or endothelial cells. Thus, several studies identified an increased
expression of pro-inflammatory and pro-angiogenic soluble factors
such as tumor necrosis factor-alpha (TNF-α), transforming growth
factor-beta (TGF-β), interleukins-6 and -8 (IL-6, IL-8), and vascular
endothelial growth factor (VEGF) in EMT-positive cell
microenvironment (Le Bitoux and Stamenkovic, 2008; Dominguez
et al., 2017; Suarez-Carmona et al., 2017). In addition, Suarez-
Carmona et al. have established a correlation between the presence
of vimentin-positive tumor cells and a myeloid cell infiltrate in triple-
negative breast cancers (Suarez-Carmona et al., 2015). Other studies
have shown that monocyte chemoattractant protein-1 (MCP-1) and
IL-8 are regulated via the β-catenin pathway, especially during EMT
programs (Levy et al., 2002; Mestdagt et al., 2006; Dutta et al., 2018;
Wen et al., 2020).

In this study, we examined the involvement of ZO-1 in
modulating the inflammatory infiltrate into the non-small cell
lung cancer (NSCLC) tumor microenvironment. We
demonstrated that cyto-nuclear ZO-1 is involved in the
establishment and development of an immune microenvironment
that could be permissive for tumor invasion in lung cancer.

MATERIALS AND METHODS

Cell Lines and Culture Conditions
Cell lines were obtained from the American Type Culture
Collection (Manassas, VA, United States). All culture media
and reagents were from Gibco (Invitrogen, Carlsbad, CA,
United States). BEAS-2B human lung cells and SKBR3 human
mammary cells were cultured in DMEM containing 10% fetal
bovine serum and 1% penicillin-streptomycin. THP-1 monocytic
human cells were grown in RPMI medium supplemented with
20% FCS, and 1% penicillin-streptomycin.

Plasmid and cDNA Transient Transfection
The expression vector that encodes wild-type ZO-1 (ZO-1) has
been previously described (Reichert et al., 2000). The plasmid was
transfected using the X-tremeGENE nine DNA reagent (Roche
Diagnostics, Mannheim, Germany) on 1 × 105 cells plated in 6-
well plates according to manufacturer instructions. Cells were
harvested 48 h later for quantitative RT-PCR and western
blotting analyses. Serum-free conditioned media were collected
for in vivo sponge assay and cytokine array analyses.

Cytokine Array
The Proteome Profiler Human XL Cytokine Array kit (ARY022B,
R&D) was used according to the manufacturer’s instructions.
Briefly, conditioned media from BEAS-2B cells transfected with
the ZO-1 expression vector or the empty vector was diluted with a
mixture of biotinylated antibodies. Then, the mix was incubated
overnight on a nitrocellulose membrane on which capture
antibodies for 102 soluble factors had been coated in
duplicate. After washing steps and incubation with horseradish
peroxidase-coupled streptavidin, chemiluminescent detection
was performed using ECL Prime (Pierce). The intensity of
each spot was measured using MultiGauge (V3.0; Fujifilm;
Tokyo; Japan). Each spot corresponding to a chemokine was
quantified and normalized with the intensity of positive and
negative control spots on the membrane. Data are expressed as
fold induction for each chemokine in the ZO-1 transfected
condition versus the pLNCX control condition.

Transmigration Assay
Transmigration assays were performed as previously described
(Brysse et al., 2012). THP-1 cells (105) were suspended in 200 µl
of serum-free DMEM containing 0.5% bovine serum albumin
(BSA) and placed in the upper compartment of a transwell (6.5-
mm diameter with 8 µm pore polycarbonate membrane insert;
Costar). The lower compartment was filled with 600 µl of 48 h
conditioned serum-free DMEM medium of BEAS-2B cells
transfected or not with ZO-1 cDNA expression vector. After
24 h of incubation at 37°C, migrated THP-1 cells in the lower
chamber of the transwell were counted with an ADAM
automated cell counter. Results are expressed as fold induction
to the empty expression vector control condition. Each
experiment was carried out at least 3 times.
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Sponge Assay, Immunohistochemistry and
Quantification
Sponge assays were performed as previously described (Van de
Velde et al., 2018) with the approval of the ethical committee of the
University of Liège (Approval No. 1599). Briefly, gelfoam sponges
(Pfizer, New York, United States) were soaked in conditioned
medium. Sponges were then subcutaneously inserted into the ears
of BALB/c mice (Charles Rivers, Chatillon-sur-Chalarone, France)
for 3 weeks. The experiment was repeated 3 times with five mice
per group. At the end of the experiments, ears were collected, fixed
in formol, and paraffin-embedded. Fivemicron-thick sections were
realized across the sponge before immunostaining with a rabbit
monoclonal anti-CD3 antibody (1:500; CD3; SP7; Ab16669;
Abcam). Slides were scanned using the VS120 OLYMPUS
(Olympus France SAS, Rungis, France) at a ×20 magnification.
Image processing and quantification of cell density were performed
using the images analysis toolbox of MATLAB 2019/B, according
to the following steps: original images were registered in the full-
color red, green, blue where sponge and cells appear in blue and red
respectively. Classical and morphological filters were applied to
eliminate the noise and enhance the contrast between the cells and
the sponge. Finally, images were binarized using an automatic
thresholding technique (Kapur et al., 1985). From binarized
images, cells density was defined as the number of pixels
belonging to all cells (total area occupied by cells) divided by
the number of pixels belonging to the associated mask (filled area
of the considered region of the sponge). The density values of
labeled cells relative to the sponge area in the ZO1 groups were
normalized to the mean density value of the control group.

Human Lung Tumor Cohort
Human tissue samples were obtained from 42 patients with
NSCLC [21 adenocarcinomas (ADC) and 21 squamous cell
carcinomas (SCC)] (Supplementary Table S1). The tumors
were staged according to the eighth TNM UICC/AJCC
edition. Clinical data such as age and gender were collected
retrospectively. Access to patient data for this retrospective
non-interventional study was approved by the French national
commission CNIL (Comité National de l’Information et des
Libertés) (NO.2049775 v0). Paraffin-embedded tumor samples
were obtained from the Tumor Bank of Reims University
Hospital Biological Ressource Collection (No. AC-2019-340)
declared at the Ministry of Health according to the French
Law, for use of tissue samples for research.

Immunohistochemistry on Human Samples
Immunohistochemistry for ZO-1, CD3, CD4, CD8, and Foxp3 was
performed on serial sections of the 42 paraffin-embedded NSCLC
tumor samples. ZO-1 and Foxp3 detection were performed as
previously described (Lesage et al., 2017). CD3, CD4 and CD8
detection was performed with a Ventana Benchmark XT (Roche
diagnostics GmbH). Each stage of the experiment was performed
automatically according to the manufacturer’s instructions and
driven by Ventana Medical Systems software, BenchMark XT
module IHC/ISH (Ventana Medical Systems, Roche). Antibodies
used for immunohistochemistry are listed in the supplementary
material (Supplementary Table S2). A blind evaluation of the

labeling and scoring was performed by two independent
pathologists. Membrane-associated ZO-1 (tumor areas displaying
a honeycomb ZO-1 staining), and cyto-nuclear ZO-1 staining, were
scored as follows: 0 � no detection, 1 � detection in <10% of tumor
cells, 2 � detection in 10–25% of tumor cells, 3 � detection in
26–50% of tumor cells, 4 � detection in >50% of tumor cells. From
this scoring, cancers were categorized using a cutoff at 10%, as
previously reported (Lesage et al., 2017), into a group combining
cancers with scores 0 and 1 (<10%) and a group combining cancers
with scores 2 to 4 (≥10%). CD3, CD4, CD8, and Foxp3 staining were
scored as follows: 0� no detection, 1� detection in<10%of cells, 2�
detection in 10–25% of cells, 3 � detection in 26–50% of cells, 4 �
detection in >50% of cells. Cancers were grouped in two categories:
“low” expression group � cancers with scores from 0 to 2, “high”
expression group � cancers with scores from 3 to 4.

Statistical Analysis
Statistical analyses were performed with Prism (GraphPad Software,
La Jolla, CA, United States). In vitro results expressed as fold induction
were analyzed using the two-tailed one-sample Student’s t-test. In vivo
results were analyzed using the two-tailed non-parametric Mann
Whitney test. For human immunohistochemistry, the association
between ZO-1 and CD3, CD4, CD8, and Foxp3 expression in
NSCLC was studied by using Fisher’s exact test. A value of *p <
0.05 was considered statistically significant.

RESULTS

ZO-1 Promotes Inflammatory Chemokine
Secretion in Vitro
Aiming to decipher a potential functional role of cyto-nuclear ZO-1
on inflammatory cell recruitment, we transiently transfected BEAS-
2B invasive lung cells, which express low levels of ZO-1 maintained
as a cyto-nuclear pool (Lesage et al., 2017), with ZO-1 cDNA
expression vector or the empty pLNCX control vector. As
previously reported in this cell model, we observed an increase of
the cyto-nuclear pool of ZO-1 in BEAS-2B cells transfected with the
ZO-1 expression vector compared to controls cells (Lesage et al.,
2017). To validate our hypothesis that cyto-nuclear ZO-1 may
modulate the secretome of tumor cells and thereby control the
chemotactic activity of tumor cells, we examined the expression of
104 human soluble factors by cytokine array in conditionedmedium
of cells transfected or not with ZO-1. The modulation of the
secretome by ZO-1 was characterized by at least a 50% increase
in the production of cytokines, while no cytokine was found
decreased below 50% (Figure 1A). The six most over-produced
pro-inflammatory molecules were growth-regulated oncogene-α
(GROα), granulocyte-macrophage colony-stimulating factor
(GM-CSF), intercellular adhesion molecule-1 (ICAM-1), IL-6, IL-
8, and matrix metalloproteinase-9 (MMP-9) (Figures 1A,B;
Supplementary Figure S1). As a proof of concept, we used a
transmigration assay with the THP-1 monocytic cell line to
assess the chemotactic activity of tumor cells modified as above
for cyto-nuclear ZO-1 content. Our results revealed that THP-1 cells
migrated 30% more in response to conditioned media from ZO-1
cDNA-transfected cells than to conditionedmedia from control cells
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(Figure 1C). These results together demonstrate that tumor cells
expressing high levels of cyto-nuclear ZO-1 secrete soluble factors
that can stimulate inflammatory cell migration in vitro.

ZO-1 Induces Immune Response Into
Tumor Microenvironment in Vivo
Aiming to explore this ZO-1/soluble factors/inflammatory
infiltrate axis further in an in vivo context, we used a mouse
ear sponge assay which is particularly adequate to analyze the
impact of tumor-produced soluble factors on immune cell
recruitment. For this assay, bio-compatible sponges were

soaked in conditioned media of ZO-1-transfected BEAS-2B
cells or control cells, and inserted subcutaneously in mouse
ears for 3 weeks. An initial quantification of DAPI labeling
permitted to quantify overall levels of cell infiltration in the
sponges. Our results showed a larger cellular infiltration of
sponges soaked in conditioned media from ZO-1-transfected
BEAS-2B cells (1.35 ± 0.07-fold) (Figures 2A,B). Examining
closer cellular infiltrates, we observed a higher recruitment of
CD3+ T cells (1.46 ± 0.17-fold; Figures 2C,D) in the “ZO-1
sponges”. Similar results were obtained with SKBR3 cells, another
cell model which maintains ZO-1 as a cyto-nuclear pool (1.90 ±
0.15 fold; Supplementary Figure S2). Taken together, these

FIGURE 1 | ZO-1 modulates in vitro inflammatory chemokine secretion. (A) Cytokine and chemokine secretion analyzed by cytokine-array in conditioned medium
from BEAS-2B cells transfected with ZO-1 expression vector (ZO-1) or the corresponding pLNCX control vector (pLNCX). The heat map colors correspond to the
pLNCX / ZO-1 cytokine and chemokine ratios. Downregulated (blue) and upregulated (red) proteins in conditioned medium from ZO-1 cDNA BEAS-2B cells are
represented. (B) Summary table of most modulated chemokines according to the analysis of the cytokine/chemokine array presented in (A). (C) Analysis of
chemotactic migration of THP-1 monocytic cell in response to conditioned medium from ZO-1 cDNA BEAS-2B cells (conditioned medium of pLNCX empty vector
transfectants is used as control). Data are expressed as fold induction relative to the control condition in three independent experiments. Mean ± SEM; n � 3; **p < 0.01.
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results suggest that the secretome of tumor cells with high cyto-
nuclear levels of ZO-1 promotes recruitment of immune T cells.

Cyto-Nuclear ZO-1 Expression Correlates
With the Presence of an Immune Infiltrate in
NSCLC
Given these in vitro and in vivo results, we examined the potential
relationship between ZO-1 localization in tumor cells and the
inflammatory and immune infiltrate by immunostaining in
human NSCLC samples. First, cancers were categorized

according to ZO-1 staining pattern as displaying a low (<10%
of tumor area) or a high (in ≥10% of tumor area) distribution of
membrane-associated ZO-1, and a high (in ≥10% of tumor area)
or low (<10% of tumor area) distribution of cyto-nuclear staining
(an illustration of a ZO-1 membrane staining versus a cyto-
nuclear staining is provided in Figure 3A). As shown in the
scoring table (Figure 3B), cancers with high membrane-
associated ZO-1 staining showed low cyto-nuclear ZO-1
labeling, and cancers with a high cyto-nuclear distribution of
ZO-1 predominantly associated with a low ZO-1 membrane-
associated score. Noticeably, cancers displaying a low ZO-1

FIGURE 2 | ZO-1 promotes an immune response in vivo. (A) DAPI staining on ear sections containing 21-days sponges soaked in conditioned medium of BEAS-
2B cells transfected with ZO-1 expression vector (ZO-1) or the corresponding pLNCX control vector (pLNCX). Scale bar � 120 µm. (B)Cell density analysis performing by
quantification of DAPI staining. (C) CD3 immunostaining on ear sections containing 21-days sponges soaked beforehand in conditioned medium of BEAS-2B cells
transfected with ZO-1 cDNA or pLNCX empty vector. Scale bar � 80 µm. (D) T lymphocyte density analysis following quantification of CD3 labeling. Data are
expressed as fold induction relative to the respective control conditions in three independent experiments. Means ± SEM; n � 15; *p < 0.05, **p < 0.01.
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FIGURE 3 | Cyto-nuclear localization of ZO-1 in tumor cells is associated with cytotoxic T cells and immunosuppressive cell recruitment in the tumor
microenvironment in human lung cancers. (A) Immunohistochemistry of ZO-1 illustrating a membrane-associated ZO-1 staining (left panel) and a cyto-nuclear ZO-1
labeling (right panel) in human NSCL cancers. (B) Statistical analysis of associations between cyto-nuclear and membranous ZO-1 distribution. 42 human NSCL
carcinomas were analyzed. Samples were scored for membrane-associated and cyto-nuclear ZO-1 distribution as detailed in the material and methods section.
The numbers of cases falling in the different groups are given in the table. (C) Immunohistochemistry analysis showing ZO-1, CD3, CD4, CD8, and Foxp3 staining on
serial sections of the NSCLC tumor samples. (T) indicates tumor clusters. Scale bar � 80 µm. (D) Statistical analysis of associations between cyto-nuclear localization of
ZO-1 and Foxp3 and CD3, CD4, CD8 in NSCLC. (E) Statistical analysis of associations between Foxp3 and CD3, CD4, CD8 in the NSCLC samples.
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membrane-associated score equally distributed between a group
displaying a high cyto-nuclear ZO-1 distribution and a group
displaying a low distribution of cyto-nuclear ZO-1, suggesting an
overall weaker expression of ZO-1 in the latter. We next
compared the immune infiltrate in the low and high cyto-
nuclear ZO-1 distribution groups. We thus analyzed CD3 to
identify T lymphocytes, and CD4 and CD8 to further differentiate
T helper and cytotoxic T lymphocytes respectively (Figure 3C).
We observed that a high cyto-nuclear staining of ZO-1 in lung
tumor cells was associated with an increased density of T
lymphocytes identified as a cytotoxic CD8+ T sub-population
into tumor microenvironment (Figure 3D). Although these
results are rather suggestive of an anti-tumor immune
infiltrate in human NSCLC samples, we also evidenced a
higher density of Foxp3+ immunosuppressive regulatory
T cells in tumors with high cyto-nuclear expression of ZO-1
(Figure 3D). Interestingly, this higher density of Foxp3
regulatory T cells also correlated with a higher density of
CD8+ cytotoxic T cells into the human lung tumor
microenvironment (Figure 3E). Altogether, these results
showed that the presence of cyto-nuclear ZO-1 in tumor cells
correlated with an increased density of CD8+ and Foxp3+

immune cells in NCSLC. These in vivo data suggest that, even
though more numerous, effector T cells might be inhibited by a
higher recruitment of immunosuppressive T cells.

DISCUSSION

If many EMT-related studies have focused on deciphering
intrinsic cellular changes in EMT cells, the role of EMT in
modulating the interactions between epithelial tumor cells and
host cells within the tumor microenvironment is becoming
largely explored. In line with this stream of research, our
results support the involvement of cyto-nuclear ZO-1, a
subcellular localization generated by EMT process, in the
increase of pro-inflammatory chemokine secretion and
monocytic cell chemotaxis in vitro. In vivo, in an ear-sponge
mouse model, we show an enhanced immune recruitment
induced by ZO-1. In human lung cancers, we validate the
presence of an increased immune infiltrate in the
microenvironment of tumors with high cyto-nuclear ZO-1
content.

Thus, we here showed that the overexpression of ZO-1 in
BEAS-2B invasive bronchial cells, which spontaneously maintain
ZO-1 as a cyto-nuclear pool, induces the secretion of higher levels
of several pro-inflammatory cytokines. Our results are in
agreement with the work of Beutheu Youmba et al. who
demonstrated that the subcellular redistribution of membrane
ZO-1 in the cytoplasm of Caco-2 cells treated with methotrexate
increases the expression of pro-inflammatory cytokines, such as
IL-8 (Beutheu Youmba et al., 2012). Our data also complement
works from Brysse et al. and Lesage et al. who established a
correlation between the expression level of IL-8 and a cyto-
nuclear localization of ZO-1 in breast and bronchial cell lines
(Brysse et al., 2012; Lesage et al., 2017). In agreement with this
reported influence of cyto-nuclear ZO-1 on tumor cell secretome,

our in vivo sponge mouse model further demonstrated an
increase of immune infiltrates in sponges soaked in
conditioned media of cells overexpressing ZO-1 after 3 weeks
of sponge implantation in the mouse ears. The establishment of a
T immune response by ZO-1 in our in vivo murine sponge assay
model may be related to our findings in human NSCLC
establishing a correlation between cyto-nuclear expression of
ZO-1 and higher density of CD3+ cells. Among this
population, an important proportion appeared to be cytotoxic
CD8+ T lymphocytes. Similarly, data from the literature also show
significant infiltration of cytotoxic T cells in many cancers
(Oelkrug and Ramage, 2014; Lou et al., 2016; Thompson et al.,
2017). Among these studies, Lou et al. also showed an increase in
T lymphocytes infiltrate in pulmonary adenocarcinomas (Lou
et al., 2016). However, opposite observations have also been
reported in the literature. Chae et al. for instance revealed an
inverse correlation between EMT markers and the infiltration of
T cells in NSCLC (Chae et al., 2018). In their work, ZO-1 was used
as a marker for the loss of expression of epithelial proteins in
EMT+ cells. This somehow contrasts with our study in which we
show an inverse correlation between a low membranous ZO-1
expression and high cyto-nuclear ZO-1 expression in NSCLC,
suggesting that the loss of expression of ZO-1 at the membrane
can be relocated to another cell compartment. In addition, and
partly conciliating these controversies, Romeo et al. proposed the
existence of two potential scenarios on the behavior of EMT+

tumor cells to the recruitment of immune cells (Romeo et al.,
2019): on one hand, EMT+ cells might induce immune infiltrate
exclusion and on the other hand, EMT+ cells might exhaustively
recruit deviated and/or immunosuppressive immune cells. Our
results rather fit the second scenario. Indeed, although CD8+

cytotoxic T immune infiltrate was observed, Foxp3+

immunosuppressive regulatory T cells were also recruited in
tumor areas displaying high cyto-nuclear ZO-1 that may
potentially result in an overall immunosuppressive environment.

The mechanisms leading to ZO-1 relocalization to the
cytoplasmic/nuclear compartments are still largely unclear. A
loosening of cell-cell adhesion that coincides with the loss or
downregulation of transmembrane proteins such as occludin,
may directly contribute to facilitate ZO-1 subcellular
relocalization. Additionally, ZO proteins harbor conserved
nuclear localization and nuclear export motifs that may
contribute to their nuclear shuttling. Further, through numerous
protein/protein interactions domains, ZOs interact with various dual
residency proteins thereby affecting their localization and functions
(Bauer et al., 2010). If the dual localization of ZO-1 is now well
documented (Gottardi et al., 1996; Reichert et al., 2000; Polette et al.,
2007; Bauer et al., 2010), the specific functions endorsed by ZO-1
when distributed in the cyto/nuclear compartment remains elusive.
Previous works from us and others nevertheless support a pro-
tumoral function of cyto/nuclear ZO-1, stimulating EMT or the
expression of MMP-14 (Reichert et al., 2000; Polette et al., 2007).
Reinforcing these observations, our present data more particularly
support that high levels of cyto/nuclear ZO-1 may upregulate pro-
inflammatory molecule secretion and stimulate immune cell
infiltration. It is important to note that inflammation has
conversely been shown to weaken TJs in various inflammatory
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disease contexts (Wang et al., 2016; Bhat et al., 2019) and is a known
potent inducer of EMT in cancer contexts (Suarez-Carmona et al.,
2017), supporting the existence of crucial regulatory loops.

In conclusion, our results come to strengthen existing
literature data that demonstrate an implication of EMT in
regulating immune cell recruitment in the tumor
microenvironment. They more particularly provide new
insights into the role of ZO-1 in such mechanisms.
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