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Autophagy is an evolutionary conserved degradative process contributing to cytoplasm
quality control, metabolic recycling and cell defense. Aging is a universal phenomenon
characterized by the progressive accumulation of impaired molecular and reduced
turnover of cellular components. Recent evidence suggests a unique role for autophagy
in aging and age-related disease. Indeed, autophagic activity declines with age and
enhanced autophagy may prevent the progression of many age-related diseases
and prolong life span. All tissues experience changes during aging, while the role
of autophagy in different tissues varies. This review summarizes the links between
autophagy and aging in the whole organism and discusses the physiological and
pathological roles of autophagy in the aging process in tissues such as skeletal muscle,
eye, brain, and liver.
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INTRODUCTION

Autophagy is a tightly orchestrated process that degrades and recycles cytoplasmic components
in lysosomes to maintain cellular homeostasis. Although the phenomenon of autophagy was first
reported by Thomas P. Ashford and Keith R. Porter in 1962 in the research of lysosomes in
rat hepatic cells, the importance of this discovery was not realized (Ashford and Porter, 1962).
The concept of autophagy was proposed by Christian de Duve at the international conference
of lysosomes in 1963. Driven by Yoshinori Ohsumi, autophagy research had become popular in
the 1990s (De Duve and Wattiaux, 1966; Yang and Klionsky, 2010). Reverse-genetic approaches in
cell culture and animal models have revealed that quality control, metabolic adaption and cellular
defense are three main functions of autophagy (Morishita and Mizushima, 2019; Deretic, 2021).
Malfunctioning of autophagy with age may result in systemic diseases such as diabetes, vascular
disease and organ-specific pathologies like sarcopenia and neurodegenerative diseases (Schneider
and Cuervo, 2014; Levine and Kroemer, 2019). While most previous reviews addressed the nature
of autophagy in organism aging, the roles of autophagy in specific tissue aging are less clear.
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This article seeks to remedy this fragmentation by expanding
on the role of autophagy in tissues such as skeletal muscle, eye,
brain and liver during aging and its contribution to the according
age-related disease.

LINKS BETWEEN AUTOPHAGY AND
AGING

The Mechanisms and Functions of
Autophagy
Over the last two decades, the molecular mechanisms and
physiological functions of autophagy have been extensively
studied. Analysis of the delivery route of autophagic
cargo to lysosomes has shown that there are at least three
types of autophagy: microautophagy, chaperone-mediated
autophagy (CMA) and macroautophagy (Yin et al., 2020).
In microautophagy, the lysosomal membrane sequesters the
cytoplasm in a large and non-specific way and the lysosome
degrades the cargo with acidic hydrolases (Schuck, 2020). In
CMA, the heat shock cognate protein HSC70 and co-chaperones
recognize the proteins bearing conserved KFERQ motif and
delivers them to the surface of the lysosome where substrate
proteins are translocated into the lysosome lumen by LAMP-
2A (lysosomal-associated membrane protein 2A) (Kaushik
and Cuervo, 2012). Macroautophagy is the major catabolic
mechanism used by eukaryotic cells. In macroautophagy, the
cell sequesters the cytosolic components into double-membrane
vesicles, the autophagosomes, which subsequently fuse with
lysosomes to allow degradation of engulfed substrates by
lysosomal hydrolases (Nowak and Edelstein, 2020). Both
microautophagy and macroautophagy can be further divided
into non-selective autophagy and selective autophagy (Yang
et al., 2019). Non-selective autophagy is applied to the turnover
of bulk cytoplasm under starvation conditions, whereas selective
autophagy is employed in targeting redundant proteins and
damaged or aged organelles, including mitochondria, lipid
droplets, peroxisomes and so on (Wang et al., 2019). Depending
on the cargo being targeted for destruction, selective autophagy
can be further categorized into mitophagy (mitochondria),
pexophagy (peroxisomes), lipophagy (lipid dropts), ribophagy
(ribosomes), aggrephagy (aggregated proteins), and xenophagy
(pathogens) (Wang et al., 2019). There are four key steps and
over 30 autophagy related genes involved in the process of
macroautophagy (Figure 1; Li et al., 2020; Matoba and Noda,
2021). (1) Firstly, the preinitiation complex comprising Atg13,
Unc-51 like kinase 1/2 (Ulk1/2) and FAK family-interacting
protein of 200 kDa (FIP200) is formed to induce the nucleation
of the autophagy-isolation membrane. This process is positively
regulated by the upstream energy sensor, Amp-activated protein
kinase (AMPK) pathway, and negatively regulated by the nutrient
sensor, the mammalian target of rapamycin (mTOR) pathway
(Egan et al., 2011; Cicchini et al., 2015). (2) The preinitiation
complex then recruits a multi-protein type III phosphoinositide
3 kinases (PI3K) complex, consisting of Atg14, Vps34, and
Beclin1, to the rough endoplasmic reticulum (ER) to generate

isolation membranes and phagophore (Matsunaga et al., 2010;
Cicchini et al., 2015). (3) Subsequently, two ubiquitin-like
conjugation systems, the Atg7-Atg3-Atg8/LC3 complex and
Atg12-Atg5-Atg16L1 complex, are recruited to the nascent
phagophore and induce phagophore elongation and expansion
to form the autophagosome (Itakura and Mizushima, 2010;
Cicchini et al., 2015). (4) In the final step, the autophagosomes
fuse with lysosomes/endosomes to form autolysosomes where
digestion happens, which is regulated by small GTPases,
lysosomal-associated membrane proteins (Lamp1/2), and the
N-ethylmaleimide-sensitive factor attachment protein receptors
(SNAREs) (Itakura et al., 2012; Cicchini et al., 2015).

The best-characterized functions of autophagy are metabolic
adaption and quality control wherein protein catabolism was
the first well-defined function (Figure 2). The dynamic control
of autophagy by nutritional status was the center of early
research. Under nutrient deprivation, proteins were mobilized by
autophagy to replenish free amino acids and energy (Mortimore
and Poso, 1987). Recently, this old function of autophagy
has been revisited. Several lines of evidence suggest that
in addition to proteolysis, autophagy plays important role
in mobilizing various cellular energy stores, such as lipid
droplets and glycogen (Kim and Lee, 2014; Morishita and
Mizushima, 2019). In nutrient recycling, autophagy is always
assumed to be no-selective autophagy. Selective autophagy
is employed as a quality-control mechanism to maintain
intracellular homeostasis by degrading and recycling cellular
components such as aggregative proteins and impaired organelles
(Pleet et al., 2018; Morishita and Mizushima, 2019). Autophagic
role in maintaining cellular homeostasis soon expanded to host
antimicrobial defense. During infection, intracellular microbes
are specifically recognized and targeted to autophagosomes
for degradation by xenophagy. The intracellular bacteria is
often opsonized by ubiquitin or galectin tags and recognized
by broad-spectrum selective autophagy receptors such as p62,
NBR1, OPTN, and NDP52 (Morishita and Mizushima, 2019).
The concept of autophagy as a cell-autonomous defense
mechanism was pioneered by a study demonstrating that
autophagy could be activated by virus and was targeted by the
herpes simplex virus neurovirulence protein (Tallóczy et al.,
2002). The systematic recognition of autophagy as a bona
fide immunological process was prompted by the discovery
that autophagy is capable of eliminating various intracellular
bacteria (e.g., Mycobacterium tuberculosis, group A Streptococcus,
Shigella and so on) (Gutierrez et al., 2004; Ogawa et al., 2005).
Recent studies found that most successful intracellular microbes
have evolved intricate mechanisms to circumvent autophagy,
which reinforced the antimicrobial significance of autophagy
(Deretic, 2021). Since then, autophagy role in immunity
has been extended vertically and laterally. Through these
functions, autophagy promotes cell fitness, tissue functionality,
and longevity.

Autophagy and the Hallmarks of Aging
Aging is the decline of biological function both at the cellular
and organismal level that occurs gradually and continuously.
Lopez and colleagues have summarized nine hallmarks of
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FIGURE 1 | Molecular mechanism of autophagy. Autophagy involves a series of steps including initiation, nucleation, elongation, maturation, fusion, and
degradation. AMPK (positive regulator) and mTOR (negative regulator) are the main regulators of autophagy. Functional complexes comprising Atg proteins
coordinates and direct the formation of the autophagosome.

FIGURE 2 | Autophagy and aging. Quality control, metabolic adaption and cellular defense are the three main functions of autophagy, and functional autophagy
promotes health during youth. Autophagy declines with aging, which is often associated with the hallmarks of aging and promotes age-related disease.

aging: “genomic instability, telomere attrition, epigenetic
alterations, loss of proteostasis, deregulated nutrition-sensing,
mitochondrial dysfunction, cellular senescence, stem cell
exhaustion, and altered intercellular communication” (Lopez-
Otin et al., 2013). It’s noteworthy that the malfunctioning
of autophagy in old organisms plays a crucial role in these
age-related manifestations (Figure 2).

Genomic instability is a prominent feature of aging. It
was reported that autophagy can support genomic stability
by engulfing and digesting the hazardous cellular components
and chromatin fragments and by reducing oxidative stress
(Vessoni et al., 2013; Bu et al., 2020). Telomere attrition is
another hallmark of aging, which is closely related to low levels

of telomerase activity in somatic cells. Notably, induction of
autophagy by overexpression of Beclin 1 reduced telomerase
activity in Hela cells, which indicated the potential role of
autophagy in telomere attrition (Taji et al., 2017). Multiple
and progressive epigenetic alterations have emerged as one of
the key hallmarks of aging (Folgueras et al., 2018; Gabbianelli
and Malavolta, 2018). Studies have shown that autophagy
genes can be regulated by various epigenetic modifications
and most epigenetic autophagy regulators have been implicated
in aging (Aman et al., 2021). Loss of proteostasis resulting
from unbalance of protein synthesis, folding and degradation
is always linked to aging and aging-related disease. It is widely
believed that the anti-aging effect of autophagy is, at least
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in part, attributed to its capacity to maintain proteostasis by
degrading long-lived or damaged proteins (Hansen et al., 2018).
Besides, the mTOR pathway (nutrient-sensing pathway) and
AMPK pathway (energy-sensing pathway) are well-described
regulators of autophagy (Zhang et al., 2014), which emphasized
the important role of autophagy in the process of deregulated
nutrient-sensing in aging. Mitochondria dysfunction has long
been considered as one of the nine hallmarks of aging. The
precise role of mitochondria in aging is controversial and
complex, but it is increasingly clear that their degradation
by mitophagy is crucial for aging and age-related disease.
Mitophagy supports mitochondrial quality control not only
by the elimination of damaged or superfluous mitochondria
but also by the biosynthesis of new ones (Shi et al., 2018).
Autophagy is also involved in the regulation of other features of
aging, which has been extensively reviewed (Zhang et al., 2016;
Barbosa et al., 2018; Stead et al., 2019).

Autophagy Declines With Age
Recently, several lines of evidence show that aging and autophagy
have a bidirectional connection with each other (Figure 2).
Autophagy reporter analysis and gene expression studies in
many organisms reported that autophagic activity tended to
decrease during aging. LC3 is a marker of autophagosomes
and autolysosomes. Wilhelm and colleagues examined the
autophagic activity in C. elegans using fluorescently tagged
LGG-1 (ortholog of Atg8/LC3), a marker of autophagosomes
and autolysosomes and observed blocked late-stage autophagy
in aged worms (Wilhelm et al., 2017). Chang and colleagues
conducted a spatiotemporal analysis of autophagy in C. elegans.
They found that there was an age-associated increase in the
number of autophagic vesicles in the intestine, body-wall muscle,
pharynx and neurons, which implying the impaired autophagic
activity in these tissues (Chang et al., 2017). Moreover, Carnio
et al. (2014) monitored the expression level of autophagy
markers, such as LC3 and Atg7, in the muscle of mice and
humans, and showed that the autophagy system decreased
in both species. Numerous studies also demonstrated that
the aging rate could be modulated by autophagy. Autophagy
seemed to be the nexus of multiple longevity pathways,
and environmental or genetic factors affected aging at least
partially via regulating autophagy (Rubinsztein et al., 2011).
Genetic studies in yeast, worms, flies and mice indicated
that related (ATG) genes were required in different extended
lifespan models, such as insulin signaling deficiency, caloric
restriction and many other longevity paradigms (Hansen et al.,
2018). Autophagy induction in these organisms exerted anti-
aging effects and improved healthspan (Lopez-Otin et al., 2016;
Hansen et al., 2018).

The changes of autophagy during aging and the role of
autophagy in regulating lifespan are well-studied, but it remains
to be clarified how autophagy in specific tissue impacts tissue-
aging and the according age-related disease. Therefore, it is
important to understand the tissue-specific role of autophagy in
aging, and the autophagy in skeletal muscle, eye, neuron and liver
would be reviewed below (Figure 3).

AUTOPHAGY IN THE SKELETAL
MUSCLE AND ITS ROLE IN AGING

Skeletal muscles are important for motion and metabolism,
which provide strength for movement and body support
and comprise approximately 40% of total-body lean mass
(Sakuma et al., 2015). A progressive loss of skeletal muscle
mass, strength, and function, a process called sarcopenia,
is an inevitable event during aging and contributes to the
increased fall incidence and higher mortality in the elderly
(Nair, 2005). Therefore, maintaining the cellular homeostasis
of skeletal muscle is critical for extending healthspan in
humans. It is well-known that skeletal muscle homeostasis is
strongly dependent on the balance between the catabolic and
anabolic processes. As a vital catabolic process, autophagy is
required for skeletal muscle to breaks down the unnecessary
old cellular components for rebuilding new cellular architecture.
A fine equilibrium of autophagic flux is important for
healthy skeletal muscle (Figure 3A). Genetic studies have
shown that defective autophagy leads to the degeneration of
muscle fiber, which is usually a chronic process and occurs
within weeks to months. Atg7 is essential for regulating
autophagosome assembly. In mice, knockout Atg7 in muscle led
to mitochondrial dysfunction, reticulum distension, disorganized
sarcomere, and aberrant concentric membranous structures.
Under catabolic conditions, the muscle-specific Atg7-null mice
showed neuromuscular junctions (NMJ) instability, higher level
of atrophy, muscle loss and degeneration (Masiero et al., 2009).
Carnio et al. (2014) demonstrated that aging reduced whereas
long-life regular exercise maintained the expression of Atg7
in muscle and overexpression of Atg7 in aged mice improved
neuromuscular synaptic function and enhance muscle mass.
Epigenetic factors such as histone deacetylases (HDACs) 1
and 2 regulate autophagic flux in skeletal muscle by inducing
autophagic gene expression and modulating autophagosomes
formation. Moresi and colleagues observed that roughly 40%
of mice with muscle-specific deletion of HDAC1 and HDAC2
(dKO mice) died during the perinatal period and exhibited
mitochondrial abnormalities and sarcomere degeneration, and
dKO mice that survived the first day of life also developed a
progressive myopathy, starting from 7 weeks of age (Moresi
et al., 2012). Tsc1/2 (Tuberous sclerosis complex 1/2) protein
complex negatively regulates mTORC1 (mTORC1, a negative
regulator of autophagy). Castets et al. (2013) suggested that
skeletal muscle-specific knockout of Tsc1 (TSCmKO) resulted in
sustained activation of mTORC1, and blocking the constitutive
and starvation-induced autophagy. TSCmKO mice developed
a serve, late-onset myopathy and died around 1 year of
age; they showed that inhibiting mTORC1 by rapamycin in
TSCmKO mice can restore the autophagy flux and ameliorate
the myopathy in old TSCmKO mice (Castets et al., 2013).
In this scenario, autophagy is protective for skeletal muscle.
However, excessive autophagy always causes a rapid decline in
muscle mass and muscle atrophy occurs within days to weeks
owing to the continued clearance of necessary organelles. Genetic
studies showed that muscle-specific inactivation of mTOR led to
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FIGURE 3 | Relationship between autophagy and disease. Schematic depicting the autophagy-related disease in different tissue. (A) In the muscle, both excessive
and insufficient autophagy will cause muscle-wasting disease. (B) In the eye, excessive autophagy may lead to diabetic retinopathy, while insufficient autophagy may
result in age-related macular degeneration, glaucoma and cataracts. (C) In the brain, the accumulation of misfolded proteins and inclusion bodies is the common
pathological hallmark for various neurodegenerative disorders (top). Autophagy may help to eliminate the aggregated proteins and prevent neurodegeneration.
Perturbations throughout the autophagic cycle, from autophagosome development to autolysosome formation, have been suggested to cause neurodegenerative
disease. The key points in the autophagy pathway along with the associated neurodegenerative diseases are highlighted below. (D) Age-related decline in
autophagy may lead to liver steatosis, hepatocyte apoptosis, and hepatic inflammation. AD: Alzheimer’s disease; PD: Parkinson’s disease; HD: Huntington disease.

impaired oxidative metabolism, altered mitochondrial regulation
and serve myopathy, resulting in premature death. Chkb encodes
the choline kinase beta isoform in muscle. Loss-of-function
mutations in Chkb in mice resulted in mitochondrial dysfunction
and mitochondrial loss by elevated mitophagy which lead to
rostrocaudal muscular dystrophy (Mitsuhashi et al., 2011). Rev-
erb-α is a nuclear receptor that regulating autophagy in muscle
by repressing genes involved in autophagosome formation
and lysosomal degradation. Woldt et al. (2013) indicated that
Rev-erb-α deficiency enhanced autophagy, and leading to
increased clearance and impaired mitochondrial function in
muscle. The Rev-erb-α deletion mice show severely reduced
exercise capacity (Woldt et al., 2013).

Autophagy also plays an anti-aging role in skeletal muscle.
Muscle stem cell also referred to as satellite cell usually resides
in a quiescent state and is transcriptionally inactive (Schultz,
1978). Autophagy is employed to maintain the stemness of
satellite cells and prevent cellular senescence via preserving
mitochondrial function. Decreased autophagy in aged satellite
cells leads to decreased stem cell fitness, and the re-establishment
of autophagy restores their stemness (Garcia-Prat et al., 2016).
Constitutive autophagy is also required for active satellite cells
(Brack and Rando, 2012). Once satellite cells are activated, they
were able to proliferate and replenish the stem cell pool and
generate new muscle fibers (Brack and Rando, 2012). Autophagy

likely provides energy sources and nutrients for satellite cells
activation by degrading unnecessary organelles or proteins. For
example, SIRT1, a key nutrient sensor, regulates autophagic flux
in satellite cells. Tang and Rando (2014) revealed that deletion
of SIRT1 blocks autophagy and led to a delay in satellite cells
activation which can be rescued by exogenous pyruvate.

The studies above highlight the importance of autophagy
in several aspects of skeletal muscle homeostasis and satellite
cells fitness. Next, we will describe the effect of autophagy
in skeletal muscle on systemic aging. Increasing evidence
suggested that muscle-specific autophagy had been linked to
longevity. In C. elegans, it has been reported that inhibition
of lgg-1/Atg-8 in the body-wall muscle of adult worms is
sufficient to shorten the lifespan of daf-2 mutants (Chang
et al., 2017). In Drosophila, muscle-specific overexpression
of Atg8 extends lifespan (Bai et al., 2013). Muscle-derived
myokines can modulate systemic aging by targeting different
tissues as autocrine, paracrine and endocrine factors. In
Drosophila, muscle-specific activation of FOXO signaling
promoted organism-wide proteostasis during aging, prevented
age-related skeletal muscle dysfunction and extended lifespan
partially by upregulating basal autophagy (Demontis and
Perrimon, 2010). In mice, heterochronic parabiosis or systemic
delivery of recombinant growth differentiation factor 11
(GDF11) enhanced basal autophagy and reserved age-related
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skeletal muscle mass loss and satellite cells dysfunction
(Sinha et al., 2014).

AUTOPHAGY IN THE EYE AND ITS ROLE
IN AGING

As a housekeeping process of cellular degradation and recycling,
autophagy is crucial for maintaining the physiological function
of the eye. Many cells in ocular are highly differentiated
non-dividing cells with low cell division rates and high
metabolism rates (Rehen et al., 1999). These cells are susceptible
to oxidative stress owing to constant exposure to visible
light and ultraviolet radiation (Kaarniranta et al., 2013); in
response to this oxidative damage, they utilize autophagy for
cytoprotection (Frost et al., 2014). In the eye, autophagy-
related proteins are widely expressed in various cells, particularly
in the retina. Consistent with the expression level, the basal
activity of autophagy is high in retina cells, especially in the
retinal pigment epithelium (RPE) and photoreceptors, where
autophagic responses are induced by light exposure. Moreover,
the expression of the autophagy gene is higher during the
day than at the night in the retina. For animals kept in
constant darkness, the formation of the autophagosomes is
greatly reduced in their retina (Reme et al., 1986). Autophagy
processes in the phagocytosis of photoreceptor outer segments in
RPE cells and are essential for the proper function of these cells
(Yao et al., 2014a).

Dysregulated autophagy with age observed in eyes has been
proposed to account for the exacerbation of age-related ocular
diseases, such as age-related macular degeneration (AMD) and
diabetic retinopathy (DR) in the retina, cataracts in the lens,
glaucoma in the optic nerve and so on (Pascolini and Mariotti,
2012; Figure 3B). Poor visual function has a significant adverse
impact on multiple health aspects, including the activity of daily
life, psychological well-being and mortality (Sugita et al., 2020).

Age-related macular degeneration is an irreversible
sight-threatening disease featured by the intracellular lipofuscin
accumulation of lipofuscin in RPE cells as well as extracellular
drusen deposition between RPE and the Bruch’s membrane
(BM). In early AMD, the autophagy activity is elevated to
compensate for the exacerbate organelles damage caused by
increased oxidative stress. Nevertheless, by late AMD, the
autophagic system can’t handle the expanded requirements
to clear damaged organelles and thus becomes overloaded
and dysfunctional (Somasundaran et al., 2020). Compromised
autophagy is assumed to contribute to the dysfunction of
RPE and the development of AMD. N-retinyl-N-retinylidene
ethanolamine (A2E), a prominent toxic lipofuscin component,
accumulates in RPE with age. Zhang et al. (2015) revealed
that A2E stimulated autophagy in RPE cells in early AMD
and elevation of autophagy protected the RPE cells against the
adverse effects of A2E by repressing the inflammatory response
and decreasing the secretion of VEGFA. Besides, Sayak et al.
observed a significant reduction of autophagy proteins in samples
from advanced AMD (Mitter et al., 2014).

Diabetic retinopathy (DR), a common diabetic complication,
is characterized by the apoptosis of neuron cells and dysfunction
of glial cells (Lopes de Faria et al., 2016). DR is one of the
leading causes of blindness in adults aged 20–74 years. Growing
evidence indicates that the retinal damage in diabetic patients
is strongly connected to autophagy. Excessive reactive oxygen
species (ROS) provoke pathological autophagy and lead to retinal
damage. In normal conditions, ROS stimulates the activation of
autophagy to eliminate the damaged mitochondrial to protect
the cell (Yao et al., 2014b). Oxidative stress arises when there
is an imbalance between the production and elimination of
ROS. The increased ROS further damages the mitochondrial
DNA and proteins, which in turn induces more ROS, thus
creating a vicious cycle (Doblado et al., 2021). Many factors
contribute to the increased ROS in DR patients, one of which
is hyperglycemia (Catalani et al., 2021). Studies showed that
hyperglycemia was the major risk for DR. Hyperglycemia
increased mitochondrial reactive oxygen species production,
promoted oxidative stress, induced activation of autophagy and
eventually resulted in vascular endothelial cell injury (Fernandez-
Albarral et al., 2021). In DR, the disruption of the blood-retinal
barrier allowed the leakage of cytoplasmic lipoproteins and
subsequent lipoprotein modification. The extravasated, modified
LDL enhanced ER stress and oxidative stress, activated autophagy
and was implicated in the pericyte loss and retinal injury
(Fu et al., 2012).

Cataracts are a widespread eye disease in the elders, affecting
approximately 20% of adults aged 65 years and older (Schmier
et al., 2016). With age, crystallins proteins gradually deposit
in the lens and lose their protection function of maintaining
lens clarity, which causes lens opacity, light scattering, and
ultimately, the development of age-onset cataracts. Autophagy
plays a critical role in cataracts. FYCO1 is one of the autophagy
genes, which binds LC3, Rab3 and PI(3)P and mediates
autolysosome formation (Brennan et al., 2012). Chen et al.
(2011) performed genome-wide linkage analysis and found
that mutations in FYCO1 were prevalent causes of autosomal
recessive congenital cataracts in the Pakistani population. In line
with this finding, Kiyotoshi et al. demonstrated that knockout
of FYCO1 led to crystallin aggregation and cataracts formation
in mice (Satoh et al., 2021). Vps34 (vacuolar protein sorting
34), the catalytic subunit of PI3K (class III phosphatidylinositol
3-kinase) complex, participated in the nucleation of autophagy
with an Atg5-independent mechanism. Morishita et al. showed
that a lens-specific deletion of Vps34 led to congenital cataracts
in mice, while loss of Atg5 in the lens caused age-related
cataracts (Costello et al., 2013). In the Atg5-deficiency lens,
cortical fiber cells were disorganized and swollen, accompanied
by deposition of polyubiquitinated proteins, and insoluble
crystallins (Morishita et al., 2013). In conclusion, autophagy is
critical in maintaining the transparency of the lens and the
disruption of autophagy may contribute to cataract formation.

Glaucoma is a common age-related chronic optic neuropathy
with progressive degeneration of retinal ganglion cells (RGCs),
resulting in damage to the optic nerve head and a concomitant
vision loss (Porter et al., 2013, 2015; Pulliero et al., 2014).
Trabecular-meshwork (TM) cells regulate the appropriate

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 October 2021 | Volume 9 | Article 752962

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-752962 October 23, 2021 Time: 15:4 # 7

Li et al. Autophagy in Aging

intraocular pressure (IOP) by modulating the outflow of aqueous
humor, any challenge to TM cells may lead to the development
of glaucoma (McMonnies, 2018). In the natural course of aging,
oxidative stress accumulates and causes the death of TM cells.
To maintain intracellular homeostasis, TM cells utilize autophagy
to eliminate the cytotoxic effect of damaged proteins and
dysfunctional organelles. However, autophagic activity gradually
saturates with age owing to the accumulation of non-degradable
substances in the lysosome, which leads to the reduction of
lysosome activity. Porter et al. (2013) observed a decreased
autophagic activity and an impaired cathepsin B proteolytic
maturation in the porcine TM cells subjected to hyperoxia;
they speculated that the oxidative stress-induced reduction in
autophagic activity may be one of the contributors to the age-
related dysfunction of TM cells and may be partly accountable
for the pathogenesis of glaucoma. Elevation in IOP is a major
risk for glaucoma. In Porter’s another study, they observed an
increase in autophagic activity in cultured human TM cells
subjected to static biaxial stretch and proved that in porcine
TM cells, the high pressure also activated autophagy to cope
with the mechanical forces (Porter et al., 2014). In this scene,
autophagy is protective for the eye. While Park et al. (2012)
demonstrated that in the rat model of chronic hypertensive
glaucoma, chronic IOP elevation activated autophagy and led
to autophagic cell death of retinal ganglion cells. Normal-
tension glaucoma (NTG) is a subgroup of glaucoma, which
manifests optic nerve damage without IOP elevation. Several
gene mutations are linked to NTG, among them is optineurin
(OPTN) (Rezaie et al., 2002). OPTN is an autophagy receptor
mediating cargo-selective and non-selective autophagy (Ryan
and Tumbarello, 2018). Mutations in the OPTN gene have been
linked to the pathogenesis of NTG. E50K and M98K of OPTN
are the most common mutations observed in NTG. A study
conducted on transgenic mice showed that overexpression of
E50K-OPTN activated the Bax pathway and triggered mitophagy,
resulting in loss of RGCs with aging (Shim et al., 2017).
Sirohi et al. (2013) demonstrated that M98K-OPTN showed
a higher coefficient of colocalization with transferrin receptor
(TFRC) than wild-type OPTN, hindered the uptake of transferrin
and induced RGC-5 death by stimulating the activation of
autophagy. The two mutations activated autophagy and led to
RGC death with two different mechanisms. Therefore, a better
understanding of the roles of autophagy in glaucoma may be
helpful to develop novel therapeutic strategies to improve the
treatment of this disease.

AUTOPHAGY IN THE BRAIN AND ITS
ROLE IN AGING

Neurons are postmitotic cells that are unable to dilute the
aggregated macromolecular and dysfunctional organelles by cell
division and are therefore more susceptible to proteostasis
impairment. Autophagy, an alternative cellular degradation
pathway, degrades the unnecessary components to achieve
cellular homeostasis and is essential for the survival and the
proper function of neurons. Numerous pieces of evidence

indicate that autophagy declines with age in the brains of
several species. Genome-wide analysis reveals that there is a
significant transcriptional down-regulation of autophagy during
the aging of the human brain (Lipinski et al., 2010). A study
on mice also shows aging reduces the protein level of Atg-
7, LC3-II and enhances the accumulation of p62 in the total
hypothalamic lysates of aged mice and the aged mice phenocopy
the metabolic defects observed in POMC neuron-specific Atg7-
null mice (Kaushik et al., 2012). Age-dependent cognitive decline
is inevitable in the aging process, which is observed in both
model organisms and humans. Gupta et al. (2013) demonstrate
that dietary spermidine protects the Drosophila from age-induced
memory impairment via autophagy. Proteostasis failure results in
protein aggregation and is a defining feature of many age-related
neurodegenerative diseases. A growing number of studies suggest
that age-related decreases in autophagic activity disrupt neuronal
proteostasis and consequently result in the age-dependent onset
of neurodegenerative disorders (Figure 3C).

Alzheimer’s disease (AD) is the most prevalent type of
dementia in the elderly and is pathologically characterized by the
deposition of extracellular amyloid-beta (Aβ) and intracellular
hyperphosphorylated tau proteins. TEM studies show that AD is
generally accompanied by low or insufficient autophagic activity
(Nixon and Yang, 2011; Wolfe et al., 2013). In normal neurons,
the majority of newly generated autophagosomes retrograde
transport along the axon to the location of the lysosome.
However, in AD transgenic mice, it was found that axonal
autophagosome vesicle transport was impaired, which may
be attributed to the hyperphosphorylated Tau, a microtubule-
associated protein (Nilsson et al., 2013; Majid et al., 2014).
Additionally, in neurons of patients with AD, Aβ accumulates
in autophagic vesicles, further suggesting the involvement of
autophagy in AD (Nixon et al., 2005). There is a complex
interaction between Aβ and autophagy. In the early stage of
AD, the autophagy level of neuronal cells is gradually enhanced,
which helps to remove damaged organelles, misfolded proteins
and harmful factors, such as IL-1β, L-6, TNF-α, etc. Nevertheless,
with the accumulation of abnormal substances, the autophagy-
lysosome pathway is gradually blocked, concomitant with the
enhanced LC3-II, and impaired binding of autophagosomes to
lysosomes, which in turn promotes the development of AD
(Switon et al., 2017).

Parkinson’s disease (PD) is the second most common
age-related neurodegenerative disease clinically featured by the
progressive death of dopaminergic neurons in the substantia
nigra. Another pathological hallmark of PD is the deposition
of alpha-synuclein-positive protein aggregates termed Lewy
bodies, indicating a deficiency in the protein elimination
mechanism. Indeed, autophagy failure is recognized as an
important pathophysiological mechanism contributing to the
initiation and progression of PD. Autopsy of brain tissue from
PD patients showed a build-up of autophagosomes, accompanied
by the absence of lysosomal markers in dopaminergic neurons,
suggesting the impaired autophagy flux (Dehay et al., 2010).
Belarbi et al. found that therapeutic activation of autophagy
by co-treatment with the mTOR-dependent rapamycin and
mTOR-independent trehalose in a PD mouse model successfully
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alleviates PD symptoms, further implicating the involvement
of autophagy in PD (Pupyshev et al., 2019). In addition, both
sporadic PD and familial PD can be caused by autophagy-related
gene mutations (Abeliovich and Gitler, 2016). For example, loss-
of-function mutations in PINK-1 and Parkin, which are essential
for mitophagy, cause early-onset autosomal recessive PD (Dorn
and Kitsis, 2015). Pathogenic leucine-rich repeat kinase 2
(LRRK2) mutations are the leading cause of familial PD. Saha
et al. (2015) found that LRRK2 G2019S mutation in PD patients
led to lysosomal aggregation and inhibition of autophagic activity
in dopaminergic neurons. The expression of transcription factor
EB (TFEB), an important inducer of lysosomal biogenesis and
autophagy (Settembre et al., 2011), is remarkably decreased in
nuclei of dopaminergic neurons, and co-localizes with Lewy
bodies in samples from PD patients (Decressac et al., 2013). In
summary, age-dependent neurodegenerative diseases are closely
associated with the activity of autophagy.

AUTOPHAGY IN THE LIVER AND ITS
ROLE IN AGING

The liver is a vital metabolic organ and possesses high levels of
metabolic-stress-induced autophagy. Hepatic autophagy supplies
energy to starved cells by breaking down glucose, amino
acids and free fatty acids, promoting the synthesis of new
macromolecules, and controlling the quality and quantity of
organelles like mitochondria. Therefore, autophagy is important
for maintaining the balance of energy and nutrient in the liver.
A study on perfused rat liver demonstrated that starvation
elevated the autophagic proteins degradation rate from about
1.5% of total liver protein per hour (basal) to 4.5% of total
liver protein per hour (Schworer et al., 1981). Liver-specific
Atg7 deficiency impaired the autophagic protein degradation
induced by starvation in the liver and led to hepatic lobules
disorders and cell swelling; the mutant mice finally developed
serve hepatomegaly (Komatsu et al., 2005). Singh et al. (2009)
reported that pharmacological and genetic inhibition of hepatic
lipophagy via 3-methyladenine (3-MA) or Atg5 knockdown
led to the build-up of lipids drops and triglycerides in mouse
liver, emphasizing the requirement of autophagy in liver lipid
metabolism. However, hepatocyte-specific deletion of Atg5-
deficient promoted hepatocyte proliferation and protected the
liver from acetaminophen (APAP)-induced liver injury in mice
by sustained activation of Nrf2 (Ni et al., 2012).

Recent studies have shown that the autophagy capacity of
older livers is significantly reduced compared to younger livers.
Mohammad et al. revealed that the expression of LC3 and
the number of autophagic structures declined with age in
mice (Uddin et al., 2012). The reduction of autophagy in the
aged liver led to decreased ATP synthesis, accumulated lipids
and increased oxidative stress, which further compromised the
function of the hepatocytes (Stahl et al., 2018). Ogrodnik et al.
(2017) demonstrated that hepatocyte aging caused impaired
fatty acid oxidation capacity and mitochondrial dysfunction,
which in turn promoted lipid accumulation and contributed
to hepatic steatosis. Mitochondria are key organelles for lipid

metabolism in hepatocytes. The age-related impairment in
mitophagy caused reduced mitochondrial turnover and increased
mitochondrial dysfunction in the liver, which not only affected
lipid metabolism but also induced high levels of ROS production.
The excessive ROS further exacerbated the damage to lipid
metabolism, ultimately leading to hepatocyte apoptosis and
hepatic inflammation (Cao et al., 2016; Chen et al., 2020).
Thus, appropriate enhancement of autophagy is protective
for the liver. Rapamycin and carbamazepine are commonly
known autophagy inducers. Lin et al. (2013) reported that
rapamycin and carbamazepine mitigated liver steatosis, liver
injury, and dyslipidemia in both alcohol-fed and high fat diet-fed
mice by activating autophagy. In contrast, autophagy inhibitors
(chloroquine) treatment aggravated hepatic steatosis and liver
injury (Lin et al., 2013; Figure 3D).

Unlike other visceral organs, the liver has an amazing ability
to regenerate. Liver regeneration is an energy-consuming process
that requires an extensive supply of energy for hepatocytes
division and growth. Autophagy, especially mitophagy,
selectively removes the damaged mitochondria and promotes
mitochondrial biogenesis, which decreases ROS production
and increases ATP synthesis, providing the environment and
energy required for liver regeneration. The regeneration ability
of the liver is impaired with age and improving autophagy
seems to be a promising way to promote regeneration in
aged livers. The mTOR signaling pathway is the most well-
known autophagy regulatory pathway. However, mTOR not
only regulates autophagy but also plays important role in cell
proliferation. Although inhibition of mTOR activity can induce
autophagy, it impairs cell proliferation, which is critical for
liver regeneration. Therefore, activation of autophagy through
an mTOR-independent pathway is a better strategy (Xu et al.,
2020). Amiodarone is a common antiarrhythmic medication,
which induces autophagy as well. Lin et al. (2015) showed
that amiodarone-induced autophagy promoted liver growth and
hepatocyte proliferation in an mTOR-independent manner. After
partial hepatectomy (PHx), they observed an increased LC3-II
and a decreased p62 in amiodarone-treated mice, which were
accompanied by elevation of LBWR, Ki-67, PCNA, cell cycle
protein levels and reduction of TGF-β1 and p21. Conversely,
inhibition of autophagy by chloroquine or Atg7 knockdown
exacerbated liver regeneration (Lin et al., 2015).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In summary, autophagy has convincingly been shown to be a
prerequisite for longevity and healthspan, and altered autophagy
contributes to aging and the transition of the healthy state
of several tissues into a presenescent state (Cuervo et al.,
2005; Nakamura and Yoshimori, 2018). Although elevation
of autophagy has been suggested to have beneficial effects
on lifespan and some age-related diseases (Nakamura and
Yoshimori, 2018), controversial observations exist regarding the
protective and detrimental role of autophagy induction in the
context of tissue aging (Schafer et al., 2017). Besides, although
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autophagy declining with age has been observed in the whole
organism and the specific tissues, it remains unclear whether
aging causes a decrease in autophagy or vice versa. Thus, there
are many challenges in the correlation between autophagy and
aging. An in-depth understanding of the underlying mechanisms
of autophagy dysfunction in aging in different organs and
tissues will shed light on the development of autophagy-targeted
therapeutic strategies to combat aging and aging-related disease.
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