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In recent years, the long noncoding RNA (lncRNA) has been shown to be involved in many
disease processes. The prediction of the lncRNA–disease association is helpful to clarify
themechanism of disease occurrence and bring some newmethods of disease prevention
and treatment. The current methods for predicting the potential lncRNA–disease
association seldom consider the heterogeneous networks with complex node paths,
and these methods have the problem of unbalanced positive and negative samples. To
solve this problem, a method based on the Gradient Boosting Decision Tree (GBDT) and
logistic regression (LR) to predict the lncRNA–disease association (GBDTLRL2D) is
proposed in this paper. MetaGraph2Vec is used for feature learning, and negative
sample sets are selected by using K-means clustering. The innovation of the
GBDTLRL2D is that the clustering algorithm is used to select a representative negative
sample set, and the use of MetaGraph2Vec can better retain the semantic and structural
features in heterogeneous networks. The average area under the receiver operating
characteristic curve (AUC) values of GBDTLRL2D obtained on the three datasets are
0.98, 0.98, and 0.96 in 10-fold cross-validation.

Keywords: long noncoding RNA, heterogeneous network, MetaGraph2Vec, K-means, Gradient Boosting Decision
Tree, logistic regression

1 INTRODUCTION

In the human genome, more than 98% of the genes are noncoding protein sequences. The remaining
2% can only be transcribed into noncoding RNAs (ncRNAs). The ncRNAs can be divided into
microRNA (miRNA), long ncRNA (lncRNA), etc. NcRNAs between 200 and 100,000 in length are
lncRNAs.

At first, lncRNAs are considered useless RNAs without any biological function (Mercer and
Mattick, 2013). This is because they are expressed at a lower level than protein-coding RNAs.
However, with the development of experimental methods and computing power, the change of
lncRNA has been found to be associated with many diseases, such as colorectal cancer (Xiong et al.,
2021), lung adenocarcinoma (Hou et al., 2021), and gastrointestinal cancer (Abdi et al., 2021). With
the deepening of research on lncRNAs, there are many pieces of evidence that lncRNAs play a key
role in many important biological processes, including transcription, translation, splicing,
differentiation, epigenetic regulation, immune response, and cell cycle control. For example,
lncRNA loc105377478 promotes NPs-Nd2O3 in 16HBE cells and thus induces inflammation in
human bronchial epithelial cells (Yu et al., 2021). LncRNA HOTAIR is considered a potential
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biomarker (Maass et al., 2014). The expression level of HOTAIR
in breast cancer tissues is 100 to approximately 2,000 times higher
than normal tissues and is associated with the proliferation and
survival of colorectal cancer (Ge et al., 2013). Some research has
shown that lncRNA BCAR4 is expressed in 27% of primary breast
tumors. LncRNA Braveheart has also been demonstrated to
control heart development by interacting with the epigenetic
modifier PRC2. And increasing the expression of lncRNA
Linc-MD1 can promote muscle differentiation (Cesana et al.,
2011). LncRNA NEAT1 can regulate the development of
Parkinson’s. Therefore, the research of the potential
lncRNA–disease association can better comprehend the
potential mechanism of human diseases and help diagnose
and treat diseases. This research has important practical
implications.

Biological experiments to identify potential associations are
time-consuming, labor-intensive, and very expensive. Therefore,
in order to effectively reduce the time consumed by biological
experiments and economic costs, there has been much research
based on bioinformatics and computational power. For example,
the method KATZLGO is proposed by Zhang et al. (2017) to
predict the interaction of lncRNA–lncRNA. The PLPIHS is
proposed by Xiao et al. (2017) to predict lncRNA–protein
interactions using HeteSim score. A computational framework
for predicting lncRNA–protein interactions is proposed by Liu
(2020). An approach to explore miRNA sponge networks in
breast cancer is proposed by Tian and Wang (2021). A
method to predict the subcellular localization of lncRNAs is
proposed by Yang et al. (2020). The potential roles of oral
squamous cell carcinoma (OSCC)-related mRNA and lncRNA
are revealed by Li et al. (2021) through protein interaction
network and co-expression network analysis. The model
GBDTL2E is proposed by Wang et al. (2020) to predict the
association between lncRNA and environmental factors.With the
deepening of research, research on the prediction of
lncRNA–disease association is mainly divided into the
following categories:

1) Based on machine learning methods, the main idea of these
methods is to prioritize candidate lncRNAs by training known
and unknown lncRNA–disease correlation. The semi-supervised
learning framework LRLSLDA is proposed by Chen and Yan
(2013). A graph regularization non-negative matrix factorization
(LDGRNMF) is proposed by Wang M.-N. et al. (2021). Based on
the weight algorithm and the improved projection algorithm,
LDAP-WMPS is proposed by Wang B. et al. (2021). A model
proposed by Zhou et al. (2021) uses high-order proximity
reserved embedding to embed nodes into the network. The
model VGAELDA, which integrates variational reasoning and
graph autoencoder, is proposed by Shi et al. (2021). A multi-label
fusion collaborative matrix decomposition (MLFCMF) method is
proposed by Gao et al. (2021) to predict lncRNA–disease
associations. The model PSPA-LA-PCRA is proposed by
Wang and Zhang (2021), which uses the data of pathological
stages. The random distribution logical regression framework
(RDLRF) is proposed by Sun et al. (2021), and the RDLRF
combines simboost feature extraction with logistic regression
(LR). The method FVTLDA is proposed by Xiao et al. (2020),

which combines multiple linear regression and artificial neural
network. The BLM-NPA is proposed by Cui et al. (2019) to
predict based on the nearest neighbor. The alternate least squares
method of matrix factor factorization (ALSBMF) is proposed by
Zhu et al. (2020). A computational method based on graphical
autoencoder matrix completion (GAMCLDA) is proposed byWu
et al. (2020). A deep matrix factorization method (DMFLDA) is
proposed by Zeng et al. (2020). A graph-based method (PANDA)
is proposed by Silva and Spinosa (2021). The PANDA takes the
association prediction of lncRNAs and diseases as a link
prediction problem.

2) Based on network methods, the main idea of these methods
is using a similarity network to predict lncRNA–disease
association. Based on the combination of incremental principal
component analysis (IPCA) and random forest (RF), a
lncRNA–disease association prediction method IPCARF is
proposed by Zhu et al. (2021). The prediction method for
lncRNA–disease associations (PCSLDA) based on Point Cut
Set is proposed by Kuang et al. (2019). The model GAERF is
proposed by Wu et al. (2021); GAREF uses graph autocoding
(GAE) and RF to identify disease-related lncRNAs. A random
walk-based multi-similarity fusion and bidirectional label
propagation method RWSF-BLP is proposed by Xie et al.
(2021). Based on the assumption that there is a potential
association between an lncRNA and a disease, if they are
associated with the same set of miRNAs, similar diseases tend
to be closely related to IneRNAs with similar functions; the
method LDLMD is proposed by (Wang et al., 2019). A
method of internal confidence-based local radial basis
biological network (ICLRBBN) is proposed by Wang Y. et al.
(2021). A two-stage prediction model (DRW-BNSP) is proposed
by Zhang et al. (2021). HAUBRW algorithm is proposed by Xie
et al. (2020b), which combines thermal diffusion algorithm and
probabilistic diffusion algorithm to redistribute resources. An
lncRNA–disease association prediction model based on RF and
feature selection, RFLDA, is proposed by Yao et al. (2020). A
predictive lncRNA–disease prediction model based on
heterogeneous networks is proposed by Song et al. (2020). The
LDAMAN is proposed by Zhang et al. (2020), which uses a
structural deep network embedding model. The method based on
linear neighborhood similarity and unbalanced double random
walk (LDA-LNSUBRW) is proposed by Xie et al. (2020a). The
MHRWR is proposed by Zhao et al. (2020) to integrate the
similarity network of lncRNAs, diseases, and genes, with the
known lncRNA–disease association network, lncRNA–gene
network, and disease–gene network. The method LDAH2V is
proposed by Deng et al. (2021), which uses HIN2Vec to calculate
the meta path and eigenvector of each lncRNA–disease pair in
heterogeneous information networks.

It can be seen that the association prediction of lncRNAs and
diseases has become a research hotspot. Currently, the existing
methods simply regard all objects in the network as the same type.
However, in heterogeneous networks, there are many types of
nodes, and the relationship between nodes is very complex, which
is not considered by traditional methods. At the same time,
unknown correlation is far greater than known correlation,
which brings great challenges to model training. To solve
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these problems, a method based on the Gradient Boosting
Decision Tree (GBDT) and LR to predict the lncRNA–disease
association (GBDTLRL2D) is proposed in this paper. The
GBDTLRL2D uses MetaGraph2Vec for feature learning and
the K-means clustering method to select negative sample sets.
The contributions of our method are included:

• The GBDTLRL2D comprehensively considers the
topological structure characteristics and meta-path
characteristics of nodes in heterogeneous networks.
MetaGraph2Vec is used to learn more information by
capturing more semantic relationships between
remote nodes.

• The GBDTLRL2D uses the K-means to get the clustering of
the unknown correlation. The same number of negative
samples as the positive samples is selected from the clusters.

• The GBDTLRL2D combines GBDT and LR. The GBDT +
LR is a special classification algorithm. Its ability to find
features and combine features is very powerful. The
classification accuracy is high.

2 MATERIALS AND METHODS

The known lncRNA and disease-associated data used in this
paper are downloaded from the lncRNADisease (Chen et al.,
2012), which includes three versions, namely, the version of June
2012, the version of January 2014, and the version of June 2015.
Table 1 shows the data after deduplication.

In this section, a method based on the GBDT and LR to predict
the lncRNA–disease association (GBDTLRL2D) is proposed. The
GBDTLRL2D uses MetaGraph2Vec for feature learning and the
K-means clustering method to select negative sample sets. The
main steps of GBDTLRL2D are as follows: 1) according to the
downloaded data, the set of lncRNAs and diseases as well as the
association matrix A of lncRNA–diseases is obtained after
deduplication. 2) The disease semantic similarity matrix SSD
and lncRNA functional similarity matrix FSL are calculated, and
then the Gaussian interaction profile kernel similarity matrix of
disease (GSD) and lncRNA (GSL) are calculated. 3) LncRNA
similarity matrix SL is constructed according to GSL and FSL, and
disease similarity matrix SD is constructed according to GSD and
SSD. 4) The association matrix A of lncRNA–disease, lncRNA
similarity matrix SL, and the disease similarity matrix SD are
integrated to construct the global heterogeneous network G. On
the G, the feature of each node is learned by MetaGraph2Vec to
obtain the feature representation of each node. 5) K-means is
used to select negative samples to obtain train sets. 6) The GBDT

and LR classifier are used to predict the lncRNA–disease
association. Figure 1 is a flowchart of the GBDTLRL2D. Each
step of GBDTLRL2D is detailed in the next section.

2.1 Calculate Disease Semantic Similarity
The computing method of disease semantic similarity SSD in this
experiment is based on the Disease Ontology. The method
presents the disease tissue as a directed acyclic graph (DAG).
As shown in Figure 2, the relationships between diseases are
described in a DAG. Each node is a disease, and the arrow points
from a disease to its ancestor disease. It can be seen from Figure 3
that if one lncRNA is associated with a disease, then this lncRNA
may be associated with sub-diseases of the disease. From this
perspective, the correct identification of these new associations
may help to understand the mechanisms underlying RNA levels
and improve the speed of accurate diagnosis and treatment of
diseases. Therefore, the SSD between diseases is calculated
according to the DAG.

For disease di, the semantic value is obtained. The contribution
of each ancestral disease in the DAG of disease du to the semantic
value of di is firstly calculated as shown in formula (1):

Ci(u) � 1, if u � i
max Δ × Ci u′( ) | u′ ∈ children of u{ }, if u ≠ i

{
(1)

where Δ is the weight of the edge connecting disease du and its
sub-diseases, namely, semantic contribution factor. According to
the above formula, as the distance between disease di and other
diseases increases, semantic contributions decrease. Therefore, Δ
should be selected between 0 and 1. In this paper, Δ� 0.5. Then
the semantic value of di is calculated as the sum of the
contributions of di’s ancestor disease and di itself, as shown in
formula (2):

C(i) � ∑
u∈Z(i)

Ci(u) (2)

where Z(i) represents the node set in the DAG of disease di.
For the disease di and dj, when the DAG of disease di and dj has

more overlapping nodes, their semantic similarity is higher.
Therefore, the semantic similarity matrix SSD of diseases can
be obtained as shown in formula (3):

SSD(i, j) � ∑u∈Z(i)∩Z(j) Ci(u) + Cj(u)( )
C(i) + C(j) (3)

SSD (i, j) is denoted as the semantic similarity value between
disease di and dj.

TABLE 1 | LncRNA–disease association relationship dataset.

Dataset Number of lncRNA Number of diseases Number of associations

DataSet1 (DS1) 112 150 276
DataSet2 (DS2) 131 169 319
DataSet3 (DS3) 285 226 621

Note. lncRNA, long noncoding RNA.
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FIGURE 1 | Flowchart of the GBDTLRL2D. (A)Obtained the associationmatrix A. (B)Calculated the disease semantic similarity matrix SSD. (C)Calculated the long
noncoding RNA (lncRNA) functional similarity matrix FSL. (D) Calculated the disease Gaussian interaction profile kernel similarity GSD. (E) Calculated the lncRNA
Gaussian interaction profile kernel similarity GSL. (F) Obtained the lncRNA similarity SL. (G) Obtained the disease similarity SD. (H) Integrated three subnets A, SL, and
SD to construct a global heterogeneous network. (I)Obtained the embedded features of nodes. (J) Selected the negative sample and obtained the training set. (K)
Trained the Gradient Boosting Decision Tree combined with logistic regression classifier (GBDT + LR).
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2.2 Calculate Long Noncoding RNA
Functional Similarity
According to the LNCSIM (Chen et al., 2015), the lncRNA
functional similarity is described as follows. Diseases
associated with the same lncRNA are grouped into a set. The
DL1 is the disease set related to lncRNA lm, including x diseases.
The DL2 is the disease set related to lncRNA ln, including y
diseases. When the semantic similarity between diseases in DS1
and DS2 is higher, the functional similarity between lncRNA lm
and ln may be higher, as shown in formula (4):

FSL lm, ln( ) � ∑d∈DL2maxS d,DL1( ) +∑d∈DL1maxS d,DL2( )
x + y

(4)

maxS d,DL1( ) � maxd∈DL1 SS d, d1( )( ) (5)

where maxS (d, DL1 (lm)) is the maximum semantic similarity of
all diseases in the set DL1 related to lncRNA lm.

2.3 Calculate Gaussian Interaction Profile
Kernel Similarity
In this section, the adjacency matrix A is constructed according to
the known lncRNA–disease association. The A (li, dj) indicates
whether lncRNA li and disease dj are related. The A as shown in
formula (6):

A li, dj( ) � 1 li is associated withdj

0 otherwise
{ (6)

In lncRNA functional similarity matrix FSL and the disease
semantic similarity matrix SSD, many elements are 0. In order to
make the similarity network not sparse, Gaussian kernel
similarity is calculated, as shown in formula (7):

GSL lm, ln( ) � exp −δl‖A m, :( ) − A n, :( )‖2( ) (7)

GSD di, dj( ) � exp −δd A : , i( ) − A : , j( )				 				2( ) (8)

where GSL (lm, ln) is the Gaussian interaction profile kernel
similarity score of lncRNA lm and ln, and GSD (di, dj) is the
Gaussian interaction profile kernel similarity of diseases di and dj.

The A (m,) ismth row of A, and A (. i) is ith col of A. Parameters
δl and δd are obtained as shown in Eq. 9 and Eq. 10:

δl � δl′ /
1
p

∑p
m�1

A m, :( )‖ ‖2⎛⎝ ⎞⎠ (9)

δd � δd′ /
1
q
∑q
i�1

A : , i( )‖ ‖2⎛⎝ ⎞⎠ (10)

where p is the number of lncRNAs and q is the number of
diseases.

2.4 Obtain Similarity Network
In this section, lncRNA similarity network and disease similarity
network are constructed. The lncRNA similarity network is
represented as SL. SL is fused by FSL and GSL. For lncRNA
lm and ln, if FSL (lm, ln) � 0, then SL (lm, ln) � GSL (lm, ln);
otherwise, SL (lm, ln) � FSL (lm, ln), as shown in formula (11):

SL lm, ln( ) � GSL lm, ln( ) if FSL lm, ln( ) � 0
FSL lm, ln( ) otherwise

{ (11)

SD di, dj( ) � GSD di, dj( ) if SSD di, dj( ) � 0

SSD di, dj( ) otherwise

⎧⎨⎩ (12)

Similarly, the disease similarity network is expressed as SD.
The SD is fused by SSD and GSD, as shown in formula (12):

2.5 Obtain Node Features Through
MetaGraph2Vec
In this section, the heterogeneous network is constructed by
integrating the adjacency matrix A of lncRNA–disease
association, lncRNA similarity network SL, and the disease
similarity network SD. Because there are many types of nodes
and complex relationships among nodes in the heterogeneous

FIGURE 2 | The disease DAG of breast neoplasms. DAG, directed
acyclic graph.

FIGURE 3 | Diseases associated with lncRNA H19. lncRNA, long
noncoding RNA.
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network, embedding networks is difficult to implement. In
GBDTLRL2D algorithm, MetaGraph2Vec (Zhang et al., 2018)
is used for feature learning, which preserves both structural and
semantic features in heterogeneous networks. MetaGraph2Vec
uses metagraph to guide the generation of a random walk and
learn about the potential embedding of nodes in a heterogeneous
network of multiple types. Metagraph can represent features of
sparse heterogeneous networks based on meta-paths. The specific
substeps are shown below.

2.5.1 Building Heterogeneous Networks
The heterogeneous network G � (V, E) is constructed, where V
represents the set of nodes and E represents the set of edges. The
G is denoted as U. The dimension of the matrix U is (nl + nd)p(nl
+ nd), where nl is the number of lncRNAs and nd is the number of
diseases, as shown in formula (13):

U � SL A
AT SD

[ ] (13)

where AT is the transpose of A.

2.5.2 Random Walk Guided by metagraph
Given a metaGraph g � (N,M, ns, nt) with ns � nt, the metaGraph is
defined as a DAG on G, where ns represents the source node, nt
represents the target node, N is the node set, and M is the edge set.
The g∞ � (N,M,n∞s , n∞t ) is recursive metaGraph of g. The g∞ is
constructed by any number of g’s connected tail to head. A node of
type ns is selected to start a random walk guided by the metatype.

In step i, node vi−1 is selected as the start of a random walk
guided by the metaGraph. The randomwalk obtains the edge types
of node vi−1 in a heterogeneous network that meets the constraints
in the metagraph with all neighboring nodes. One edge type is
randomly selected. Then, an edge of the selected edge type is
randomly selected to get the next node vi. The random walk
terminates when there is no edge type that satisfies the constraint.

The transition probability of step i guided by metaGraph g is
denoted as T (vi|vi−1; g∞), vi−1 is the current node, and vi is the

next hop node. If the node vi−1 and its neighbors in the
heterogeneous network G do not satisfy the edge type of the
constraint of the g∞, T (vi|vi−1; g∞) � 0. Otherwise, T (vi|vi−1; g∞)
is shown in formula (14):

T vi | vi−1;g∞( ) � 1
NUMg∞ vi−1( )
× 1

μ | vi−1, μ( ) ∈ E,ϕ vi( ) � ϕ(μ){ }∣∣∣∣ ∣∣∣∣ (14)

where | μ | (vi−1, μ) ∈ E, ϕ(vi) � ϕ(μ){ }| is the number of
neighbor nodes of the same type as vi−1. NUMg∞(vi−1) is the
number of edge types that satisfy the constraint in the g∞ starting
from vi−1, as shown in formula (15):

NUMg∞ vi−1( ) � j ϕ vi−1( ), ϕ(μ)( ) · ∈ M ∩ N l∞ ϕ vi−1( )( )[ ] × N[j]( ),∣∣∣∣ ∣∣∣∣ vi−1 , μ( ) ∈ E{ }∣∣∣∣∣ ∣∣∣∣∣
(15)

After several walks, a node sequence Sg � v1, v2, . . ., vL of length
L is finally obtained.

2.5.3 Obtain Node Features Through MetaGraph2Vec
By learning the mapping function Ψ, the nodes of heterogeneous
networks are embedded into a d-dimensional space to obtain the
embedding feature. The network G has a large number of nodes
with different semantics. The nodes with similar semantics in
heterogeneous networks are guaranteed to have similar low-
dimensional representations Ψ(v).

The node sequence Sg � v1, v2, . . ., vL of length L is obtained by
a random walk guided by metaGraph g. The embedding function
Ψ(·) is learned bymaximizing the occurrence probability of nodes
before and after vi in the window, and the window size is b.Ψ(·) is
shown in formula (16):

minΨ − logT vi−b, . . . , vi+b{ } /vi | Ψ vi( )( ) (16)

where T( vi−b, . . . , vi+b{ } /vi | Ψ(vi)) � ∏i+b
j�i−b,j≠iT(vj | Ψ(vi)).

Following MetaPath2Vec, the T (vj|Ψ(vi)) is related to the type
of vj, as shown in formula (17):

FIGURE 4 | An example of K-means embedding matrix.
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T vj | Ψ vi( )( ) � T vj | Ψ vi( ),ψ vj( )( )T ψ vj( ) | Ψ vi( )( ) (17)

where the probability T(vj | Ψ(vi),ψ(vj)) is shown in
formula (18):

T vj | Ψ vi( ),ψ vj( )( ) � exp Φ vj( ) · Ψ vi( )( )∑μ∈V,ψ(μ)�ψ vj( ) exp Φ′(μ) · Ψ vi( )( ) (18)

After that, stochastic gradient descent is used to learn the
parameters. At each iteration, a node context pair (vi, vj) is
sampled according to the distribution of P (vi, vj), and the P
(vi, vj) is the occurrence frequency of each node context pair (vi,
vj) within b window size. The gradients are updated to minimize
the following objective:

Oij � −logT vj | Ψ vi( )( ) (19)

To speed up training, negative sampling is used to
approximate the objective function:

Oij � log ρ Φ vj( ) · Ψ vi( )( ) + ∑U
u�1

log ρ −Φ vNj,u( ) · Ψ vi( )( ) (20)

where ρ(·) is the sigmoid function, vNj,u is the uth negative node
sampled for node vj, and U is the number of negative samples,
vNj,u sampled from nodes with typeΨ(vj). Formally, parametersΨ
and Φ are updated as follows:

Ψ � Ψ − λ
zOij

zΨ ;Φ � Φ − λ
zOij

zΦ (21)

where λ is the learning rate.
The embedding functionΨ embeds the nodes of a heterogeneous

network into a low-dimensional space, embedding each node and
obtaining a low-dimensional representation Φ(v). Finally, the d-
dimensional matrix X is obtained.

2.6 Obtain Negative Samples Using
K-Means Clustering
Since the number of negative samples is far greater than that of
positive samples in the set, it is necessary to balance the train set.
The proposed method uses a novel and advanced data balancing
method K-means clustering. The K-means is a segmentation
technique based on centroid. The centroid of a cluster is used
to represent the cluster. The centroid of a cluster is defined as the
mean value of points within the cluster. The K-means is relatively
simple and easy to implement. The specific implementation steps
are as follows:

1. The initial k cluster centers are randomly selected from the
unknown sample.

2. According to the distance from the point to the center of each
cluster, the point is assigned to the closest cluster center
category.

3. All points are assigned, and k cluster centers are recalculated.
4. If the recalculated k cluster centers are not the same as the

previous cluster centers, we go to 2; otherwise, go to 5.

5. The clustering center is not changed, and the clustering results
are output.

In this method, the data feature input into the K-means
clustering method is composed of the fusion of SL, SD, and A.
For example, the embedding matrix for sample lncRNA l2 and
disease d4 pairs is shown in Figure 4.

As shown in Figure 4, the embedding matrix of lncRNA l2 and
disease d4 pairs includes the following parts: 1) the first part is the
second row of lncRNA similarity matrix SL; 2) the second part is
composed of the vector corresponding to the adjacency matrix A
of d4; 3) the third part is composed of the vector corresponding to
l2 of the adjacency matrix A; and 4) the fourth part is the second
row of disease similarity matrix SD. Combined with the
representations in the first part, second part, third part, and
fourth part, the final lncRNA l2 and disease d4 samples are
constructed to carry out the K-means embedding matrix.

2.7 Train the Gradient Boosting Decision
Tree Combined With Logistic Regression
Classifier
After the sample and features are obtained, the GBDT + LR
classifier is trained. Parameters of the model are initialized. The
training data are regressed through the GBDT model and
generate a decision tree. The leaf nodes of the decision tree
are combined to find the new feature. The feature is used as
input to the LR classifier model. Thus, the training process of
GBDT + LR classifier is completed.

GBDT + LR is a process of feature crossing, and the path of
GBDT can be directly used as the input feature of LR, avoiding the
process of manual combination of cross features. Its algorithm
structure is shown in Figure 5. The two trees in the figure are
regression tree models trained by GBDT. The left tree has three
leaf nodes, and the right tree has two leaf nodes. The final feature
is a five-dimensional vector. For input x, it is assumed that it falls

FIGURE 5 | Algorithm structure of GBDT + LR. GBDT, Gradient
Boosting Decision Tree; LR, logistic regression.
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on the first node of the left tree and encodes (1, 0, 0); if it falls on
the second node of the right tree, it encodes (0, 1), so the overall
code is (1, 0, 0, 0, 1). Such codes are input into LR for
classification. The steps of GBDT + LR for the algorithm are
as follows:

Step 1) The original training data are trained with GDBT to
generate a decision tree, and grid search is used to find the best
parameter combination.

A: The initialization parameter of GDBT is shown in
formula (22):

Θ0(x) � 1
2
p log

∑NUM
i�1 yi∑NUM

i�1 1 − yi

( ) (22)

There are NUM samples to be trained, and yi is the label for
sample i. The loss function J (y, Θt(x)) is defined as shown in
formula (23):

J y,Θt(x)( ) � log 1 + exp −yΘt(x)( )( ) (23)

where y is the label and Θt(x) is the weak model in the tth round.
B: Cycle t, in turn, where t � 1, 2, . . .T.

1) The negative gradient of the loss function of sample ith in
wheel tth is calculated, as follows:

rt,i � −zJ yi,Θt−1 xi( )( )
zΘt−1 xi( ) � yi

1 + exp yi( )Θ xi( )( ), i � 1, 2, . . . , NUM

(24)

where i � 1, 2, 3, . . .., NUM.
2) Construct the tth decision tree, and then get the corresponding

leaf node area as Rtn, where n � 1, 2, . . ., N. N is the number of
leaf nodes of the tree.

3) For the samples in each leaf node, we calculated the ctn, which
minimizes the loss function, as shown in formula (25):

ctn � arg minc ∑
x∈Rtn

log 1 + exp −yiΘ xi( ) + c( )( ) (25)

4) Update the tth weak model as shown in formula (26):

Θt(x) � Θt−1(x) + αp∑N
n�1

ctnI x ∈ Rtn( ) (26)

where I (x ∈ Rtn) means that if x falls on a leaf node corresponding
to Rtn, then the corresponding term is 1, and α means the
learning rate.
5) Determine whether t is greater than T. If t is less than T, t � t + 1

and jump to 1) for the next iteration. Otherwise, it means that
all Tweak learners have been constructed and jump toC to end
the training.
C: The final strong learner model is shown in formula (27):

Θ(x) � Θ0(x) + αp∑T
t�1

∑N
n�1

ctnI x ∈ Rtn( ) (27)

where α is the learning rate.
Step 2) After the training of GDBT, for each tree in the model,

the calculated probability value of the leaf node is denoted as 1,
and new training data are constructed. In this paper, One-Hot
Encoding is used to process the results of GDBT and construct a
new training dataset.

One-hot Encoding is also known as one-bit Efficient coding.
Single-hot coding encodes N states by using an N-bit status

TABLE 2 | The partial experimental parameters of GBDTLRL2D.

Notation Value Definition

nl1 112 The number of lncRNAs in dataset1
nd1 150 The number of diseases in dataset1
n1 262 Total number of diseases and lncRNAs in dataset1
nl2 131 The number of lncRNAs in dataset2
nd2 169 The number of diseases in dataset2
n2 300 Total number of diseases and lncRNAs in dataset2
nl3 285 The number of lncRNAs in dataset3
nd3 226 The number of diseases in dataset3
n3 511 Total number of diseases and lncRNAs in dataset3
cl′ 1 Gaussian interaction properties of lncRNA kernel similar bandwidth

cd′ 1 Gaussian interaction properties of lncRNA kernel similar bandwidth

k 10 K-means clustering divides the unknown samples into k clusters
K 5 The number of negative samples taken in MetaGraph2Vec

Note. lncRNA, long noncoding RNA.

TABLE 3 | Comparison of prediction performance using other machine learning
methods.

Dataset Method ACC Recall F1score MCC AUC

DS1 GBDT + LR 0.928 0.920 0.927 0.858 0.975
DS2 0.934 0.928 0.934 0.870 0.982
DS3 0.887 0.871 0.885 0.777 0.961
DS1 RF + LR 0.787 0.767 0.780 0.581 0.880
DS2 0.800 0.802 0.801 0.603 0.898
DS3 0.796 0.767 0.790 0.601 0.889
DS1 GBDT 0.570 0.658 0.608 0.125 0.619
DS2 0.600 0.724 0.645 0.210 0.654
DS3 0.636 0.631 0.636 0.282 0.647
DS1 LR 0.570 0.659 0.609 0.125 0.649
DS2 0.601 0.724 0.645 0.211 0.705
DS3 0.636 0.631 0.636 0.282 0.667

Note. lncRNA, long noncoding RNA; ACC, Accuracy; MCC, Matthews correlation
coefficient; AUC, area under the receiver operating characteristic curve; GBDT, Gradient
Boosting Decision Tree; LR, logistic regression; RF, random forest.
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FIGURE 6 | ROC curve of GBDTLRL2D on three datasets. ROC, receiver operating characteristic.

FIGURE 7 | ROC curves on three datasets using RF + LR. ROC, receiver operating characteristic; RF, random forest; LR, logistic regression.
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register. Each of the N states has its own independent register bit,
and only one is valid at any time such as the following.

General status Encoder: 000, 001, 010, 011, 100, 101
One-Hot Encoder: 000 001, 000 010, 000 100, 001 000, 010 000,

100 000
Step 3) The new features obtained and the label data of the

original training data are input into the LR classifier for the
training. The hypothesis function of LR is shown in formula (28).
Given x and θ, the possibility that x belongs to a positive sample is
shown in formula (29). θ is obtained by training to minimize the
loss function in formula (30).

hθ(x) � g θTx( ), g(z) � 1
1 + e−z

(28)

Pr(y � 1 | x; θ) � hθ(x) � 1

1 + e−θTx
(29)

L(θ) � − 1
m

∑m
i�1

y(i) loghθ x(i)( ) + 1 − y(i)( )log 1 − hθ x(i)( )( )⎡⎣ ⎤⎦
(30)

3 RESULT AND DISCUSSION

3.1 Dataset
The data are downloaded from the lncRNA–disease-associated
data from the lncRNADisease database, including the data of

three versions, namely, the version of June 2012, the version of
January 2014, and the version of June 2015, labeled as DS1, DS2,
and DS3, respectively. The training samples are obtained by all
positive samples and randomly selecting negative samples by
K-means clustering.

3.2 Performance Measures
In this paper, the 10-fold cross-validation is selected to measure
the performance of the proposed method. The parameters of
GBDTLRL2D are shown in Table 2. The main steps of 10-fold
cross-validation are as follows: the training set is randomly
divided into 10 subsets of the same size, nine of which are
used as training data, and the remaining one is used as
validation data in each training. After ten times of the above
process training, each of the ten subsets, in turn, is used as
validation data to obtain ten performance results. The final
performance evaluation is obtained by averaging the ten
performance results. Various evaluation indexes are used in
this experiment, including Recall (REC), F1-score, Accuracy
(ACC), Matthews correlation coefficient (MCC), and area
under the receiver operating characteristic (ROC) curve
(AUC). Their definition is as follows:

Recall � TP

TP + FN
(31)

Accuracy � TP + TN

TP + TN + FP + FN
(32)

FIGURE 8 | ROC curves on three datasets using GBDT. ROC, receiver operating characteristic.
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F1score � 2pTP
2TP + FP + FN

(33)

MCC � TPpTN − FPpFN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (34)

where TP represents the number of correct prediction of positive
samples as positive samples, TN represents the number of correct
prediction of negative samples as negative samples, FN represents
the number of incorrect prediction of positive samples as negative
samples, and FP represents the number of prediction of negative
samples as positive samples. We plot the ROC based on the true
positive rate (TPR) and false positive rate (FPR), and we calculate
the AUC as an important index to measure the model.

3.3 Performance Comparison With Existing
Machine Learning Methods
In order to prove the advantages of GBDT combined with LR
classifier, we carried out several experiments to compare with
GBDTLRL2D, including using RF + LR as the classifier, using
GBDT only as the classifier, and using LR only as a classifier. It can
be seen that GBDTLRL2D obtains the best performance among
these methods. The 10-fold cross-validation is selected to measure
the performance of the proposed method. Table 3 shows the
predictive performance of GBDT + LR compared with other
methods. The ROC curves of 10-fold cross-validation of
GBDTLRL2D, RF + LR, GBDT, and LR are shown in Figures

FIGURE 9 | ROC curves on three datasets using LR. ROC, receiver operating characteristic; LR, logistic regression.

TABLE 4 | Performance comparison of representation learning without
MetaGraph2vec.

Dataset Whether to
use MetaGraph2Vec

ACC Recall F1score MCC AUC

DS1 Yes 0.928 0.920 0.927 0.858 0.975
DS2 0.934 0.928 0.934 0.870 0.982
DS3 0.887 0.871 0.885 0.777 0.961
DS1 No 0.773 0.785 0.779 0.555 0.871
DS2 0.786 0.758 0.778 0.581 0.877
DS3 0.829 0.826 0.829 0.667 0.923

Note. lncRNA, long noncoding RNA; ACC, Accuracy; MCC, Matthews correlation
coefficient; AUC, area under the receiver operating characteristic curve.

TABLE 5 | Performance comparison without K-means.

Dataset Whether to
use K-means

ACC Recall F1score MCC AUC

DS1 Yes 0.928 0.920 0.927 0.858 0.975
DS2 0.934 0.928 0.934 0.870 0.982
DS3 0.887 0.871 0.885 0.777 0.961
DS1 No 0.802 0.713 0.778 0.617 0.888
DS2 0.769 0.705 0.745 0.553 0.871
DS3 0.779 0.726 0.763 0.562 0.876

Note. ACC, Accuracy; MCC, Matthews correlation coefficient; AUC, area under the
receiver operating characteristic curve.
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6–9, respectively. The AUCs of GBDTLRL2D, RF + LR, GDBBT,
and LR in DS1 are 0.976, 0.880, 0.619, and 0.649, respectively. The
AUCs of GBDTLRL2D, RF + LR, GDBBT, and LR in DS2 are
0.983, 0.898, 0.654, and 0.705, respectively. The AUCs of
GBDTLRL2D, RF + LR, GDBBT, and LR in DS3 are 0.961,
0.889, 0.647, and 0.667, respectively. It can be seen that
GBDTLRL2D obtains the best performance among these methods.

3.4 Performance Comparison With Different
Topological Features
In order to demonstrate the performance of the experimental
features, different feature groups (not using MetaGraph2Vec for

representation learning, but using MetaGraph2Vec for
representation learning) and different negative samples (not
using K-means for clustering, but using K-means for clustering)
are used for performance comparison in this section. Table 4 and
Table 5 show the performance comparison with different
topological features. In Table 4, on the same dataset, the result
shows that the features obtained through MetaGraph2Vec
embedding learning are trained to achieve better performance.
Similarly, inTable 5, the performance of negative samples obtained
through K-means cluster screening is better than that of negative
samples randomly selected for training.

3.5 Performance Comparison With Existing
Methods
To further illustrate the advantages of the proposed model,
several existing methods based on embedding are compared
with GBDTLRL2D, such as LDAH2V, VGAELDA (Shi et al.,
2021), and GCNMDA (Long et al., 2020). The 10-fold cross-
validation is selected to measure the performance.

LDAH2V: The LDAH2V uses the HIN2Vec to calculate the
meta-path and feature vector for each lncRNA–disease pair in
the heterogeneous information network (HIN), which consists
of lncRNA similarity network, disease similarity network,
miRNA similarity network, and the associations between
them. Then, a Gradient Boosting Tree (GBT) classifier to

FIGURE 10 | ROC curve comparison with existing methods. ROC, receiver operating characteristic.

TABLE 6 | The top 10 predicted diseases related to “PVT1.”

Rank Disease Score

1 Lymphoma 0.999 169 371
2 Cancer 0.998 948 531
3 Breast cancer 0.998 948 531
4 Prostate cancer 0.998 948 531
5 Ovarian cancer 0.998 948 531
6 Type 2 diabetes 0.995 265 292
7 Type 1 diabetes 0.995 265 292
8 Diabetic nephropathy 0.987 846 199
9 Hodgkin’s lymphoma 0.984 907 726
10 Burkitt’s lymphomas 0.983 042 458

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 75302712

Duan et al. GBDTLRL2D

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


predict lncRNA–disease associations is built with the feature
vectors.
VGAELDA: The VGAELDA integrates graph embedding
learning and the alternate training via variational inference.
Variational graph autoencoders (VGAEs) infer
representations from features of lncRNAs and diseases,
while graph autoencoders propagate labels via known
lncRNA–disease associations. These two kinds of
autoencoders are trained alternately by adopting variational
expectation–maximization algorithm.
GCNMDA: The graph convolution network is used for
network embedding in GCNMDA. The GCNMDA
exploited the Conditional Random Field (CRF), which can
ensure that similar nodes have similar representations. At the
same time, the attention mechanism is designed in CRF layer.

Figure 10 shows the comparison results. Among these
methods, the proposed model GBDTLRL2D achieves the best
performance. There are several reasons: 1) the features learned by
MetaGraph2Vec can better preserve node information and
semantic information in a heterogeneous information network.
2) K-means clustering is used to select more representative
negative samples. 3) The GBDTLRL2D uses the combined
machine learning method of GBDT + LR with good
performance to make predictions.

Despite that our method is obviously superior to previous
methods in all aspects, there are some limitations to
GBDTLRL2D. The number of lncRNA–disease associations
confirmed by biological experimental methods is limited. In
addition, it is important to select classifiers. Currently, GBDT +
LR is the best classifier for ourmodel. In the future, we will have to try
to combine other classifiers to achieve more accurate predictions.

3.6 Case Study
In this section, to further show the performance of the proposed
model GBDTLRL2D in predicting the lncRNA–disease association, a
case study is conducted on lncRNA “PVT1.” A proven association
between “PVT1” andmany diseases has been found in biology. In this
paper, the proposed model GBDTLRL2D is used to predict the
association between “PVT1” and disease. After processing by our
algorithm, the list of diseases associated with lncRNA “PVT1” and
their predicted scores is obtained. Ranking the diseases according to
the predicted score from large to small, we can find that all the
diseases in the top 10 associated with lncRNA “PVT1” are confirmed
to be associated with “PVT1” in the lncRNADisease database. The
top 10 diseases associated with lncRNA “PVT1” and their predicted
scores are shown in Table 6.

CONCLUSIONS

LncRNAs have been found by biologists to be closely related to
diseases. Predicting the lncRNA–disease associations is

conducive to research on the pathogenesis of a disease. But
traditional biological methods have a large amount of data
and are expensive, labor-intensive, and time-consuming. In
recent years, there has been much research on computational
models of biological experiments. In this paper, a method for
predicting lncRNA–disease association is proposed. The
proposed method uses MetaGraph2Vec to learn the features of
nodes in a heterogeneous network and then uses K-means to
select representative negative samples to solve the problem of
imbalance between positive and negative samples, and the GBDT
combined with LR is used as a classifier to predict
lncRNA–disease associations. At last, the average AUCs of
GBDTLRL2D obtained on the three datasets are 0.98, 0.98,
and 0.96 in 10-fold cross-validation. Compared with the
SIMCLDA, IIRWR, NCPLDA, and other experiments, the
GBDTLRL2D greatly improves accuracy and performance.
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