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Tumor cells undergoing epithelial to mesenchymal transition (EMT) and immune cells
in tumor microenvironment (TME) reciprocally influence each other. Immune cells, by
supplying TME with bioactive molecules including cytokines, chemokines, enzymes,
metabolites, and by physical interactions with tumor cells via their receptors, represent
an important factor that affects EMT. Chronical inflammation in TME favorizes tumor
growth and invasiveness and stimulates synthesis of EMT promoting transcription
factors. Natural killer (NK) cells, owing to their unique ability to exert cytotoxic function
independent of major histocompatibility (MHC)-mediated antigen presentation, play a
significant role in the control of metastasis in colorectal cancer (CRC). Although, the
cross-talk between immune cells and tumor cells in general favors the induction of
EMT and inhibition of antitumor immune responses, there are some changes in the
immunogenicity of tumor cells during EMT of CRC cells that increase their susceptibility
to NK cell cytotoxic lysis. However, suppressive TME downmodulates the expression of
activating NK cell receptors, decreases the expression of activating and increases the
expression of inhibitory NK cell ligands on tumor cells, and impairs NK cell metabolism
that altogether negatively affects the overall NK cell function. Furthermore, process of
EMT is often associated with increased expression of programmed cell death ligand
(PD-L) and expression of immune checkpoint molecules PD-1, TIGIT, and TIM3 on
functionally exhausted NK cells in TME in CRC. In this review we discuss modalities
of cross-talk between tumor cells and NK cells, with regard of EMT-driven changes.

Keywords: NK cells, tumor microenvironment, NK cell receptors, epithelial to mesenchymal transition, colorectal
cancer
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INTRODUCTION

Natural killer (NK) cells are a distinct population of innate
lymphoid cells that are able to eliminate malignantly
transformed, damaged or infected cells by cytotoxic lysis.
Unlike cytotoxic T cells, NK cells have a unique ability to
directly recognize stressed cells via their germline encoded
receptors and promptly exert cytotoxic function without major
histocompatibility (MHC) class I molecule restriction (Caligiuri,
2008). NK cells are divided into two functional subsets, according
to the expression density of their surface marker, CD56 neural
adhesion molecule: low density of CD56 i.e., cytotoxic CD56%™
with abundant perforin and granzyme granules, and high density
of CD56 the predominantly regulatory subset CD56°"8" with
the ability to produce interferon-gamma (IFN-y), tumor necrosis
factor (TNF), interleukin (IL)-10, IL-13, and granulocyte-
macrophage colony-stimulating factor (GM-CSF). In this sense,
NK cells also promote adaptive immune responses by secreting
cytokines (Cooper et al., 2001; Vivier et al., 2011).

NK cell-mediated antitumor response is tightly regulated by
the balance of signals transmitted by activating and inhibitory
receptors and their ligands on tumor cells. NK cells have the
ability to distinguish stressed cells (infected, tumor, etc.) from
healthy cells by the two complementary recognition strategies
that can be termed as “missing self” and “stress induced self-
ligands” (Ljunggren and Kirre, 1990; Jurisi¢ et al., 2020).

NK cells express inhibitory killer cell immunoglobulin-
like receptors (KIR)s that inhibit NK cell cytotoxic activity
toward “normal” i.e., healthy cells that express MHC class I
molecules (Campbell and Purdy, 2011). According to “missing
self” hypothesis, activation of NK cells occurs in contact with
malignant cells that have lost MHC class I molecules and have
become susceptible to NK cell lysis (Ljunggren and Kérre, 1990).
Other important groups of inhibitory receptor that have binding
affinity toward MHC molecules are c-type lectin receptor that
consists of CD94-NKG2A heterodimer and specifically binds to
non-classical MHC class Ib molecules (i.e., HLA-E) (Iwaszko
and Bogunia-Kubik, 2011), leukocyte Ig-like receptors (LIR) that
recognize classical MHC class I molecules, and also interact
with non-classical MHC class I and bacterial proteins with
low binding affinities (Heidenreich et al., 2012). Inhibitory KIR
(KIRDL) receptors suppress NK cell activity through a receptor-
associated immune tyrosine based inhibitory motif (ITIM) by
recruiting protein tyrosine phosphatases (SHP-1 and SHP-2)
responsible for dephosphorylation of tyrosine kinases associated
with activating NK cell receptors (Campbell and Purdy, 2011).
There are also some inhibitory NK cell receptors that are
able to recognize non-MHC ligands like killer cell lectin-like
receptor G1 (KLRG1) that interacts with cadherin adhesion
molecules (Farag and Caligiuri, 2006; Konjevi¢ et al., 2016;
Miiller-Durovic et al., 2016).

NK cell cytotoxicity can be activated in contact with malignant
cells that express stress-induced ligands (“stress induced self”)
that bind to activating NK cell receptors. Activating NK cell
receptors include several receptor families such as natural
cytotoxicity receptor (NCR) family, NKp46, NKp30, and
NKp44, the C-type lectin receptor family [natural killer group

2D (NKG2D), CD94/NKG2C, CD94/NKG2E, CD94/NKG2F],
costimulatory receptor CD226 (DNAX accessory molecule-1,
DNAM1), natural killer receptor-P1 (NKR-P1 family) CD161,
activating receptors that belong to the KIR family (KIR2DSI,
KIR2DS4, and KIR2DL4), and Fc fragment binding receptor IIIA
(CD16) that cooperate and determine NK cell cytotoxicity against
transformed cells (Farag and Caligiuri, 2006; Hudspeth et al,,
2013; Konjevi¢ et al., 2016). Most of the activating receptors
transmit signals through the phosphorylation of the tyrosine
(Tyr) residue in specific Tyr-based structural motifs (ITAM)s
(Purdy and Campbell, 2009). NKG2D is a particularly relevant
activating receptor that recognizes a group of MHC class I
polypeptide-related sequence A and B (MICA and MICB) and
UL16 binding protein molecules (ULBP1-6), which are stress-
inducible molecules expressed on malignantly transformed cells
(Lopez-Larrea et al., 2008; Zafirova et al., 2011).

Growing knowledge indicates that aside from inhibitory
and activating KIRs, some receptor families are composed of
paired receptors that, in spite of binding to similar ligands,
have opposite, activating, or inhibitory function. In this sense a
typical example is a family of nectin-binding adhesion molecules
that includes activating receptor CD226 (DNAX accessory
molecule-1, DNAMI), and its inhibitory counterparts CD96 [T
cell-activated increased late expression (TACTILE)] and T-cell
immunoglobulin and ITIM domain (TIGIT) receptors. These
receptors bind nectin proteins, CD112 (nectin-2), and CD155
[poliovirus receptor (PVR)] and have been recently identified as
crucial regulators of NK cell function (Martinet and Smyth, 2015;
Konjevi¢ et al., 2017a).

NK cells are not only found in peripheral blood (PB) but also
populate different organs and tissues as blood-tissue circulating
or tissue-resident, and participate in immunosurveillance of
disseminated cancer cells (Vitale et al., 2020). NK cells are capable
of killing multiple tumor targets that enter into circulation and
are also able to enter the tumor site by extravasation through
the tumor vasculature. The major chemokine receptor involved
in NK cell migration toward the tumor is CXCR3 that binds
to the tumor-derived chemokine (C-X-C motif) ligands CXCL9,
10, and 11 (Wennerberg et al., 2014, 2015). In colorectal cancer
(CRC), increased CXCL10 expression has been found in tumor
tissue compared to the adjacent normal tissue (Zou et al., 2020).
It has been shown that in the settings of therapy of CRC with
adoptive cell transfer, mostly CXCR3-positive expanded NK cells
infiltrate tumors (Wennerberg et al., 2015). However, in CRC NK
cells are mostly present in adjacent mucosa and organ stroma but
not in direct contact with tumor cells despite of the high level
of local chemokines (Halama et al., 2011). Tumor infiltrating NK
cells in most tumors, including CRC, are usually low cytotoxic
CD56°"8M or poorly functional CD564™ (Levi et al., 2015), and
according to one study able to secrete proangiogenic cytokines
and proangiogenic factors (Bruno et al., 2018). Therefore, the
scarce number of NK cells in the tissue of solid tumor and
their poor functionality represent the considerable obstacle
for unambiguous conclusion weather tumor infiltrating NK
cell are relevant for disease prognosis. Some studies have
reported the longer disease-free survival of CRC patients with
increased NK cell infiltration of the tumor (Coca et al., 1997;
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Menon et al., 2004), while several studies showed no effect of NK
cell inflation for disease prognosis (Sandel et al., 2005; Halama
et al, 2011). Studies investigating the joint effect of immune cell
subsets in the tumor milieu on disease prognosis in CRC have
shown that the presence of both NK cells and CD8" T cells in
CRC has a favorable prognostic impact (Sconocchia et al., 2014;
Coppola et al., 2015).

The majority of tumors lack or express low levels of MHC
class I molecule and therefore escape T cell immune surveillance.
NK cells are present in peripheral blood, lymph nodes, and may
owing to their unique ability to display MHC I-independent
cytotoxicity play an important role in immunosurveillance
of disseminated tumor cells in tumor draining lymph nodes
(Vuleti¢ et al, 2013; Ali et al., 2014) and in eradication
of distant metastasis (Lakshmikanth et al., 2009; Lorenzo-
Herrero et al., 2018). However, in malignancies tumor-derived
immunosuppressive factors often affect the expression of NK
cell receptors that together with cytolytic molecule dysregulation,
leads to inhibition of NK cell function (Konjevi¢ et al., 2012,
2017a).

Regulation of Epithelial to Mesenchymal

Transition
The metastatic cascade involves detachment of tumor cells from
surrounding cells, local invasion of surrounding tissue and
tumor cell entrance into nearby vasculature. Concurrently, tumor
cells partially lose epithelial markers; acquire mesenchymal-like
phenotype and migratory i.e., invasive properties during the
process of epithelial to mesenchymal transition (EMT). Detached
tumor cells travel via bloodstream or lymphaticum, extravasate
via transendothelial migration and invade distant tissues and
organs. The ability of certain tumors to form metastasis is
a result of a plethora of factors. Intrinsic i.e., tumor cell-
associated factors such as epigenetic changes and signaling
pathways activated by oncogenic mutations are submitted
to selective pressure and shaped by tumor-extrinsic factors
such as hypoxia, low pH, antitumor drugs, host’s antitumor
immune responses, growth factors, cytokines and other bioactive
molecules in tumor microenvironment (TME) that favorize
specific malignant traits (Fedele and Melisi, 2020). Cytokines and
immunosuppressive mediators in TME are produced by tumor
cells, cells of organ stroma, including vasculature, fibroblasts,
and by immune cells which create an inflammatory environment
that further affects all resident and infiltrating cells. In this
sense, TME induces differentiation of fibroblasts into cancer
associated fibroblasts (CAF)s which also produce cytokines,
growth factors and further potentiate the immunosuppressive
and growth promoting immune milieu of tumors (Schiavoni
et al, 2013). Inflammation in TME contributes to tumor
growth and progression. Accordingly, EMT is also influenced
by a crosstalk between tumor cells and the cells in the
TME, including immune cell subsets (Romeo et al., 2019;
Fedele and Melisi, 2020).

In the TME, a multitude of different cell types are present: cells
of innate immune system [dendritic cells (DC)s, macrophages,
NK cells], cells of adaptive immune system (T and B cells)

and suppressive cells of immune system [myeloid-derived
suppressor cells (MDSC)s, regulatory T cells (Treg)s, and
immunosuppressive subset of macrophages M2, tumor associated
macrophages (TAMs)], CAFs as well as tumor cells and
residing cells of organ tissue. All these cells produce cytokines,
growth factors and other mediators that induce EMT of tumor
cells and also affect function of tumor infiltrating NK cells.
A number of inflammatory cytokines in TME induce EMT:
interleukin (IL)-6 produced by a variety of different cell types
such as fibroblasts, endothelial cells, macrophages and T cells,
IL-8 produced by macrophages, endothelial cells fibroblasts,
and tumor cells, TNF produced by the cells of the innate
immune systems (macrophages, NK cells), activated T cells,
fibroblasts and endothelial cells, transforming growth factor beta
(TGF-B) produced by all immune cells but most abundantly
by MDSCs, Tregs, and tumor cells, and IL-10 produced by
macrophages, DCs, B cells, NK cells, Tregs, and tumor cells
(De Simone et al., 2015; Konjevi¢ et al., 2017a, 2019; Fedele
and Melisi, 2020). The process of EMT is accompanied with
decreased infiltration of immunoreactive immune cells i.e., tumor
infiltrating lymphocytes (TIL)s, and increased infiltration of
suppressive immune cells into the TME (Lopez-Soto et al., 2017).

Changes in Tumor Immunogenicity and
Susceptibility to Natural Killer Cell
Antitumor Activity During Epithelial to

Mesenchymal Transition

EMT is associated with changes in immunogenicity of tumor
cells in terms of regulation of surface molecules that are either
directly or indirectly involved in immune recognition of tumor
cells. During acquisition of mesenchymal-like properties tumor
cells often show reduced expression of tumor antigens and
immunoproteasome components that altogether lead to reduced
presentation of antigenic peptides. Most importantly, tumor
cells undergoing EMT decrease the expression of MHC class I
molecules, making them resistant to CD8™" T cell cytotoxicity,
but more susceptible to NK cell lysis (Tallerico et al., 2013;
Ferretti et al., 2020; Melaiu et al., 2020; Figure 1). These changes
are associated with the prolonged, i.e., chronic, inflammation in
TME, as opposed to the protective, acute inflammation during
the early phase of antitumor immune response when type I
interferons produced by antigen presenting cells (DCs) and IFN-
y produced by T and NK cells in TME increase the expression of
MHC molecules on tumor cells. Prolonged inflammation leads to
loss of MHC I expression on tumor cells and can be attributed to
the effect of an immunosuppressive cytokine TGF-f, IL-10, and
the epidermal growth factor (EGF) which are secreted in the TME
(Stanilov et al., 2010; Chen et al., 2015; Lorenzo-Herrero et al.,
2018; Fedele and Melisi, 2020).

Cytokines and growth factors in TME stimulate synthesis of
transcription factors that further induce mesenchymal phenotype
and subsequent changes of immunogenicity of tumor cells during
EMT. There are several major groups of transcription factors
involved in EMT: SNAIL family of zinc-finger transcription
factors Snail/Slug, the zinc finger E-box binding homeobox
(ZEB) family of transcription factors ZEB1/ZEB2, and the
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FIGURE 1 | Mechanisms of activation and inhibition of NK cell antitumor activity against tumor cell undergoing epithelial to mesenchymal transition (EMT). The

o o
O Cytotoxic
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expression of major activating (blue) and inhibitory (red) receptors by NK cells and their ligands on tumor cells determines antitumor activity (cytotoxicity and IFN-y
production). Tumor cells during EMT downregulate the expression of MHC class | and E-cadherin ligands for inhibitory receptors KIRDL (Killer cell immunoglobulin
like receptors long cytoplasmic tail) and KLRG1 (Killer Cell Lectin Like Receptor G1), respectively, and upregulate MICA/B and CADM1 ligands for activating
receptors NKG2D and CRTAM, respectively, that increases tumor cell susceptibility to NK cell activity. Increased expression of PCNA and galectin-3 ligands for
NKp44 and NKp30 receptors, respectively, upregulation of immune checkpoint receptors (PD-1, TIM3, TIGIT) on NK cells and upregulation of PD-1 ligand (PDL-1)
and TIM3 ligands (CECAM1, HMGB1) during EMT, have negative effect on NK cell function. Moreover, the expression of MUC-1 protein in tumor cells inhibits NK cell
killing of EMT tumor cells via TNF related apoptosis inducing ligand (TRAIL) via inhibition of Bax dimerization. NK cells upregulate the expression of PD-1, TIM3, and
TIGIT immune checkpoint receptors that alongside with matrix metalloproteinase ADAM17- induced CD16 receptor shedding in tumor microevent during EMT
reduces NK cell activity. Structural motifs involved in activating signaling are green while inhibitory are red: Tyrosine-based motif (YINM) structural motifs and
DNAX-activating protein (DAP10) are associated with NKG2D and induce NK cell activation. Immunoreceptor tyrosine-based inhibitory (ITIM) structural motifs are
associated with KIRDL, KLRG1, TIGIT, and NKp44 (when ligated to PCNA) receptors during NK cell inhibition. Inhibitory receptor KIRDL suppresses NK cell activity
[TIM by recruiting protein tyrosine phosphatase (SHP-1). TIM-3 receptor inhibitory signaling is mediated through Tyrosine 256 (Ty256) structural motif that interacts
with HLA-B-associated transcript 3 (BAT3). Fas-associated death domain (FADD) is transmits TRAIL and TRAIL receptor (TRAILR) signaling pathway that is during

EMT inhibited by MUC-1 binding that prevents Bax dimerization and apoptosis of tumor cell.

TWIST family of basic helix-loop-helix (bHLH) transcription
factors Twistl/Twist2, and DNA-binding forkhead box (FOX)
transcription factors (Vu and Datta, 2017). In CRC the
aberrant regulation of EMT-related transcription factors is
associated with increased rate of cancer recurrence and decreased
survival of CRC patients. Previous studies have reported that
overexpression of EMT-related transcription factors, such as
Snail, Slug, Twist1,2, ZEB1/ZEB2, and FOXC2, FOXQ1, FOXCI,
and FOXM1 is associated with invasiveness, metastasis, and poor
prognosis of CRC (Franci et al., 2009; Gomez et al., 2011; Zhang
etal., 2013; Lu et al., 2018).

Loss of E-cadherin expression, one of the principal organizers
of the epithelial phenotype and an important component for
cell adherence, is a major hallmark of EMT that enables tumor
cells to migrate and form metastatic sites (Lopez-Soto et al,
2013; Chockley et al, 2018; Figure 1). It has been shown
that TGF-B, via its signal transducer Smad protein that is

associated with TGF-f receptor, induces expression of high
mobility group A2 (HMGAZ2) protein which regulates expression
of many important repressors of E-cadherin transcription
(Thuault et al., 2006). Smads and HMGA2 cooperatively
bind to the Snail promoter and induce Snail expression,
E-cadherin repression, and the overall EMT phenotype (Thuault
et al, 2008). In this sense, TGF-f and EGF signaling in
the TME induces loss of epithelial marker E-cadherin, which
is a ligand for the KLRGI inhibitory NK cell receptor,
and increases expression of mesenchymal N-cadherin. This
contributes to increased susceptibility of tumor cells undergoing
EMT to NK cell-mediated lysis. Aside from Snail 1, ZEBI,
and ZEB2 are also involved in suppression of E-cadherin
transcription (Qin et al, 2016). Furthermore, it has been
shown first in pancreatic cancer and latter in CRC, that
proangiogenic factor VEGF induces and E- to N- cadherin
switch by increasing the expression of Snail, Twist, and
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Slug EMT-associated transcription factors (Yang et al., 2006;
Bendardaf et al., 2019).

During progression of EMT in CRC cells, TGF-p stimulation
via induction of Snaill transcription factor up-regulates the
expression of ligands for activating NKG2D receptor (NKG2DL)
s in epithelial cells, rendering EMT cells more susceptible to
NK cell-mediated killing (Lopez-Soto et al., 2013). In this sense,
activation of Spl and Sp3 transcription factors which are key
regulators of transcription of MICA/B and ULBP1-3 NKG2DLs
has been observed during the process of EMT. In cells of healthy
colon mucosa and in well-differentiated CRC, MICA/B and
ULBP1 NKG2DLs are expressed mostly on the luminal part
of the epithelial layer, whereas a loss of the polarization of
NKG2DL expression was observed in malignant cells during the
advancement of EMT (Ldpez-Soto et al., 2006; Huergo-Zapico
et al., 2014). This fact has been found to coincide with an
increase in the number of NKG2D positive tumor-infiltrating
lymphocytes, resulting in their elimination by NKG2D-bearing
immune cells. These findings suggest that the loss of the epithelial
integrity and polarity may result in diffusion of MICA/B proteins
along the membrane of tumor cells during acquisition of
mesenchymal-like phenotype. Overall, these data suggest that
tumor progression and metastasis in CRC, may also be under
the control of the NKG2D response (Huergo-Zapico et al., 2014).
Furthermore, it has been shown in CRC cell lines that signal
transducer and activator of transcription 3 (STAT3) is a negative
regulator of MICA transcription and that the upregulation of
MICA ligand on tumor cells correlates with dephosphorylation
of STAT3 (Bedel et al., 2011; Lopez-Soto et al., 2013).

There are multiple phenotypic changes of tumor cell during
EMT that involve alterations in the expression of ligands for
diverse activating NK cell receptors, including upregulation of
PVR ligand for DNAM1 receptor that was shown in breast and
lung cancer (Chockley et al., 2018). Furthermore, process of
EMT is associated with upregulated expression of cell adhesion
molecule 1 (CADMI), a recently identified NK cell ligand,
that binds to the cytotoxic and regulatory T cell-associated
molecule (CRTAM) receptor (Boles et al., 2005; Figure 1). In
this sense, upregulation of CADM1 along with downregulation
of E-cadherin on tumor cells undergoing EMT are major factors
that contribute to NK cell-mediated immunosurveillance of
metastasis (Chockley et al., 2018).

However, the expression of some surface and extracellular
molecules that bind to activating NK cell receptors during EMT
reduces tumor cells susceptibility to NK cell lysis (Figure 1).
This is the case with increased expression of galectin-3, a beta-
galactoside-binding protein, which inhibits adhesion between
tumor cells and with extracellular matrix, and therefore promotes
cell mobility and tumor invasiveness (Liu and Rabinovich, 2005;
Farhad et al, 2018). Binding of galectin-3 to activating NK
cell receptor NKp30 suppresses NK cell-mediated tumor lysis
(Wang et al., 2014; Krijgsman et al., 2020). High galectin 3
expression was found in CRC undergoing EMT and correlated
with the poor clinical outcome (Endo et al., 2005). Moreover, as
NKp30 has three different isoforms, NKp30 a, b, and ¢, it has
been shown that binding of NKp30c to its ligand induces an
immunosuppressive signal by producing IL-10 that subsequently

reduces NK cell effector functions. Therefore, the final outcome
of NKp30 activation depends on the presence of ligands on
target cells, as well as of the presence of activating (a and b)
or inhibitory (c) receptor isoforms on the surface of NK cells
(Hudspeth et al., 2013). Similarly to galectin-3, the expression of
proliferating cell nuclear antigen (PCNA) that is associated with
enhanced tumor cell proliferation and invasive potential, leads to
the inhibition of NK cell function via binding to activating NCR
receptor NKp44 (Rosental et al., 2011; Rusakiewicz et al., 2017;
Krijgsman et al., 2020). Binding of PCNA to NKp44 receptor
inhibits NK cells cytotoxic activity and IFN-y secretion and this
inhibition is mediated by an ITIM structural motif of the NKp44
cytoplasmic domain (Rosental et al., 2011, 2012).

Aside from classical MHC class I molecules, the expression
of ligands for inhibitory KIRs may be altered during EMT. In
this sense, HLA-G, a non-classical MHC class I antigen that
is expressed under physiological conditions in a few immune-
privileged tissues including cytotrophoblast, can be induced in
tumors. NK cells recognize HLA-G via KIR receptor 2DL4
(KIR2DL4 or CD158d) and LIR receptors Bl (LILRBI, ILT2,
or CD85j) and B2 (LILRB2, ILT4, or CD85d). The aberrant
induction of HLA-G expression is observed in most cancer
histological types and it has been related to tumor metastasis
and poor clinical prognosis. HLA-G expression has been shown
in CRC although its relation to EMT has not been resolved, yet
(Lin and Yan, 2018). The inhibitory receptor CD94/NKG2A and
its ligand HLA-E are frequently overexpressed in many types of
tumors, including CRC (Zhen et al., 2013; Cézar et al., 2021).

Tumor cells that express an EMT-promoting brachyury
transcription factor often show upregulated expression of
transmembrane protein MUC-1 which decreases tumor cell
susceptibility to TNF related apoptosis inducing ligand (TRAIL)
apoptosis and tumor susceptibility to perforin/granzyme-
dependent lysis by CTLs and NK cells (David et al., 2016; Romeo
et al., 2019). Circumstantial evidence for this phenomenon has
been shown in the context of MUCI inhibition by siRNA-
gene silencing (David et al., 2016). Possible mechanism of the
inhibition of TRAIL pathway by MUC-1 reported in one study
involves the inhibition of cleavage and activation of caspase-8
(Agata et al., 2008), while another showed that MUC1 inhibits
apoptosis by preventing dimerization of the pore-forming
protein BAX and hence by preserving mitochondrial integrity
(Ahmad et al,, 2012). In the agreement with the latter, studies
of MUCI gene knockdown showed the loss of mitochondrial
transmembrane potential in response to TRAIL (David et al,
2016). In CRC, MUC-1 expression has been shown to correlate
with nodal metastasis and is used as a predictive factor for the
emergence of distant metastasis (Zeng et al., 2015).

Immune Checkpoints in Natural Killer
Cell-Epithelial to Mesenchymal

Transition Cross-Talk

As a consequence of immune responses, immune cells upregulate
the expression of inhibitory checkpoint molecules whose
primarily physiological role is to prevent excessive immune
responses. There is a number of immune checkpoint molecules
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that contribute to immunosuppression in cancer and are
upregulated on T and NK in TME as a consequence of chronic
inflammation: programmed cell death receptor (PD)-1, cytotoxic
T lymphocyte antigen (CTLA)-4, T cell immunoglobulin
and mucin domain-containing protein 3 (TIM3), lymphocyte
activation gene-3 (LAG-3), and TIGIT (Beldi-Ferchiou and
Caillat-Zucman, 2017). The infiltration of suppressive immune
cells into TME and ongoing secretion of immunosuppressive
cytokines that favor EMT of tumor cells, contribute to
upregulation of inhibitory immune checkpoint molecules on T
and NK cells. Invasive phenotype of tumor cells and process
of EMT are associated with increased expression of ligands for
immune checkpoint receptors on tumor cells (Romeo et al., 2019;
Figure 1).

During tumorigenesis oncogenic pathways, genetic, and
epigenetic factors intrinsic to tumor cells upregulate the
expression of PD-1 ligands (L)1 (B7H1), and L2 (PD-L2)
on tumor cells. In this sense, mitogen-activated protein
kinases (MAPK), phosphoinositide 3-kinase (PI3K), Janus kinase
(JAK)/STAT3, and phospholipase Cy signaling have been related
to the regulation of PD-L1 expression in CRC (Li et al., 2019).
Extrinsic factors in TME, including cytokines IFN-y, IL-6, TNEF,
further favorize cancer immune escape by augmenting PD-L1
expression (Gao et al,, 2018; Ju et al., 2020). The gene promoter
region of PD-L1 gene also contains a binding site for ZEB1, an
EMT-inducing transcription factor (Tsutsumi et al., 2017). Aside
from tumor cells, multiple cells in TME, including immune cells
(DCs, macrophages, Tregs) and CAFs also express PD-L1 (Curiel
et al., 2003; Nazareth et al., 2007; Zou et al., 2016) that further
reduces antitumor immunity. In this sense, PD-L1 is upregulated
by IFN-y on antigen-presenting cells (APCs) in TME and lymph
nodes that leads to inhibition of T cell activation (Wang et al.,
2018). Upregulation of PD-L1 expression has been found in
metastatic CRC compared to primary tumors (Wang H. B. et al.,
2017) and has been evaluated as prognostic factor in CRC (Chen
et al., 2021). Although PD-L2 is predominantly expressed in
immune cells, recent studies have detected its expression in CRC
cells and determined that it was associated with poor patient
survival (Wang H. et al., 2017; Chen et al., 2021). Therapeutic
blockade of immune checkpoints with anti-PD-1 anti-PDL-1
antibodies has shown in recent years a considerable clinical
benefit in oncology and has been introduced in treatment of
metastatic CRC. As conventional chemotherapeutics induce the
expression of PD-L1 the novel combined therapeutic approaches
in CRC have been introduced by focusing on targeting of PD-
1/PD-L1 axis (Zou et al., 2016; Wang H. B. et al., 2017).

PD-1 is expressed on fully functionally mature CD564™ NK
cells and its expression is induced upon persistent stimulation
of activating receptors (Pesce et al., 2017), while PD-1 mRNA
splicing isoforms and cytoplasmic proteins are detectable in
virtually all NK cells (Mariotti et al., 2018). High levels of PD-
L1 expression were detected on tumors with low MHC class I
expression (Smahel, 2017; Ntomi et al., 2021) and implicate NK
cells as non- MHC- restricted innate effectors in response to
anti PD-1 therapy. In this sense, immune checkpoint blockade
therapy with anti-PD-1 anti PDL-1 antibodies may also help to
harness NK cell antitumor activity.

TIM3, a coinhibitory or immune checkpoint receptor,
interacts with multiple ligands expressed on tumor cells such as
HLA-B-associated transcript 3 (BAT3), carcinoembryonic
antigen-related  cell ~adhesion molecule (CEACAM)I,
phosphatydilserine on apoptotic cells, galectin-9 that is present
as surface molecule or in soluble form when secreted by tumor
cells, and high mobility group protein B1 (HMGBL1). The role
of TIM3 expression on NK cell function remains controversial
as binding of TIM3 to its ligand galectin-9 enhances IFN-y
production but has no effect on NK cell cytotoxicity (Wolf et al.,
2020). However, TIM3TPD-11 NK cells from late-stage cancer
patients are less cytotoxic than TIM37™PD-1- NK cells and
TIM3 blockade subsequently restored NK cell functions (Seo
et al., 2017). In tumors with high mesenchymal scores, increased
levels of soluble lectin galectin-9 and the adhesion molecule
CEACAM], both ligands of TIM3, have been reported. TIM3
expression defines a subset of functionally exhausted NK cells
(Seo et al., 2017; Cozar et al., 2021). In the context of HMGBI1
ligand, that is released during application of chemotherapeutic
drugs, it has been suggested that TIM3 blockade in combination
with chemotherapy may alleviate immunosuppression and show
some therapeutic benefit (Wolf et al., 2020).

TIGIT inhibitory checkpoint molecule competes with
activating DNAMI1 receptor for the same ligands on tumor cells
and in CRC patients it is more highly expressed on intratumoral
NK cells than on peritumoral NK cells (Zhang et al., 2018).
Blockade of TIGIT with monoclonal antibody increases T cell
activity in NK cell-dependent manner and shows synergistic
effect with anti-PD1 therapy (Cozar et al, 2021). High TIGIT
expression was correlated with NK-cell exhaustion in tumor
bearing mice and patients with CRC (Zhang et al, 2018;
Cozar et al.,, 2021).

Tumors with high mesenchymal scores show increased
expression of B7H3 and CD47 (Mak et al., 2016). B7H3 immune
checkpoint molecule, a member of B7/CD28 superfamily,
exhibits inhibitory effects in modulating T cells and NK cell
activity (Suh et al., 2003), although several studies have found
a co-stimulatory role of B7-H3 in T cell activation and IFN-y
production (Ni and Dong, 2017; Yang et al., 2020). However, B7-
H3 overexpression is associated with proliferation and invasive
potential and EMT of CRC (Ingebrigtsen et al., 2012; Jiang
et al., 2016) and was negatively associated with overall survival
rate in CRC (Mao et al.,, 2017). CD47 surface antigen can be
designated as “don’t eat me” as its expression on tumor cells upon
binding to Signal regulatory protein o (SIRPa) in macrophages
suppresses phagocytosis. Thus, tumor cells expressing CD47 can
escape the antitumor effect of the innate immune system. CD47
is upregulated by EMT inducing transcription factors Snaill or
ZEB1 (Noman et al., 2018).

During the last decade immune checkpoint inhibitors
(ICI) have proven to be promising agents in therapy of
CRC. Pembrolizumab and nivolumab, ICIs that target PD-
1, showed considerable antitumor activity in a subset of
CRC patients with mismatch-repair-deficiency (dMMR) and
high microsatellite instability (MSI-H) (dMMR/MSI-H), and
have been officially approved for the treatment of these
patients (Overman et al, 2017; Le et al, 2020). However,
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MSI-H/dMMR tumors account for only 5% of metastatic CRC,
while in the remaining CRC patients identified as microsatellite
stable/DNA mismatch repair proficient (MSS/pMMR), these
agents have not shown any therapeutic benefit (Almquist
et al, 2020). An important reason for the failure of ICI
therapy is the acquisition of resistance, so that combinations
of different ICI inhibitors have been investigated. In this
sense, clinical trials evaluating the role of nivolumab in
combination with CTLA-4 ICI (ipilimumab) conducted in
metastatic MSI-H/dMMR CRC patients have shown therapeutic
benefit (Overman et al., 2018). Currently, various preclinical
and clinical trials evaluating ICIs in combination with growth
factor (VEGE EGFR) inhibitors, tyrosine kinase, e.g., MEK
inhibitors, and IDO inhibitors and agonists (TLR, OX40, 4-1BB
agonists) have been conducted (Almquist et al., 2020). At this
time, further advances in the understanding of fine mechanisms
of interactions between immunosuppressive TME and different
molecular profiles of tumor cells, as well as biomarkers of
ICI resistance, especially in MSS/pMMR tumors, would aid in
determining the most effective therapeutic combination for the
treatment of CRC.

Tumor Microenvironment—Induced

Effects on Natural Killer Cells

NK cells in TME are often characterized by the impairment of
antitumor cytotoxic function and low ability to produce IFN-
y. Low NK cell cytotoxicity may originate from the low level
of cytotoxic molecules (granzymes and perforin), and decreased
expression of activating or increased expression of inhibitory NK
cell receptors that shifts the balance of receptor-ligand signals to
poor NK cell activation (Konjevi¢ et al., 2012).

Inflammatory cytokines in TME affect NK cell receptor
repertoire and lead to progressive local and systemic inhibition
of NK cell function. In this sense, the EMT-inducing
cytokines TGFp, IL-10, IL-6, produced by tumor cells or
by immunosuppressive cells in TME, can either directly
downmodulate expression of activating NK cell receptors
(NKG2D, NCRs, DNAM1, CD16) or indirectly by inducing
the differentiation of suppressive immune cells such as M2
macrophages, tolerogenic DCs, Tregs and MDSCs and their
ability to produce additional immunosuppressive factors
(Stojanovic et al., 2013; Konjevi¢ et al, 2016, 2017a, 2019).
Suppressive cytokines, metabolites L-kynurenine, prostaglandine
E2, nitric oxide (NO) produced by immunosuppressive enzymes
indolamine-2,3-dioxygenase (IDO), cyclooxygenase 2 (COX2),
inducible NO synthase (iNOS), respectively, and vascular
endothelial growth factor (VEGF), produced by suppressive and
regulatory immune cells and tumor cells, further downregulate
the expression of activating NK cell receptors (Della Chiesa
et al,, 2006; Harizi, 2013; Konjevi¢ et al., 2017a; Park et al,
2018; Table 1). These factors generate a chronic inflammatory
immunosuppressive milieu that contributes to the suppression
of the antitumor function of NK cells (Schiavoni et al., 2013;
Konjevi¢ et al., 2017a). Consequently, decreased expression of
NKG2D, NKp30, NKp46, and DNAMI receptors was reported
on NK cells in peripheral blood and tumor tissue of metastatic

CRC patients (Zhang et al., 2012; Rocca et al., 2013, 2016; Ferretti
et al., 2020).

NK cell function is largely influenced by metabolic changes
and nutrient availability in TME. Increased metabolic needs of
proliferating tumor cells limit nutrient and oxygen availability
and expose tumor-infiltrating NK cells to metabolites that
drive their functional exhaustion. Tumor cells adapt to
such environmental conditions by increasing consumption of
glucose, upregulation of glycolysis and lactate production.
The upregulation of hypoxia-inducible transcription factors
(HIF)s, specifically HIFla, induces the expression of glucose
transporter (GLUT)1 and glycolytic enzymes, including lactate
dehydrogenase (LDH)A (Hasmim et al, 2015). Increased
accumulation of lactate in TME and low pH decrease NK cell
cytotoxic activity and their ability to produce IFN-y (Brand
et al, 2016; Harmon et al., 2019; Domagala et al, 2020).
Moreover, the accumulation of lactate in TME was reported to
decrease the expression of activating receptor NKp46 (Husain
et al, 2013) and impair energy metabolism by decreasing
intracellular adenosine triphosphate (ATP) levels (Brand et al,,
2016; Terrén et al., 2019).

Excessive glucose consumption by tumor cells deprives NK
cells of their main fuel for metabolic processes. While resting
NK cells metabolize glucose via oxidative phosphorylation
(OXPHOS), activated NK cells upregulate glycolysis and glucose
uptake and show increased expression of glucose transporter
GLUTT1 (Salzberger et al., 2018). In this sense, glycolytic pathway
is facilitated during NK cell proliferation, cytotoxic activity, and
IFN-y production (Donnelly et al., 2014; Keppel et al., 2015).
Signaling pathways that are crucial for metabolic reprogramming
during NK cell activation are protein kinase mammalian target
of rapamycin (mTOR), and transcription factors sterol regulatory
element binding protein (SREBP) and cMyc (Donnelly et al.,
2014; Assmann et al., 2017; Domagala et al,, 2020). SREBP
controls elevated metabolism of glucose to cytosolic citrate
during NK cell functional response. Moreover, in advanced
malignancies including CRC, increased level of SREBP1 inhibitor
in TME has been correlated with NK cell dysfunction (Rossin
et al, 2019). cMYC promotes OXPHOS and glycolysis by
the upregulation of the glycolytic enzymes and expression of
glucose transporters (Li et al., 2005). The glucose restriction in
TME impairs NK cell function by upregulation of fructose-1,6-
bisphosphatase (FBP1), an enzyme that inhibits glycolysis, in
tumor infiltrating NK cells (Cong et al., 2018). Moreover, TGF-f
which is considerably present in TME has been shown to inhibit
both metabolism of glucose in NK cells and NK cell function.
The proposed mechanism of action was through the inhibition
of mTORC1 and not through the canonical TGF-p signaling
pathway (Zaiatz-Bittencourt et al., 2018).

Adenosine is another suppressive mediator that is often
present in TME. The hypoxic environment of solid tumors
promotes the release of ATP and AMP which are by catalytic
activity of ectonucleotidases CD39 and CD73 converted to AMP
and adenosine, respectively (Ohta, 2016). Adenosine, via binding
to adenosine A2A receptor (A2AR), inhibits metabolic activity
(glycolytic capacity and OXPHOS) and effector functions of NK
cells (Lokshin et al., 2006; Chambers et al., 2018).
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TABLE 1 | A list of the most prominent bioactive molecules in tumor microenvironment and their effect on phenotype of NK cells and tumor cells undergoing epithelial to
mesenchymal transition (* Regular fonts indicate inhibition of NK antitumor activity whereas italics indicate activation).

Protein Cell Effect* References
TGF-B Tumor MHC | downregulation Chen et al., 2015; Lorenzo-Herrero et al., 2018; Fedele and
Melisi, 2020
E-cadherin downregulation Thuault et al., 2006, 2008; Lépez-Soto et al., 2013; Chockley
etal., 2018
MICA/B, ULBP1 upregulation Lépez-Soto et al., 2006, 2013; Bedel et al., 2011;
Huergo-Zapico et al., 2014
NK NKG2D, NCR, DNAM1 downregulation Zhang et al., 2012; Rocca et al., 2013, 2016; Schiavoni et al.,
2013; Konjevi¢ et al., 2019; Ferretti et al., 2020
IL-6 Tumor PDL-1 upregulation Wang H. B. et al., 2017
IL-8 Tumor E cadherin downregulation Li et al., 2012; Palena et al., 2012
IL-10 Tumor MHC | downregulation Stanilov et al., 2010; Konjevi¢ et al., 2019
NK NKG2D, NCRs downregulation Schiavoni et al., 2013; Konjevi¢ et al., 2016
TNF Tumor MICA downregulation Bedel et al., 2011; De Simone et al., 2015
NO NK CD16 downregulation Stiff et al., 2018
L-kynurenine NK NKG2D, NCR downregulation Della Chiesa et al., 2006; Konjevi¢ et al., 2016
Prostaglandine E2 NK NKG2D, NCR downregulation Harizi, 2013; Park et al., 2018
VEGF Tumor E cadherin downregulation Yang et al., 2006; Bendardaf et al., 2019
NK NKG2D downregulation Bruno et al., 2018
EGF Tumor MHC I, E-cadherin downregulation Chen et al., 2015
lactate NK NKp46 downregulation Husain et al., 2013
Matrix metalloproteinases NK CD16 shedding Romee et al., 2013; Coppola et al., 2015
Tumor MICA/B, B7-H6, BAG6 shedding Zhang et al., 2012; Schlecker et al., 2014; Iguchi-Manaka et al.,

2016; Rusakiewicz et al., 2017; Zhao Z. et al., 2017; Molfetta
etal, 2019

NK cells compete for amino acids (glutamine, tryptophan,
and arginine) with tumor cells and suppressive immune
cells (MDSCs, TAMs) and CAFs in TME. Unlike tumors
that consume amino acids to provide energy, NK cells
utilize amino acids mainly for the maintenance of mTOR
and cMyc cellular signaling that are necessary for NK cell
functionality. Moreover, mTOR has been found to sustain
the initial expression of cMyc while requiring glutamine for
this process (Loftus et al., 2018). However, low concentration
of arginine in TME impairs NK cell proliferation and IFN-
y production (Lamas et al., 2012). Suppressive immune cells
by producing enzymes arginase, iNOS, and IDO deplete
TME of arginine and tryptophan and increase the level
of their metabolites NO and L-kynurenine. Furthermore,
secreted NO decreases CD16 expression on NK cells and
subsequently impairs antibody-dependent cellular cytotoxicity
(ADCCQ) (Stiff et al., 2018).

Tumor cells undergoing EMT release IL-8 that stimulates
tumor progression by supporting invasive phenotype of tumor
cells (Li et al., 2012; Zhao Z. et al., 2017), angiogenesis and
migration of immune cells to the tumor site and thus creating an
inflammatory environment. IL-8, is a strong chemotactic factor
for neutrophils which have protumorigenic and prometastatic
functions as they induce intracellular adhesion molecule 1
(ICAM-1)-mediated binding of tumor cells to the surface of
neutrophils and secretion of matrix metalloproteinases (MMPs)
which remodel the extracellular matrix and favor tumor
migration (Palena et al., 2012).

Tumor invasiveness is associated with increased synthesis and
activity of MMPs. In this sense, it has been shown in CRC
that EMT- related transcription factors Twistl/2 via binding to
gene promoter induces transcription of MMP2 gene (Lu et al,,
2018). Aside from enabling tumor invasiveness, MMP activity
induces proteolytic cleavage of NK cell ligands from tumor
cells leading to impaired NK cell recognition of tumor cells.
Furthermore, MMP activity subsequently increases the level of
soluble ligands that bind to activating NK cell receptors in the
absence of target tumor cells and lead to NK cell dysfunction.
The role of ligand shedding from tumor cells in the evasion
of NK cell antitumor response and its clinical relevance have
been shown for NKG2D (MICA/B, UL16-binding proteinsULBP-
1,2), NKp30 (B7-H6, BAG6), DNAM1 (PVR-CD155) (Zhang
et al.,, 2012; Schlecker et al., 2014; Iguchi-Manaka et al., 2016;
Rusakiewicz et al., 2017; Zhao Y. et al.,, 2017; Molfetta et al.,
2019; Table 1). Moreover, the persistent stimulation of activating
receptors by their ligands induces post-activational receptor
internalization and diminished NK cell activity as it was shown in
experimental settings after co-culture with tumor cells, including
CRC cells lines (Sconocchia et al., 2009; Rocca et al., 2013;
Konjevi¢ et al., 2017b).

The expression CD16, a prominent NK cell cytotoxic receptor,
was found to be decreased on NK cells in tumors, not only
due to post-activational receptor internalization but also due to
target cell induced activation of MMP, namely ADAM 17 (A
disintegrin and metalloprotease 17), as shown during in vitro
NK cell cultivation with tumor cells (Jewett and Tseng, 2011;
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Romee et al., 2013). Immunohistochemical data and data derived
from co-culture experiments with CRC cell lines, also showed
CD16 downregulation due to MMP proteolytic cleavage of this
receptor from NK cell surface (Romee et al., 2013; Coppola et al.,
2015). Moreover, as NK cells exert ADCC upon recognition of
the Fc fragment of IgG bound to tumor cell surface by CD16, NK
cells are involved in responses to monoclonal antibody (mAb)
therapies such as cetuximab (anti-EGFR mAb), bevacizumab
(anti-VEGF) mAD therapy are applied in treatment of metastatic
CRC (Lorenzo-Herrero et al., 2018).

Chronic tumor cell ligand-NK cell receptor engagement
leads to an exhausted NK cell phenotype characterized by
upregulated PD-1 checkpoint immunoreceptor expression
(Pesce et al., 2017). Recently, expression of several inhibitory
checkpoint molecules that were initially considered to be
inherent for T cells, TIM3, and TIGIT was shown on
functionally exhausted NK cells in malignancies, including CRC
(Beldi-Ferchiou and Caillat-Zucman, 2017).

CONCLUSION

Immune cells represent an important factor that contributes
to the EMT of tumor cells by supplying TME with bioactive
molecules, enzymes, cytokines, chemokines, and physical
interactions with tumor cells via their receptors. It has been
well established that chronical inflammation in TME favors
tumor growth and invasiveness and that cytokines, e.g., TGF-
B, the most potent EMT inducer, induce synthesis of EMT
promoting transcription factors. Chemokines and cytokines of
the tumor-induced chronic inflammation, promote infiltration
and differentiation of suppressive immune cells that further
potentiate immunosuppression in TME. NK cells are one
component of the innate immune system in the pool of diverse
immune cells. The role of NK cells in the control of metastasis
in CRC has been demonstrated in preclinical studies and
tumor- infiltrating NK cells have been designated as a favorable
prognostic factor in metastatic CRC patients.

Although, the cross-talk between immune cells in general
and tumor cells favors the induction of EMT and inhibition of
antitumor immune responses by tumor cells, there are some
aspects of changes in immunogenicity of tumor cells during EMT
of CRC that increase their susceptibility to NK cell cytotoxic
lysis. Aside from the loss of MHC I expression on tumor
cells during EMT, that makes them resistant to CD8'T and
more susceptible to NK cells lysis, there are EMT-associated
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