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Although sperm preservation is a common means of personal fertility preservation, its
effects on embryonic development potential need further investigation. The purpose of this
study was to identify key microRNA (miRNA) in cryopreserved sperm and determine the
changes of these miRNAs and their target genes during embryonic development using
cryopreserved sperm. Moreover, the embryonic development potential of cryopreserved
sperm was estimated in assisted reproductive technology (ART), where key miBRNAs and
target genes were validated in sperm and subsequent embryos. Clinical data of embryonic
development from cryopreserved sperm indicated a significant decrease in fertilization rate
in both in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) cases, as well as
a reduction in blastocyst formation rate in ICSI cases. Meanwhile there was a significant
increase in blocked embryo ratio of Day1, Day2, and Day3.5 embryos when frozen-thawed
mouse sperm was used, compared with fresh mouse sperm, suggesting a potential
negative effect of sperm cryopreservation on embryonic development. From frozen-
thawed and fresh sperm in humans and mice, respectively, 21 and 95 differentially
expressed MiRNAs (DEmiRs) were detected. miR-148b-3p were downregulated in
both human and mouse frozen-thawed sperm and were also decreased in embryos
after fertilization using cryopreserved sperm. Target genes of miR-148b-3p, Pten, was
identified in mouse embryos using quantitative real-time PCR (QRT-PCR) and Western blot
(WB). In addition, common characters of cryopreservation of mouse oocytes compared
with sperm were also detected; downregulation of miR-148b-3p was also confirmed in
cryopreserved oocytes. In summary, our study suggested that cryopreservation of sperm
could change the expression of mIRNAs, especially the miR-148b-3p across humans and
mice, and may further affect fertilization and embryo development by increasing the
expression of Pten. Moreover, downregulation of miR-148b-3p induced by
cryopreservation was conserved in mouse gametes.

Keywords: gamete cryopreservation, sperm cryopreservation, miRNA expression, embryonic development, miR-
148b-3p
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INTRODUCTION

With the ever-increasing worldwide rates of cancer, the
postponement of childbearing, and the impact of environment
and  epidemics on  reproductive  health, fertility
preservation—which includes the frozen storage of sperm,
oocytes, embryos, and reproductive tissues—is a meaningful
option to retain fertility before damage occurs, such as
chemotherapy, radiation, infection, or the decline of sperm
quality with increasing age (Zambrano et al, 2020; Oktay
et al, 2021). Cryopreservation of sperm is a well-used
technique in reproductive medicine, but it may be harmful to
sperm (Henry et al., 1993; Gandini et al., 2006; Nangia et al.,
2013). A complex change including ice crystal formation, osmotic
changes, and physical and chemical stress during the
cryopreservation process contribute to the damage to the cell
membrane, internal structures, or gene expression, especially
using the rapid or slow freezing techniques (Hezavehei et al,
2018). Although vitrification reduces these effects and improves
the survival rate, the cryopreservation of sperm, no matter which
freezing technology, could still lead to significant changes in
motility, DNA integrity, reactive oxygen species (ROS) levels,
fertilizing ability, and gene expression profiles induced by these
physical, chemical, and biological factors (Hezavehei et al., 2018;
Valipour et al., 2021). Therefore, further investigation of this
subject will be beneficial for the development of sperm
cryopreservation technologies and will assist people with
fertility preservation, whether for medical or social needs.

Mature spermatozoa are generally transcriptionally and
translationally inert cells. Nearly all sperm RNAs are
microRNA (miRNA); other RNA components include low
levels of mRNAs, Piwi-interacting RNA (piRNA), and repeat-
associated small RNAs (Henry et al, 1993; Hamatani, 2012).
miRNAs, a class of 22 nt and single-stranded RNA molecules,
have functions in post-transcriptional regulation of gene
expression and mediate epigenetic inheritance (Abu-Halima
et al., 2020). Most miRNAs are highly conserved across
species due to their critical biological functions (Pantano et al.,
2015). Increasing evidence found that many miRNAs affected by
the sperm cryopreservation could associate with early embryonic
development in mammals, such as miR-34c, which is decreased in
sperm after being frozen-thawed and further affects the
development of preimplantation embryos in humans and mice
(Lee et al., 2009; Liu et al., 2012; Shi S. et al., 2020); miR-26a plays
critical roles in embryo formation (Abu-Halima et al., 2020),
while miR-19b-3p is a potential biomarker to predict pregnancy
outcome in humans (Krawczynski et al., 2015). In addition,
paternal miRNAs can contribute to the degradation of
maternal mRNAs, the activation of zygotic genes, and
establishment of the key pluripotency transcriptional genes,
indicating that miRNAs play a critical role in developmental
processes (Abu-Halima et al., 2020).

The objective of the current study was to explore the potential
mechanism and effect of sperm cryopreservation in subsequent
early embryo development. We evaluated the embryonic
development of frozen-thawed sperm from clinical data and
mouse experiments. Then, using miRNA sequencing, we
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identified the key conserved differentially expressed miRNAs
(DEmiRs) between frozen-thawed and fresh sperm. Next,
using quantitative real-time PCR (qQRT-PCR), we identified key
miRNAs and their target genes in embryos that developed
following sperm cryopreservation. In addition, we analyzed
common effects on murine gametes, both sperm and oocytes.
Our data showed that differentially expressed miR-148b-3p in
sperm might be associated with fertilization and embryo
formation.

MANUSCRIPT FORMATTING

Materials and Methods

Ethics Statement

The animal experimental procedures were approved by the
Institutional Animal Care and Use Committee of Tongji
University and the Ethics Committee of the Institute of
Animal Science, Tongji University (TJAA06420101). All
human sperm samples were donated for research by patients
who had provided informed consent at Tongji Hospital, with the
approval of the Institutional Ethical Committee for Scientific
Research (2019-062).

Retrospective Cohort Study

The retrospective study was conducted at Tongji University
Hospital. Research protocols adhered to relevant guidelines
and regulations completely. The study of sperm
cryopreservation included female patients aged 25-30 years
who underwent treatments of in vitro fertilization (IVF) or
intracytoplasmic sperm injection (ICSI) with an indication of
tubal abnormality, sequelae of pelvic inflammatory disease, male
factor, or unexplained infertility from January 2016 to September
2020. The anti-Miillerian hormone (AMH), antral follicle count
(AFC), basal follicle-stimulating hormone (FSH), and luteinizing
hormone (LH) levels in eligible women were also normal. Male
sperm indicators were evaluated according to the criteria of the
5th WHO laboratory manual (Cao et al., 2011). Semen with
normal parameters, as defined by 1) total sperm count >39 * 10°
2) sperm concentration >15* 10%/ml; 3) PR (progressive motility)
+NP (non-progressive motility) >40%, PR >32%; 4) sperm
normal morphology >4%, DNA fragmentation index (DFI)
<15%; and 5) normal infectious index, were selected. In
addition, informed consent was not needed, because of the
retrospective nature of the study.

Human and Mouse Sperm Cryopreservation and
Thawing

Mouse sperm were cryopreserved using R18S3 (Easycheck,
Nanjing, China). In brief, adult male mice were sacrificed by
cervical dislocation. Cauda epididymides were carefully dissected
by separating fat, blood vessels, and ligaments and placed into a
120-pl drop of cryoprotectant (CPA) (Easycheck, Nanjing,
China) to remove any blood and fat globules. The tissue was
then transferred into a new CPA drop, where a 1-ml syringe
needle was used to carefully pierce the cauda epididymides and to
agitate the tissues gently to liberate the sperm. Subsequently, the
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sperm were moved from the dish into cryogenic vials (Corning,
NY, United States), were placed in liquid nitrogen (LN) vapor
(3-5cm above the liquid level) for 10-15min, followed by
plunging into LN, and then stored for at least 1 week. Samples
were thawed by incubation at 37°C for 3 min in a water bath with
gentle agitation then moved into an incubator (37°C and 5% CO5)
for 45 min (Khanlari et al., 2021).

Sperm Freezing Medium (Origio, Malov, Denmark) was used
for human semen cryopreservation as described previously
(Henry et al., 1993). Firstly, each semen sample was diluted (1:
1) with freezing medium (Origio). After 10 min at 37°C for
equilibration, the mixture was placed into cryogenic vials
(Corning). The tubes were then frozen in LN vapor for 30 min
and plunged into LN for storage (Abush et al, 2014). Human
sperm samples were thawed through incubation at 37°C for 3 min
in a water bath with gentle agitation.

Mouse Oocyte Cryopreservation and Thawing
Oocytes were vitrified using Vit Kit-Freeze (Easycheck, Nanjing,
China). Briefly, almost 260 oocytes (from 10 ICR mice) were
exposed to equilibration solution (ES) medium for 4 min,
transferred to vitrification solution (VS) for 1 min, then loaded
on a cryotop device (Easycheck, Nanjing, China) within 30 s, and
finally plunged into LN (Yang et al., 2016).

All oocytes were thawed by Vit Kit-Thaw (Easycheck, Nanjing,
China), which include four bottles of thawing solution: DM-1,
DM-2, DM-3, and WM. In short, oocytes were placed in 200 pl
thawing solution (DM-1) at 37°C for 1 min and transferred to two
drops of thawing solution (DM-2 and DM-3) in turn, each for
3 min, then were put into another thawing solution (WM) for
3 min and cultured later in incubators (5% CO, and 37°C) for
30 min to recover (Barberet et al., 2020).

In Vitro Fertilization

For mouse superovulation, female mice were injected with
5-10IU of pregnant mare serum gonadotropin (PMSG),
followed by an injection of 5-10IU human chorionic
gonadotropin (hCG) 48h later. After a further 14-16h, the
cumulus-oocyte complexes (COCs) were collected from the
mouse oviducts (Yao et al., 2019).

For mouse IVF, cumulus—-oocyte complexes were placed in a
droplet of frozen-thawed or fresh sperm capacitated in HTF for
6-8h in the incubator (37°C, 5% CO,). Subsequently, zygotes
were quickly washed three times in KOSM media and then
cultured in KSOM. The mouse embryo culture continued till
Day3.5 in an incubator set at 37°C and 5% CO, (Dumollard et al.,
2008; Karimi et al., 2017; Azizi et al., 2020).

RNA Extraction, Small RNA Library Construction,
Sequencing, and Data Pre-Processing

In our experiment, three kinds of samples, human semen, mouse
sperm, and mouse oocyte, were used for miRNA sequencing.
Considering the low miRNA content in sperm and oocytes, we
collected multi-samples directly for RNA extraction in order to
meet the requirements for miRNA sequencing, then the RNA was
used to construct the cDNA library; the same amount of cDNA
samples was input for miRNA sequencing.

Sperm Cryopreservation Affected Embryonic Development

Each human sperm sample consisted of a combination of three
human semen samples in a group, while each mouse sperm
sample was a mixture of five murine semen samples, and each
mouse oocyte sample consisted of 200-300 oocytes from 10
female mice. Each fresh group and frozen-thawed group
included three mixed samples. Then total RNA was extracted
using Trizol reagent (Invitrogen, CA, United States). The quality
and integrity of RNA were evaluated using an RNA 6000 Nano
LabChip Kit (Agilent, CA, United States) (Yuan et al,, 2015). The
miRNA libraries for samples were constructed and sequenced
using the Illumina Hiseq-2000 platform. Concisely, each sample
of genome RNA (gRNA) was used to construct miRNA libraries
using TruSeq Small RNA Sample Prep Kits (Illumina, CA,
United States). The miRNA was ligated with 3’- and 5'- end
adapters, then first-strand cDNA was synthesized and subjected
to PCR amplification. Afterwards, the DNA was purified by
electrophoresis on a 6% Novex TBE page gel at 145V for
60 min. The amplified DNA fragments (18-26 nt) were used
to construct miRNA libraries, while library quality was
assessed using a High Sensitivity DNA Chip Kit (Agilent, CA,
United States) (Tsaur et al., 2007). The raw data were processed
by using ACGT101-miR (LC Sciences, TX, United States). The 3’
adaptor and junk reads were removed; subsequently, high-quality
reads with a length of 18-26 nt were selected. The clean data were
aligned with miRBase 22.0 (human and mouse) by BLAST search
(McDonald et al.,, 2011; Kozomara and Griffiths-Jones, 2014;
Solly et al., 2017).

Identification of Differentially Expressed
miRNAs

Based on normalized deep-sequencing counts, the DEmiRs of oocyte
samples were selected by using Fisher’s exact test and chi-squared
2 x 2 test; a p-value of <0.05 was considered as the threshold.

DEmiRs of sperm samples, both human and mouse, were
identified using analysis of variance (ANOVA) for multiple
comparisons. The significance threshold was set to 0.05 in
each test. In addition, most novel and conserved miRNAs
were lowly expressed; thus, these miRNAs were excluded
(Rybak et al., 2009; Xiong et al., 2014).

The Prediction of Target Genes and Functional
Enrichment Analysis

MiRwalk3.0 (https://mirwalk.umm.uni-heidelberg.de), which
includes three miRNA-target prediction programs (miRDB,
miRTarBase, and Targetscan), was used to predict the target
genes of DEmiRs. Overlapped target genes with at least two
prediction programs were considered as the potential target
genes. Functional enrichment analysis of the target genes was
performed using miRwalk 3.0 and DAVIAD (https://david.
ncifcrf.gov/); only required categories with an adjusted value
of p<0.05 were considered significantly enriched (Mazzeo
et al., 2018).

qRT-PCR for Key miRNAs and Target Genes

We set out to evaluate the expression of key miRNAs and target
genes using qRT-PCR. Firstly, total sample RNA, including
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human sperm samples, mouse sperm, mouse oocytes, and
120-170 embryos, were isolated, then the first-stranded cDNA
was synthesized using a PrimeScript ™ RT reagent kit (Takara
Bio, Kusatsu, Japan); the reverse transcription reaction was
performed at 37°C for 15 min, 42°C for 30 min, and 85°C for
5 s; QRT-PCR was performed with a TB Green Premix Ex Taq™ II
kit (Takara Bio, CA, United States) on a Realtime PCR
instrument (Roche); the PCR amplification conditions were
85°C for 10's, followed by 40 cycles of 95°C for 55, and 60°C
for 30 s (Alexandri et al., 2020).

In our study, all qRT-PCR experiments were repeated a
minimum of three times; U6 (miRNA) and [-actin (target
gene) were used as the reference gene. The relative expression
level of miRNAs and target genes were analyzed using the 2744
method. Furthermore, all qPCR data were analyzed for significant
differences using the independent-sample f-test in GraphPad
(v.8.0.2); p<0.05 was considered as a statistically significant
difference. In addition, all miRNA primers (one RT primer
and a pair of qPCR primers for each set) were designed by
Vazyme (Vazyme, NanJing, China), while mRNA primers were
designed by primer3plus (http://www.primer3plus.com/cgi-bin/
dev/primer3plus.cgi) and PrimerSelect (Plasterer, 1997;
Friedman et al., 2009).

Western Blot

About 150-250 embryos from 10 female mice at each stage were
collected and treated with RIPA lysis buffer. The total protein was
extracted, then the protein concentration was measured using the
BCA method. Then, these proteins (5 pug/well) were boiled at 95°C
for 10 min, separated by 10% w/v SDS-PAGE (sodium dodecyl
sulfate polyacrylamide gel electrophoresis) at 110 V for 60 min
and transferred to hydrophobic polyvinylidene difluoride
membranes (Hybond-P) at 220mV for 120 min. After
blocking in 5% bovine serum albumin (BSA) at room
temperature for 1h, membranes were incubated with primary
antibodies, anti-PTEN (abcam, ab267787) and anti-B-actin
(abcam, ab8226) at 4°C overnight and incubated with
secondary antibody for 1h. Finally, the proteins were
visualized by Gel DOC™ XR* with Image Lab™ Software
(Bio-Rad, HL, United States) and analyzed by Image] software
ver. 1. 8.0 (National Institutes of Health, WI, United States)
(Hammer et al., 2005).

Clinical Data and Statistical Methods

The analysis of clinical data included general demographic
characteristics, sperm parameters, and clinical embryologic
development outcomes. Categorical data were expressed as
frequency and percentage, while differences in these variables
between the fresh and frozen-thawed groups were assessed
by Pearson’s chi-square x* analysis, using Fisher’s exact test
for expected frequencies <5. Continuous data were
represented as mean + SD, and between-group differences
were assessed by the f-test and Wilcoxon rank sum test.
All clinical statistical analyses took place using SPSS (SPSS
Inc., IL, United States). A two-sided p-value of <0.05 was
taken to indicate statistical significance (Cihan and Esen,
2021).

Sperm Cryopreservation Affected Embryonic Development

Result
Effect of Sperm Cryopreservation on Embryonic

Development in Clinical Assisted Reproductive
Technology Cases and Mouse IVF Embryos

In this retrospective cohort study of human sperm
cryopreservation in assisted reproductive technology (ART)
cases, clinical data of 999 fresh oocytes with fresh sperm and
128 fresh oocytes with donor sperm (frozen-thawed sperm) in
IVF cases as well as 538 fresh oocytes with fresh sperm and
836 fresh oocytes with donor sperm in ICSI cases were
analyzed. There significant between-group
differences  in  the  general clinical indicators
(Supplementary Table S1). The motility rate after being
frozen-thawed significantly decreased (Supplementary
Table S2). The results for embryonic development were as
follows: cleavage rate and embryo rate were similar between
the two groups; fertilization rate was 68.37% with fresh sperm,
and this significantly decreased to 53.91% with frozen-thawed
sperm in IVF cases; meanwhile in ICSI cases, the respective
figures were 79% with fresh sperm and a significant decrease
to 70.69% with frozen-thawed sperm. These results reflected
that spermatozoa cryopreservation in humans made a notable
effect of fertilization in both IVF and ICSI cases. Moreover,
the blastocyst formation rates in IVF cases were similar, but
were significantly decreased in ICSI cases, from 50.72% with
fresh sperm to 34.31% with frozen-thawed sperm, further
indicating the effect of sperm cryopreservation on blastocyte
development, especially in ICSI cases (Table 1).

In mouse embryonic experiments, we analyzed Dayl, Day2, and
Day3.5 embryos between the frozen group (frozen-thawed sperm
were co-cultured with fresh oocytes during IVF) and fresh group
(fresh sperm were co-cultured with fresh oocytes during IVF).
Compared to the fresh group, there were decreased odds of
embryos formation after sperm cryopreservation [88.54% of Dayl
embryo rate in the fresh group vs. 69.82% in the frozen group; 82.86%
vs. 57.20% of Day2 embryo rate and 80.86% vs. 59.21% of Day3.5
embryo rate, respectively] (Table 2). These data of clinical ART cases
and mouse experiments showed that frozen-thawed sperm
significantly affected early embryonic development.

were no

miRNA Expression Characteristics of

Cryopreservation on Sperm Across Humans and Mice
To investigate the molecular effects of sperm
cryopreservation, we examined and compared the miRNA
expression of frozen-thawed and fresh sperm in humans and
mice. Twenty-one DEmiRs were detected in human frozen-
thawed sperm compared with fresh sperm, with 18
upregulated and 3 downregulated miRNAs (Figure 1A).
qRT-PCR validated that hsa-miR-140-5p, miR-19b-3p,
miR-664a-3p, miR-509-3-5p, miR-106b-5p, miR-30a-5p,
and miR-342-3p were significantly upregulated, while hsa-
miR-328-3p, hsa-miR-590-3p and hsa-miR-210-5p were
downregulated in the frozen group (Figures 1C-L). These
DEmiRs were mainly involved in the following: extrinsic
apoptotic signaling pathway in the absence of ligands,
cellular response to DNA damage stimulus, actin
cytoskeleton organization, in utero embryonic development,
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TABLE 1 | Reproductive outcomes for women in the frozen-thawed sperm group and fresh sperm group.

Variable

Fresh sperm vs. frozen-thawed sperm (IVF)

Fresh sperm vs. frozen-thawed sperm (ICSI)

Fresh sperm

Fertilization rate 683/999(68.37 %) 69/128(53.91%)
Cleavage rate 664/683(97.22%) 68/69(98.55%)
Day3 qualified embryo rate 587/664(88.40%) 61/68(89.71%)
Day3 high qualified embryo rate 442/664(66.57 %) 48/68 (70.59%)

Blastocyst formation rate 107/259 (41.31%) 13/28 (46.43%)

ICSI, intracytoplasmic sperm injection; IVF, in vitro fertilization. Bold values means P<0.05.

TABLE 2 | Reproductive outcomes for mice in the frozen-thawed sperm group
and fresh sperm group.

Variable Fresh group Frozen group p-value
Day1 309/349(88.54%) 236/338(69.82%) 0.001
Day2 290/350(82.86%) 1565/271(57.20%) 0.001
Day3.5 340/420(80.95%) 90/152(59.21%) 0.001

Bold values means P<0.05.

positive regulation of cell migration, and regulation of small
GTPase mediated signal transduction (Figure 1B). In
addition, up-DEmiRs were closely related to in utero
embryonic development, cellular response to DNA damage
stimulus, actin filament organization, cell cycle, and positive
regulation of apoptotic process; (Supplementary Figure 1A)
down-DEmiRs were enriched in nervous system development,
negative regulation of GO to G1 transition, negative regulation
of extrinsic apoptotic signaling pathway via death domain
receptors, and DNA damage checkpoint, (Supplementary
Figure 1B) similar to the biological process (BP) result of
up-DEmiRs.

Meanwhile, 95 DEmiRs, including 19 upregulated and 76
downregulated miRNAs (Figure 2A), were found in mouse
frozen-thawed sperm, which were enriched in: positive
regulation of apoptotic process, actin cytoskeleton
organization, protein localization to plasma membrane, and
cell proliferation and development (Figure 2B).

Further detecting the common characteristics of
cryopreservation across the species, we identified six
homologous DEmiRs (miR-148b-3p, miR-328-3p, miR-30b-
5p, miR-106b-5p, miR-140-5p, and miR-19b-3p) between
humans and mice (Figure 2C). qRT-PCR confirmed that
miR-30b-5p and miR-148b-3p were downregulated in human
and mouse frozen-thawed sperm (p < 0.05; Figures 2D, E),
while miR-140-5p was upregulated (p <0.05; Figure 2F);
these three common DEmiRs were enriched in the following:
negative regulation of GO to G1 transition, positive regulation of
mitotic cell cycle and histone deacetylation, in utero embryonic

development, regulation of microtubule cytoskeleton
organization, and regulation of actin cytoskeleton
organization (Figure 2G). These results suggested the

potential influence of sperm cryopreservation on sperm
miRNA profile and embryonic development across species.

Frozen-thawed sperm

p-value Fresh sperm Frozen-thawed sperm p-value
0.001 425/538(79.00%) 591/836(70.69%) 0.001
1.000 415/425(97.65%) 584/591(98.82%) 0.152
0.748 347/415(83.61%) 500/584(85.62%) 0.385
0.502 239/415(57.59%) 347/584(59.42%) 0.563
0.602 105/207(50.72%) 70/204(34.31%) 0.001

Validation of Key miRNAs and Target Genes in
Different Stages of Embryonic Development

We set out to further validate the influence of three key
miRNAs related to sperm cryopreservation on mouse
embryo development. Dayl, Day2, and Day3.5 embryos
after fertilization using fresh sperm and frozen-thawed
sperm with fresh oocytes (fresh group and frozen group)
were validated by qRT-PCR, respectively (Figure 3A).
Notably, consistent with frozen-thawed sperm, miR-148b-
3p expression levels were significantly lower starting from
Dayl to Day3.5 in the frozen group compared with the fresh
group (p <0.01; Figure 3B); miR-140-5p expression levels
were increased at Day2 (p < 0.05; Figure 3C), while miR-30b-
5p expression levels were significantly upregulated at Day3.5
(p < 0.05; Figure 3D) in the frozen group. Thus, miR-148b-3p
was chosen for further investigation.

Next, the interactions between miR-148b-3p and its potential
target genes as well as pathways were predicted using miRwalk3.0
and DAVID. The result showed that a total of 48 targeted genes
were associated with the negative regulation of cell migration, the
positive regulation of sequence-specific DNA binding transcription
factor activity, mitochondrial transport, and positive regulation of
apoptotic process and cell division (Figure 4A). We examined the
expression level of potential genes which enriched in these
significant terms. Considering that miRNA negatively regulates
gene expression by degrading target mRNA (Wu et al., 2020), we
found that the expression level of Pten was significantly increased
at all developmental stages (Figure 4B); other genes, such as Jmy,
were only upregulated on Day2, while Bbc3 and Cdk19 were
downregulated firstly and upregulated on Day3.5 (Figures
4C-F). We also detected some downregulated target genes of
miR-148b-3p on Dayl and Day2, including Esrl, Robol, and
Ino80, and on Day3.5 including Robol, Ino80, and Arppl9
(Figures 4G-Y). Previous articles have proved that PTEN
serves as a downstream target of miR-148b-3p in mouse and
human cells. Thus, we further verified the protein level of
PTEN on the early embryo using Western blot. The result
showed that PTEN was increased on Day2 than on Dayl but
sharply decreased in Day3.5 in both fresh and frozen-thawed
groups, while PTEN was significantly increased at each stage of
frozen-thawed group than in the fresh group (Figure 4Z). In
summary, Pten may be a critical gene regulated by miR-148b-3p
since it was enriched in the PI3K/AKT and other key pathways of
early embryonic development.
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FIGURE 1 | Analysis of differentially expressed miRNAs (DEmiRs) in human sperm: (A) volcano plot of DEmiRs between human fresh sperm and frozen-thawed
sperm; (B) biological process (BP) enrichment analysis of DEmiRs in human sperm; (C-L) the expression levels of miR-140-5p, miR-19b-3p, miR-664a-3p, miR-509-3-
5p, miR-106b-5p, MiR-30a-5p, MiR-342-3p, MiR-328-3p, miR-590-3p, and MiR-210-5p in human sperm, as detected by RT-PCR (mean + SD, #p < 0.05,
#xp < 0.01).

miRNA Expression Characteristics of Cryopreserved
Mouse Gametes

To explore the common effects of cryopreservation on mouse
gametes, we also performed miRNA sequencing on
cryopreserved oocytes. The results identified 248 DEmiRs
(72 upregulated and 176 downregulated) in frozen-thawed

oocytes (Figure 5A). In addition, we combined the DEmiRs
between mouse sperm and oocytes and found 4 commonly
upregulated and 34 downregulated DEmiRs in frozen gametes
compared with fresh gametes (Figure 5A). Functional
enrichment analysis showed that these upregulated
miRNAs were mainly associated with the following terms:
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small GTPase mediated signal transduction, regulation of
microtubule cytoskeleton organization, positive regulation
of NF-kappaB transcription factor activity, regulation of
apoptotic process, positive regulation of mitotic cell cycle,
and glucose metabolic process (Figure 5B). The
downregulated miRNAs mainly affected PI5P, PP2A, and
IER3 regulate PI3K/AKT signaling, PIP3 activates AKT
signaling, RAB GEFs exchange GTP for GDP on RABs,
Rho GTPase cycle, and RAF/MAP kinase cascade
(Figure 5D). Notably, using qRT-PCR, we also validated
that the expression level of miR-148b-3p was significantly
downregulated in frozen-thawed oocytes (Figure 5C). The
data described above hinted that the effects on miRNA
expression profiles may be similar for both sperm and
oocyte cryopreservation. These data in cryopreserved sperm
and oocytes also indicated that downregulation of miR-148b-
3p induced by cryopreservation was conserved in mouse
gametes and may further affect embryonic development.

DISCUSSION

Fertility preservation is a meaningful option to retain fertility for
people with medical needs such as the damage of chemotherapy
and radiation in cancer therapy, the epidemic on reproductive
health, or with social needs such as the postponement of
childbearing. Sperm cryopreservation is a well-used technique

in reproductive medicine (Baram et al, 2019). Increasing
evidence suggests that cryopreservation greatly affects sperm
as well as embryo development; however, to date, the
molecular mechanisms have not been completely understood
(Garcia-Lopez and del Mazo, 2012).

Many previous studies have found that there was no difference
between frozen and fresh sperm on fertilization and embryonic
development (Sakamoto et al., 2005; Yu et al., 2018), but other
studies, including ours, have found that cryopreservation had an
impact (Loomis et al., 1983; De Croo et al., 1998; Kanto et al,,
2009; Roca et al., 2013). Our clinical data of ART cases and mouse
embryonic experiments indicated that sperm cryopreservation
does indeed affect sperm motility and early embryonic
development, especially the fertilization rate and blastocyst
formation rate, but the success rate of the frozen sperm group
was still high, which is an important reason for the wide
application of frozen sperm. In addition, a statistically similar
blastocyst rate was shown in blastocyst formation rate between
the clinical data of the two IVF groups, which may be the reason
that the tremendous difference (107/259 vs. 13/28; 9-fold) in
sample size induced that the statistical power (1-B) was lower
than 0.8 (Song and Gilbody, 1998), leading to no significant
difference results. Furthermore, as a limitation of this study, we
only focused on the effect of frozen sperm on human and mouse
preimplantation embryo development and did not check the final
clinical outcome. In view of the strong self-correction ability, the
effect of frozen sperm on early embryo development may be
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corrected and further reduce the difference with fresh sperm
(Grau et al., 2011).

miRNAs can suppress translation in gene expression during
mammalian developmental transitions, including the oocyte-to-
zygote (OZA) transition, ZGA transition, and the development of
embryos. Increasing evidences found that many miRNAs
associated with the cryopreservation of sperm in mammals are
related with fertility, the development of early embryo, and
pregnancy. Among the 11 DEmiRs that we identified in
human frozen-thawed sperm, hsa-miR-106b-5p (Wei et al,
2017; He et al,, 2020), hsa-miR-590-3p (Shi X. et al., 2020),
hsa-miR-328-3p (Bai et al., 2021), and hsa-miR-140-5p (Nie et al.,
2019; Jiao et al., 2020) may cause a decreased fertilization rate in
IVF and ICSI cases when using cryopreserved sperm since these
miRNAs are all related to cell cycle and mitosis. miR-106b-5p is a
key miRNA morula and blastocyst developmental state, having
potential interactions with embryo-expressed genes (Sanchez
et al, 2021). Upregulated miR-328-3p is a biomarker in
teratozoospermia and may decrease fertilization and embryo
formation rate (Corral-Vazquez et al., 2019). Moreover, for the
three common DEmiRs between human and mouse sperm, it is
reported that overexpression of miR-140-5p significantly inhibits

cell proliferation and promotes cell apoptosis in chronic myeloid
leukemia cells (Geng et al., 2020; Jiao et al., 2020), while miR-30b-
5p can promote cell proliferation and cell cycle progression in
cancer (Qin et al, 2017), and miR-148b-3p is correlated with
fertility rate (Chen et al., 2018; Sekulovski et al., 2021). More
importantly, in our study, downregulation of miR-148b-3p,
according to qRT-PCR analysis, in both human and mouse
frozen-thawed sperm may still affect the expression of miR-
148b-3p during subsequent embryonic development, leading to
the significantly lower embryo formation rate. Then, we screened
out some target genes of miR-148b-3p, including Pten, Jmy, Bbc3,
and Cdk19, which may be associated with mouse embryonic
development. Available evidence shows that Cdk19 (He et al,
2020) and Bbc3 (Klimovich et al, 2020) are significantly
upregulated by qRT-PCR at Day3.5. These are essential factors
in early embryonic development, regulating trophoblast invasion
and reflecting developmental changes in the early embryo. Pten
(Qi et al, 2020) and Jmy (Lin et al, 2015), which were
significantly increased from Day2 to Day3.5, are key genes
regulating cell apoptosis during embryo development. In
accordance with previous articles, we proposed that the target
genes of downregulated miR-148b-3p should be increased in the
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frozen group compared to the fresh group during embryonic
developmental stages (Chen et al, 2018). Moreover, previous
research had proved that Pten serves as a downstream target of
miR-148b-3p in mouse and human cells (Shan et al., 2021; Zhang
and Mao, 2021), and our result has showed that the protein level
of PTEN in the early embryo was increased in the frozen group. In
all, Pten, a significantly upregulated gene in the early embryo,
may be the key target gene regulated by miR-148b-3p, which may
be involved in early embryonic development, cell migration,
epithelial morphogenesis, and cell apoptosis in sperm
cryopreservation (Di  Cristofano et al, 1998). Moreover,
downregulated miR-148b-3p in sperm, according to recent
studies, may further enhance the role of Pten in early embryonic
development and mediating the EGA and implantation of embryo
by phosphatidyl-inositol-3-kinase PI3K/AKT signaling pathway
(Qi et al, 2020; Zhang and Mao, 2021).

Oocyte freezing, including “social egg freezing” and “medical
egg freezing,” is an important technique (Kool et al., 2018; Barberet
et al., 2020). As clinical human samples were difficult to obtain,
mouse oocyte miRNAs were analyzed in this study. miRNA
sequencing data in mouse gametes confirmed that these
common DEmiRs may similarly and negatively affect apoptosis,
the PI3K/AKT signaling pathway, and cell cycle pathway in gamete
integrity and later embryonic development. The key miRNA to be
validated in sperm, miR-148b-3p, was also found to be
downregulated in mouse frozen-thawed oocytes, so it may also
affect apoptosis and the ATP pathway in embryos. In addition,
considering that frozen-thawed oocytes are usually fertilized by
ICSI in clinical ART cases and frozen-thawed sperm were used for
IVF in this study, the gene expression of embryos with frozen-
thawed oocytes were not further explored.

In conclusion, the clinical effects and the miRNA profile of
sperm cryopreservation were described in the present study.
miR-148b-3p was found to be downregulated in both mouse
sperm and oocytes and was associated with subsequent
fertilization and embryonic development. Furthermore, Pten
might be a direct and functional target of miR-148b-3p during
early embryonic development following fertilization by
cryopreserved sperm.
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