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The term glia describes a heterogenous collection of distinct cell types that make up
a large proportion of our nervous system. Although once considered the glue of the
nervous system, the study of glial cells has evolved significantly in recent years, with a
large body of literature now highlighting their complex and diverse roles in development
and throughout life. This progress is due, in part, to advances in animal models in
which the molecular and cellular mechanisms of glial cell development and function
as well as neuron-glial cell interactions can be directly studied in vivo in real time, in
intact neural circuits. In this review we highlight the instrumental role that zebrafish
have played as a vertebrate model system for the study of glial cells, and discuss how
the experimental advantages of the zebrafish lend themselves to investigate glial cell
interactions and diversity. We focus in particular on recent studies that have provided
insight into the formation and function of the major glial cell types in the central nervous
system in zebrafish.
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INTRODUCTION

The Importance of Glia
Although originally characterised as bystanders to neuronal function by Virchow in 1846,
constituting the “glue” of the nervous system (Somjen, 1988), the possible roles of glia in
supporting efficient nervous system function have since been vastly explored. It is now well
established that glial cells are important throughout life, with recent research highlighting
their significant contributions to nearly all aspects of nervous system function (Barres, 2008;
Allen and Lyons, 2018). Since their initial description over a century ago, glial cells have
been investigated in many diverse model organisms, each providing distinct strengths, with
many aspects of glial biology highly conserved across species from invertebrates to humans
(Freeman and Doherty, 2006; Lyons and Talbot, 2015; Shaham, 2015; Zuchero and Barres,
2015; Jäkel and Dimou, 2017; Yildirim et al., 2019). Here, we focus on the contribution of
the zebrafish as a model organism to investigate the development and function of the major
glial cell types in the vertebrate central nervous system (CNS), from radial glial cells, Müller
glial cells, astrocytes, oligodendrocyte progenitor cells (OPCs) and oligodendrocytes (OLs)
through to microglia.
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THE ADVANTAGES OF ZEBRAFISH TO
STUDY GLIAL CELLS

The zebrafish is well suited to follow the highly dynamic
activities of glial cells, their interactions with other cells, and
the molecular mechanisms that control their formation and
function throughout life. This is because of a number of distinct
advantages of the zebrafish as a vertebrate model system [as
reviewed by Lieschke and Currie (2010) and Stewart et al. (2014)].
The small size of adult zebrafish (a few cm long) and their
relatively quick life cycle (embryo to sexually mature adult in circa
2–3 months) make zebrafish a cost-effective model organism to
maintain in large numbers. Secondly, the external development
of zebrafish allows access to embryos from the single-cell stage,
including for microinjections, e.g., for early genetic manipulation
(Driever and Stemple, 1994; Kawakami et al., 2004). Additionally,
the larval zebrafish remains optically transparent for the first
weeks of its life, which enables molecules, cells and tissues
of interest to be non-invasively imaged within the animal
(Swinburne et al., 2015; Bin and Lyons, 2016). Furthermore,
despite an analogous generation time when compared to rodents,
zebrafish embryos develop very rapidly compared to other
models, growing from a fertilised egg to a freely swimming
larval fish which displays complex behaviours within a few
days of egg fertilisation (Orger and De Polavieja, 2017). This
rapid development, coupled with the fact that female zebrafish
can produce hundreds of eggs at a time, facilitate large-scale
screens on thousands of embryos and larvae over days to weeks.
Also, and very importantly, zebrafish have a well conserved
genome with other vertebrates (Howe et al., 2013). However,
unlike other vertebrates, zebrafish have many duplicated genes
following an additional whole genome duplication event in their
ancestry (Howe et al., 2013). Despite this, zebrafish exhibit
many conserved molecular mechanisms underpinning cellular
physiology through to animal behaviour, including regulation of
glial cell development (Jadhav et al., 2009; Goldman, 2014; Lyons
and Talbot, 2015; Mathews and Appel, 2016b; D’Rozario et al.,
2017; Jurisch-Yaksi et al., 2020). Together these properties allow
the study of glial cells as they colonise the nervous system of the
zebrafish in the first weeks of embryonic-larval life.

Tools to Study Glial Cells and Their
Cell-Cell Interactions in vivo
A major goal in the field of glial cell research is to understand
the cellular behaviour and complex interactions of glia with
other cell types, and how these combine to affect overall circuit
formation and function. Zebrafish provide the opportunity to
directly observe glial cell dynamics and cell-cell interactions
in vivo over time in the living organism without the need for
invasive surgical techniques, which are typically required for
analogous analyses in other systems such as murine models (Hill
et al., 2018; Hughes et al., 2018). High resolution imaging of
fluorescently labelled glial cells of interest can be carried out in
the optically transparent zebrafish larvae over the first 1–2 weeks
of life, as glial cells populate the CNS (Lyons and Talbot, 2015;
Preston et al., 2019; Figure 1). At yet later stages, live in vivo

imaging can be carried out using zebrafish with mutations in
pigment genes such as golden, nacre and casper (Lister et al., 1999;
Lamason et al., 2005; White et al., 2008).

Advances in the development of fluorescent reporters means
that morphological and functional characteristics of glial cells can
be examined within the zebrafish [exemplified throughout and
reviewed in Bin and Lyons (2016), Czopka (2016), and D’Rozario
et al. (2017)]. These enable intricate processes such as OPC
migration and proliferation (Kirby et al., 2006), myelin sheath
formation and growth (Klingseisen et al., 2019), and the dynamic
behaviour of microglia (Casano et al., 2016), to be investigated
at high resolution in real time in vivo. In addition, reporters
of cell state and function have become available, e.g., those
with pH and ion sensitivity, which have enabled investigation
of glial cell activity including Ca2+ activity in astrocytes (Chen
et al., 2020), OPCs (Marisca et al., 2020), and myelinating
oligodendrocytes (Baraban et al., 2018; Krasnow et al., 2018), the
phagocytic properties of microglia (Peri and Nüsslein-Volhard,
2008; Hughes and Appel, 2020), and even functional activity of
entire populations of neurons (Kim et al., 2017; Vanwalleghem
et al., 2020) and glia (Baraban et al., 2018; Mu et al., 2019),
including as they interact (Diaz Verdugo et al., 2019). In addition,
various photo-activatable reagents are available and can allow,
for example precisely timed glial cell ablation (Auer et al., 2018),
or stimulation of migration (Sieger et al., 2012; Piller et al.,
2021). Furthermore, integration of microscopy and behavioural
platforms now enables in depth characterisation of glial cells
during specific behaviours. For example, arenas wherein zebrafish
are presented with virtual reality visual stimuli can now be
used to measure neuronal and glial cell activity using optical
methods that span from single cell resolution, through to brain-
wide analyses of entire cell populations (Engert, 2012; Ahrens
et al., 2013; Cong et al., 2017), providing invaluable insight
into neural-glia control of circuit function in a live animal
(Diaz Verdugo et al., 2019).

Genetic Screening and Investigation
Another major goal in glial cell research is to identify
genes required for their development, function and cell-cell
interactions. One of the principal ways this has been investigated
in the zebrafish is through the use of forward genetic screens,
which provides a means for unbiased discovery of gene function.
Briefly, adult animals (males in zebrafish) are exposed to
mutagens to create random heritable mutations in the genome,
with later generation offspring screened for phenotypes of
interest, followed by identification of the causative lesion to link
phenotype and genotype (Patton and Zon, 2001; Lyons and Kegel,
2019). Although initial forward genetic screens were carried out
in invertebrate model organisms such as Caenorhabditis elegans
and Drosophila melanogaster (Nüsslein-Volhard and Wieschaus,
1980; Brenner, 2003), innovative work by Streisinger et al.
(1981) in the 1980s demonstrated that forward genetic strategies
were also feasible in the zebrafish. In the 1990s large-scale
mutagenesis-based forward genetic screens were carried out by
the Nüsslein–Volhard and Driever laboratories, and highlighted
the power of the zebrafish as a model for gene discovery in
vertebrates (Driever et al., 1996; Haffter et al., 1996). Since
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FIGURE 1 | A summary of key glial cells of the zebrafish central nervous system and their timeline of development.

these pioneering screens, which identified hundreds of mutations
disrupting numerous biological processes, several dedicated
forward genetic screens have been carried out to investigate
genes essential for glial cells, including those regulating OPC,
oligodendrocyte and microglial cell formation and function
(Kazakova et al., 2006; Pogoda et al., 2006; Peri and Nüsslein-
Volhard, 2008; Mathews et al., 2014; Mazaheri et al., 2014;
Meireles et al., 2014; Shiau et al., 2014; Kearns et al., 2015;
Shen et al., 2016; Villani et al., 2019). We will highlight recent
insights throughout this piece and, for further information, we
direct readers to the following reviews (Lawson and Wolfe,
2011; Kegel et al., 2019). In the now classic three generation
forward genetic screen, following mutagenesis of male zebrafish,
animals are crossed with female zebrafish to generate a cohort of
first generation individuals carrying unique random mutations.
These animals are used to seed a second generation, which
nowadays often involves combining with transgenic reporters
with fluorescently labelled cells or structures of interest to
allow for facile screening of third generation offspring for
disrupted phenotypes (Lyons and Kegel, 2019). Given the genetic
tractability of zebrafish, it is now possible to select from many
available stable transgenic lines which specifically label glial

cells [e.g., Kirby et al. (2006), Jung et al. (2010), Preston et al.
(2019), Chen et al. (2020), Marisca et al. (2020), Wu et al.
(2020)]. Furthermore, mutations in potential glial cell-regulating
genes can be investigated in the context of the entire circuit
by studying effects on complex forms of neuronal activity or
behaviours such as specific swimming patterns, or sensorimotor
behaviours including escape responses or prey capture, which are
displayed in zebrafish within just a few days of egg fertilisation
(Bianco et al., 2011, 2015; Mcclenahan et al., 2012). Developments
in genome and RNA sequencing now enable more rapid and
accurate identification of the causative lesions that underlie
phenotypes than following early screens (Bowen et al., 2012;
Henke et al., 2013).

Alongside forward genetic screens, the use of reverse genetic
approaches to interrogate specific genes of interest have provided
insight into glia in zebrafish, presenting a complement to
mutagenesis-based screening approaches. Unlike forward genetic
screens, wherein random mutations are induced in the genome,
reverse genetic approaches utilise the genetic tractability of the
zebrafish to apply targeted approaches to investigate specific
gene function. One of the most popular techniques initially
used to interrogate gene function in zebrafish utilised synthetic
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morpholino antisense oligonucleotides (MOs), which either
block mRNA splicing or protein translation (Nasevicius and
Ekker, 2000). These tools provided fundamental insights into
the development of glial cells in zebrafish, particularly with
respect to investigating the conservation in zebrafish of genes
known to regulate glial cell development in mammals e.g.,
Park et al. (2002, 2004). However, although MOs provide a
straightforward means to inhibit gene function, they have a
number of limitations including off-target effects, variable gene
knockdown and depleted efficiency over time, meaning great
care must be taken in their use (Stainier et al., 2017). As for
essentially all model organisms, the employment of recently
discovered gene targeting approaches have revolutionised genetic
analyses of zebrafish. For example, genetic knock out or knock
in zebrafish can now be efficiently generated using Zinc finger
nuclease (ZFN) technology, transcription activator-like effector
nucleases (TALENS), and most recently, and most extensively,
CRISPR/Cas9-based strategies [for reviews see Huang et al.
(2012), Gaj et al. (2013), Ma and Liu (2015), Liu et al. (2017, 2019),
Cornet et al. (2018), and Hans et al. (2021)].

The efficiency of new reverse genetic technology is continually
improving, enabling more rapid investigation of genes for glial
function. One example of this is the use of CRISPR/Cas9
strategies that can now be utilised to reliably induce somatic
mutations with high efficiency in F0 embryos, called “crispants.”
These significantly increase the speed with which genetic
manipulations can be investigated (Keatinge et al., 2021; Klatt
Shaw and Mokalled, 2021; Kroll et al., 2021), which can allow
the investigation of duplicated genes, those with potentially
redundant functions and even multiple pathways in parallel.
From a practical view, these technologies reduce the personnel
and space requirements of mutagenesis-based forward genetic
screens, thereby allowing scalable investigation of gene function
by most laboratories. Despite the efficiency of constitutive gene
targeting in zebrafish, cell-type specific analyses of gene function
is more technically challenging. A long-standing method to assess
cell autonomous vs. non-autonomous gene function in zebrafish
has been the creation of genetic chimeras by cell transplantation,
which has been used to assess the roles of various factors in
zebrafish glia, but is a method most suited to the analysis of
single cell behaviour, given its chimeric nature (Lyons et al.,
2009; Monk et al., 2009; Perlin et al., 2011; Mensch et al., 2015).
Another approach widely used in the field is the expression of
specific genes under the control of cell type specific drivers,
e.g., the expression of wild-type genes on a mutant background,
or the expression of dominant negative or constitutively active
forms of genetic regulators, which has also provided insight
into glial function in zebrafish (Supplementary Table 1). More
recently, the creation of cell type specific knockout zebrafish
using CRISPR-based strategies has also been carried out (Ablain
et al., 2015), and strategies to do so are accumulating and show
great promise. Although additional work remains to optimise
such approaches for widespread analysis of candidate function
in a cell type specific manner, they have already been utilised to
provide insight into glial cell specific gene function in zebrafish
(Chen et al., 2020; Marshall-Phelps et al., 2020). Complementary
molecular approaches to profile cells including RNA sequencing,

which is well established in zebrafish (Mazzolini et al., 2019;
Wheeler et al., 2019; Farnsworth et al., 2020; Marisca et al.,
2020) and, more recently, spatial transcriptomics, which is being
optimised for use in zebrafish (Holler et al., 2021; Okochi et al.,
2021), provide invaluable platforms for future investigation of the
molecular basis of glial cell function in the zebrafish.

In parallel to forward and reverse genetic approaches to
assess gene function, the field of optogenetics has revolutionised
neuroscience by allowing researchers to take control of the
functional firing and signalling properties of neurons and glial
cells (Warden et al., 2012; Cho et al., 2016; Kato et al., 2019;
Mu et al., 2019; Lee et al., 2020). A principal set of tools
in optogenetics are light-sensitive ion channels, which can be
activated to control the electrical activity of cells. Given the ease
of transgenesis, small size and optical clarity of zebrafish embryos
and larvae, it is no surprise that numerous optogenetic actuators
have been employed in zebrafish, principally to assess neuronal
circuit function (Antinucci et al., 2020). Furthermore, the
emergence of various methods to influence signalling pathways
in a light-inducible manner (Arrenberg et al., 2009; Buckley et al.,
2016; Harris et al., 2020; Mruk et al., 2020) with readouts of
many aspects of cellular function, provides exciting opportunities
for future study of glial cells, and the importance of neuron-glia
interactions in circuit function in zebrafish.

Chemical Screening
As well as their advantages for genetic screening, zebrafish also
provide a platform for drug discovery in a vertebrate model.
Their rapid external development, small size (head to tail length
of larvae with all major glial cell types present circa 5 mm
long), and ability to absorb compounds through their skin, allows
simple drug administration to live animals, enabling testing
of thousands of compounds, even in multi-well plate format
(Macrae and Peterson, 2015). Furthermore, the use of zebrafish
enables multiple readouts of drug effects. These include simple
phenotypic assessment of general health, development, organ
growth and cardiovascular function. Additionally, behavioural
readouts can be used to determine drug toxicity, alongside
specific transgenic reporters for more in-depth cellular analysis.
Since their first use in zebrafish, chemical screens have
identified many promising compounds for various biological
processes, with several taken to clinical trials [reviewed in Patton
et al. (2021) and references therein]. In the context of glial
biology, chemical screening based approaches have been utilised
to identify compounds to enhance oligodendrogenesis and
myelination (Buckley et al., 2010; Early et al., 2018), regulators
of astrocytic function (Wheeler et al., 2019) and glial regulators of
nerve regeneration (Bremer et al., 2017). Indeed, the investigation
of glial cells in the context of regeneration and disease is now
intensely investigated across models (Hamon et al., 2016; Cayre
et al., 2021) and is a burgeoning aspect of research (Franklin et al.,
2020; García-García et al., 2020; Eastlake et al., 2021; Hammond
et al., 2021; Schirmer et al., 2021) that will form the basis of future
reviews. In this piece, however, we will focus on the larger body of
work that to date has investigated the development of glial cells in
zebrafish, and begun to investigate their fundamental functional
roles in the healthy nervous system.
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GLIAL CELLS IN THE ZEBRAFISH;
ORIGINS, DIFFERENTIATION AND
FUNCTION

Studies in zebrafish have provided insights into glial cells of the
CNS, peripheral nervous system (PNS) and indeed those that lie
at and play essential roles at the boundary of the CNS and PNS.
Insights into how zebrafish have informed our understanding
of peripheral and boundary glia have been reviewed elsewhere
(Kucenas, 2015; Monk et al., 2015; Ackerman and Monk, 2016;
D’Rozario et al., 2017; Fontenas and Kucenas, 2018; Muppirala
et al., 2020) and so we will focus this review on the major glial
cells of the CNS summarised in Figure 1.

Glia of the Zebrafish Central Nervous
System
Radial Glial Cells
The first cells in the zebrafish to emerge with glial characteristics
are radial glial cells which develop with the formation of the
neuroepithelium from approximately 10 hours post fertilisation
(Kim et al., 2008). Like other vertebrates, radial glial cells in the
zebrafish are classified by their characteristic radial processes,
which span from the basal to the apical (ventricular) surfaces of
the neuroepithelium. Indeed, radial cells with glial characteristics
represent the major progenitor cell of the early developing CNS,
which can both self-renew and give rise to differentiated cell
types, first to neurons, and later to oligodendrocyte progenitor
cells, and then to astrocytes (Lyons and Talbot, 2015; Jurisch-
yaksi, 2020). In mammals, following developmental neurogenesis
and throughout the majority of the neuraxis, most radial glial cells
ultimately detach from the ventricular zone, losing their radial
morphology and subsequently contributing to the generation
of bona fide astrocytes (Kriegstein and Götz, 2003). In other
regions of the mammalian CNS, radial glia adopt heterogeneous
states with various potentials to contribute to new cell generation
throughout life (Götz et al., 2015; Falk and Götz, 2017). In the
zebrafish however, neurogenesis is much more protracted and
can, in principle, occur throughout the majority of the neuraxis
throughout life (Kroehne et al., 2011; Kyritsis et al., 2012; Jurisch-
Yaksi et al., 2020). Mirroring this capacity to serve as progenitor
cells throughout life, a large proportion of radial glia in zebrafish
retain their radial morphology life-long. In addition some radial
glia appear to transition into a state with more specialised
functions analogous to mammalian astrocytes. For example,
both zebrafish radial glial cells and mammalian astrocytes share
expression of the water transport protein aquaporin-4 and
glutamate transporter Eaat2b, suggesting that they may conduct
similar functions including regulating CNS water homeostasis
and levels of neurotransmitters in the extracellular space (Grupp
et al., 2010; McKeown et al., 2012; Papadopoulos and Verkman,
2013). Indeed, more recent studies have shown that some
radial glial-like cells adopt gross morphological and functional
features that overlap with those of mammalian astrocytes (Mu
et al., 2019), and yet others appear to differentiate into bona
fide astrocytes as discussed in the “Radial Astrocytes” and
“Astrocytes” sections and summarised in Figure 2 below.

Müller Glial Cells
In the mammalian CNS, additional glial cells with radial
morphologies are known to be present in specific brain areas,
e.g., Bergmann glia in the cerebellum and Müller glia in the
retina, the latter of which have been extensively investigated in
zebrafish. The vertebrate retina consists of six principal neuronal
cell types and one primary glial cell, the Müller glial cell. Müller
glial cells have a radial morphology (akin to radial glia) and
extend over all three retinal layers, giving them the ability to
contact neurons, maintain homeostasis and influence retinal
structure (Goldman, 2014). Several developmental regulators
which control the highly complex radial morphology of Müller
glia cells and their even spacing throughout retinal layers
have been identified in the zebrafish by utilising CRISPR
based screening (Charlton-Perkins et al., 2019). Interestingly,
a number of these appear to be highly conserved across
species (Fairchild et al., 2018), suggesting that Müller glia
morphogenesis is regulated by highly conserved differentiation
programmes. Genes including pax2a, itga5, itga6 and itgb1a,
as well as those in the nephrins and cadm gene families have
been prioritised as interesting candidates for further future
investigation (Charlton-Perkins et al., 2019).

Under normal conditions Müller glial cells have several
conserved functions across model organisms, including recycling
neurotransmitters, maintaining ionic balance and interacting
with retinal microglial cells. For example, mammalian Müller
glia, like their radial glial counterparts, express glutamate
transporter EAAT2, and expression of Eaat2 orthologs is
also observed in zebrafish Müller glia (Niklaus et al., 2017),
which mediates removal of excess glutamate released from
photoreceptor synapses, implying conservation in the roles of
these cells across vertebrates. Indeed, when Eaat2a was depleted
in zebrafish larvae, reduced electroretinographic responses were
recorded (Niklaus et al., 2017), supporting the conclusion
that Müller glia can influence synaptic function in the
zebrafish, as in mammals. Furthermore, Müller glia have
been shown to play an essential role in maintaining the
tissue integrity of the retina, as retinas in zebrafish lacking
Müller glia cells tear apart due to reduced tensile strength
(MacDonald et al., 2015).

Similar to radial glial cells, Müller glia have been shown to be
highly regenerative in response to injury in zebrafish as Müller
glia cells can regenerate neurons, as well as all major retinal
cell types (Powell et al., 2016; Sifuentes et al., 2016; Wan and
Goldman, 2016). In contrast, Müller-glia derived progenitors in
mammalian models have a more limited capacity to regenerate
different cell types (Goldman, 2014). Therefore, future studies
investigating the differences between mammalian and zebrafish
Müller glia cells will be essential to determine the signalling
pathways that are essential for efficient retinal repair.

The range of roles carried out by Müller glia cells in the
retina highlights the functional diversity of glial cells with radial
morphologies in different regions of the CNS. In the zebrafish,
many distinct markers have been used to identify different
radial glial cell populations (Bernardos and Raymond, 2006;
Cuoghi and Mola, 2009; Farnsworth et al., 2020), with some
cell morphologies and functions displaying characteristic biology
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FIGURE 2 | Key characteristics and functional properties of zebrafish and mammalian astrocytes. For simplicity we refer to astrocytes as cells with a radial
morphology, or those which have adapted a morphology akin to radial astrocytes. The use of “. . .” refers to areas of astrocyte biology which require further
investigation.

assigned to radial glial cells whilst others are more reminiscent of
astrocyte-like cells.

Radial Astrocytes
Studies in mammals have made it entirely clear that astrocytes
are potent regulators of various aspects of neural circuit

formation and function (Freeman, 2010; Clarke and Barres,
2013; Stogsdill and Eroglu, 2017; Dallérac et al., 2018; Farhy-
Tselnicker and Allen, 2018; Perez-Catalan et al., 2021; Sancho
et al., 2021). Astrocytes play a number of essential roles in
the mammalian nervous system including modulating synapse
formation, pruning, and physiology (Chung et al., 2015;
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Farhy-Tselnicker and Allen, 2018). Additionally, astrocytes can
metabolically support the CNS, with extensive interactions with
the vasculature and most major cell types of the CNS, including
neurons, OPCs, oligodendrocytes and microglia (Clemente et al.,
2013; Chung et al., 2015; Allen and Eroglu, 2017; Nutma et al.,
2020). Reflecting their multiple roles, mammalian astrocytes have
a complex morphology with an array of cellular processes that
make connections with a host of these cellular targets (Allen and
Lyons, 2018). However, the extent to which astrocyte-like cells
with such complex morphology exist in zebrafish, or contribute
to neural circuit structure and function was, until recently, quite
unclear. In a tour de force study, Mu et al. (2019) showed
that radial glial/astrocyte-like cells with complex morphologies
do indeed exist in zebrafish and play an important role in
neural circuit computations. In this study cells with both a
radial process and an endfoot at the ventricular surface also
had a huge network of cellular processes in synaptic regions.
By whole-brain in vivo imaging of calcium transients of these
cells as well as neurons while zebrafish were executing a specific
behaviour, the authors were able to ascribe a role for these radial
astrocytes in circuit computations (Mu et al., 2019). In this
study, Mu and colleagues investigated the mechanisms of futility-
induced passivity, or giving-up behaviour, which is a behaviour
employed by many animals to conserve energy in-between high-
activity phases (Warden et al., 2012; Andalman et al., 2019).
Zebrafish elicit a visuomotor behaviour called the optomotor
response to stabilise their position in the moving currents of
river water, e.g., to not be swept downstream in a river upon an
increasing current (Orger et al., 2000; Vladimirov et al., 2014).
This response can be recapitulated experimentally in a virtual
reality system by projecting moving bar patterns to the fish to
simulate water flow and, in response, zebrafish elicit forward
swims to stabilise their position relative to the moving bars. In
one iteration of this experimental paradigm, animals are actually
head-restrained using agarose while the bar patterns are projected
and fictive swimming is induced, which can be assessed by
electrophysiological recording of motor output. Sensory feedback
corresponding to this measured fictive motor output is then
provided back to the animal by way of adjusting the moving
bar pattern. However, the experimenter can change the sensory
feedback by altering the moving bar patterns. For example, if
one simply keeps the bars moving at the same speed, i.e., not
adjusted in line with the fish’s predicted motor output, the fish
will have the “experience” of being swept along by the virtual
current, despite its attempts to stabilise its position. After a
certain period (tens of seconds) with such feedback, animals
“give-up” on this apparently futile behaviour, hence the term
futility-induced passivity.

By carrying out whole-brain light-sheet imaging of calcium
activity in effectively all brain neurons, together with that of
radial astrocytes during futility-induced passivity, the authors
showed that while the activity of certain specific neurons
decreased upon the switch to giving up, radial astrocyte activity
in specific brain regions increased, and in fact proceeded, both
the decrease in neuronal activity and the switch in behaviour.
This implicated radial astrocytes in driving the giving up
behaviour. The causal role of radial astrocytes in regulating

both neuronal activity and the switch to the passive state
was investigated in numerous complementary manners, using
optogenetic, chemogenetic, pharmacological and cell-ablation
based manipulations of radial astrocytes (Mu et al., 2019).
Although the precise circuit mechanisms remain to be fully
defined, this study provides direct evidence that radial astrocytes
can integrate and in turn regulate neuronal activity and behaviour
in a living vertebrate. Even though the cells whose activity was
imaged in this study were referred to as radial astrocytes it
remained unclear what proportion of these astrocyte-like cells
actually retained a radial-like morphology. Given the historical
lack of documentation of cells with a truly astrocytic (star-
like) non-radial morphology in anamniotes, it was assumed that
essentially all such cells may retain a radial morphology and
thus a hybrid radial glial/astrocytic state. However, a very recent
study has shown that this is not necessarily the case and that
cells with definitive astrocyte-properties exist in fish (Chen et al.,
2020) (Figure 2).

Astrocytes
It is important to note that the study of glial cells in zebrafish
remains of relatively modest volume compared with that of
mammalian models, and until the advent of transgenic reporter
tools, approaches to visualise glial cell morphology in zebrafish
typically relied on a restricted number of antibody-based labelling
approaches (Grupp et al., 2010). Therefore, the fact that cells with
a bona fide astrocyte nature had not been identified reflected
more absence of evidence than evidence of absence. Indeed, it was
a breakthrough in transgenic reporter technology that unlocked
the evidence for astrocytes in zebrafish. Starting with an in situ
hybridisation screen of candidate astrocyte markers from the
mammalian literature, Chen et al. (2020) selected the glutamate
aspartate transporter (Glast) as a strong candidate maker of
astrocytes in zebrafish. Upon making transgenic constructs
and stable reporter lines using glast regulatory sequence, Glast
expressing cells were shown to have a number of similarities
to mammalian astrocytes (Figure 2). Using live in vivo imaging
Chen and colleagues first demonstrated that zebrafish Glast-
expressing cells transform in morphology from radial glial cells
into cells that display complex morphologies akin to mammalian
astrocytes (Figure 2). Furthermore, Glast-expressing cells display
tiling behaviours, in order to maximise CNS coverage, similar
to mammalian astrocytes (Bushong et al., 2002) (Figure 2).
Using the glast regulatory sequence to drive expression of a
genetically encoded indicator defined patterns of Ca2+ activity
highly characteristic of those seen in mammals (Nett et al., 2002;
Wang et al., 2019) were observed (Figure 2), which importantly
were shown to be sensitive to regulation by norepinephrine,
as in mammals (Ding et al., 2013; Paukert et al., 2014).
Additionally, Glast-expressing cells in the zebrafish expressed
glutamine synthetase in their somata and processes, which is also
enriched in mammalian astrocytes and is known to be essential
for neuronal interactions (Norenberg and Martinez-Hernandez,
1979). Interestingly, astrocyte-like Glast-expressing cells in the
zebrafish spinal cord were also found to closely associate with
synapses, identified utilising the presynaptic vesicle glycoprotein
2A, suggesting that zebrafish astrocytes may play an important
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role in mediating synaptic formation and function (Figure 2).
Given the large body of literature indicating that astrocytes
regulate effectively all stages of synapse formation and function in
mammals (Chung et al., 2015; Farhy-Tselnicker and Allen, 2018),
it will be important to determine to what extent this is true in
zebrafish (Figure 2). For example, given their close proximity to
synapses, similar to astrocytes in mammalian models (Stogsdill
et al., 2017), it is possible that zebrafish astrocytes may play
a role in the clearance of ions and neurotransmitters from
the extracellular space, and potentially also in gliotransmission.
Given the power of zebrafish for investigation of cell structure,
function and interactions at sub-cellular resolution, one can
envision future studies that combine high resolution imaging
of glial cells with functional imaging of neuronal and synaptic
activity during the execution of specific behaviours, to explore
the regulation of synaptic formation and function by astrocytes
in zebrafish. One area of increasingly obvious importance
from studies in mammals is that of heterogeneity with respect
to subtypes and states of astrocytes (Oberheim et al., 2012;
Poskanzer and Molofsky, 2018; Bellini et al., 2019), which will
also be important to investigate in zebrafish by combining
molecular profiling studies with the advantages of visualising
cell structure and function in vivo using zebrafish in health, and
ultimately also in disease-relevant experimental paradigms.

Oligodendrocyte Lineage Cells
Oligodendrocyte Progenitor Cells
In addition to astrocytes and neurons, radial glial cell progenitors
can also produce OPCs. OPCs (also known as NG2 cells) are
an abundant group of progenitor cells in the CNS throughout
life, which are principally known for their ability to generate
myelinating oligodendrocytes (Mitew et al., 2014) (Figure 3).
OPCs and oligodendrocytes are, to date, the most extensively
studied glial cell lineage in zebrafish, with the focus having been
on their formation and functions in the embryonic hindbrain and
spinal cord. The majority of such early born OPCs in the zebrafish
initially derive from the progenitor of motor neuron (pMN)
domains of the ventral CNS, as in mammals (Lu et al., 2002;
Park et al., 2002; Zhou and Anderson, 2002; Shin et al., 2003;
Lamason et al., 2005; Li et al., 2007; Kucenas et al., 2008). Later
in development, OPCs and oligodendrocytes in the zebrafish and
other vertebrates colonise the entire brain (Richardson et al.,
2006; Bergles and Richardson, 2016), but because these have
been much less extensively studied in zebrafish we will focus
on studies which have investigated the development of OPCs
from the pMN domain.

Oligodendrocyte Progenitor Cell Specification. As in mammals,
pMN progenitors in zebrafish initially generate motor neurons,
then switch to producing OPCs in a process tightly regulated
by a collection of transcription factors, signalling molecules and
extracellular cues. For example, various transcription factors
including Olig2 and Nkx2.2, and signalling pathways including
Hedgehog have all been shown to have important conserved
roles in OPC specification in zebrafish and mammals (Lu et al.,
2000, 2002; Park et al., 2002; Kirby et al., 2006; Sun et al.,
2006; Li et al., 2007; Kucenas et al., 2008; Lyons and Talbot,

2015) (Supplementary Table 1). More recently, mechanisms of
Sonic hedgehog signalling regulation were investigated by Scott
et al. (2020) who explored the effects of transcriptional repressor
prdm8 on OPC specification. By live in vivo imaging they
show that pMN cells in prdm8 mutant embryos have elevated
Sonic hedgehog signalling and prematurely switch from motor
neuron to OPC production (Scott et al., 2020). Intriguingly,
Prdm8 was also shown to influence the fate of oligodendrocyte
lineage cells, as prdm8 mutant embryos have increased numbers
of oligodendrocytes but lack sufficient OPCs. Together, this
suggests that the morphogen Sonic hedgehog plays an important
role in controlling the timing of OPC specification in zebrafish
(Ravanelli and Appel, 2015; Scott et al., 2020). Similarly, the
Notch canonical signalling pathway also influences the timing of
the pMN domain progenitor differentiation switch from motor
neurons to OPCs. This has been shown in zebrafish where
reduced Notch activity induced excess formation of primary
motor neurons and reduced numbers of OPCs (Appel et al., 2001;
Supplementary Table 1). In contrast, constitutive Notch activity
promoted OPC production (Appel et al., 2001; Supplementary
Table 1). Complementing this study, Snyder et al. (2012) found
that disrupting fbxw7, a ubiquitin ligase that targets Notch for
degradation, results in excess OPC production (Supplementary
Table 1). Taken together, these data suggest that Notch signalling
tightly regulates the timing of the pMN progenitor differentiation
switch, and therefore plays a central role in OPC specification.

Concomitant with their specification, OPCs in zebrafish and
mammals delaminate from the neuroepithelium and migrate
towards their axonal targets. One interesting candidate which has
been identified in zebrafish to affect the timing of neuroepithelial
delamination to OPCs in the zebrafish is the microRNA mir-29,
which can regulate the expression of the polarity genes pard3 and
prkci (Hudish et al., 2013; Supplementary Table 1). How OPCs
are specified in other regions of the neuraxis and at later stages,
will require ongoing analyses, and in particular the way in which
radial-glial-like progenitors present in zebrafish can give rise to
OPCs following injury or demyelination awaits in-depth analyses
ahead of comparison with mammals.

Oligodendrocyte Progenitor Cell Proliferation and
Migration. Following delamination from the neuroepithelium
OPCs in mammals proliferate extensively and migrate widely
to take up positions throughout the parenchyma in which they
both continue to proliferate and also adopt specialised functions,
including the generation of myelinating oligodendrocytes
(Figure 3). In contrast, at the stages and regions principally
studied to date in zebrafish, OPCs have a relatively small volume
to colonise. Indeed, the total distance that OPCs migrate from the
pMN domain in the ventral spinal cord to nearby ventral axonal
tracts where oligodendrocytes first differentiate is on the order
tens of microns with dorsal regions of the hindbrain or spinal
cord remaining only 100–200 µm from the pMN domain. These
small distances mean that the OPC population doesn’t undergo
a huge degree of expansion through proliferation and migration
at early embryonic stages. To what extent principles of OPC
population expansion and migration observed in mammals,
e.g., whereby OPCs follow the brain vasculature to migrate

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 November 2021 | Volume 9 | Article 754606

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-754606 November 23, 2021 Time: 17:42 # 9

Neely and Lyons CNS Glia of Zebrafish

FIGURE 3 | Key characteristics and functional properties of zebrafish and mammalian OPCs and oligodendrocytes. The use of “. . .” refers to areas of
OPC/oligodendrocyte biology which require further investigation.

over long distances (Tsai et al., 2016), are conserved in fish will
require analyses at later stages and in other regions of the CNS
when and where migratory routes are longer and, likely more
complex. Nonetheless, several cell-cell interactions, as well as
specific molecular factors have been identified that influence both
OPC proliferation and migration in the developing zebrafish
(Supplementary Table 1).

For example, OPC proliferation appears to be responsive to
the density of axons fated for myelination in the embryonic
zebrafish CNS, with OPC proliferation reduced in a mutant
that lacked axons fated for myelination in the posterior spinal
cord, Almeida and Lyons (2016). One set of axonal signals
known to regulate many aspects of the oligodendrocyte lineage
in mammals, including OPC proliferation, are those associated
with neuronal activity (Geraghty et al., 2019). Indeed, a recent

study has indicated that neuronal activity also influences OPC
proliferation in the zebrafish where a pharmacologically-induced
increase in neural activity resulted in increased OPC proliferation
(Marisca et al., 2020). Although the axonal signals (activity-
related or not) that regulate OPC proliferation in zebrafish
await identification, receptors on oligodendrocytes that influence
proliferation have been uncovered (Supplementary Table 1).
In addition to proliferation, neuronal activity has also been
implicated in regulating OPC migration in mammals (Harlow
et al., 2015) and recently it was found that disruption to the
AMPA receptor subunit GluR4A (encoded by gria4a) expressed
on OPCs impaired migration in zebrafish (Piller et al., 2021)
(Supplementary Table 1).

Following migration to their target regions, OPCs undergo
a set of cell-cell interactions to demarcate the space in which
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they will ultimately reside. During this tiling behaviour OPCs
continuously extend and retract processes to sample their
environment and appear to be highly influenced by contact
with surrounding OPCs, whereby contact between distinct
OPCs appears to induce repulsion of contacting processes
(Kirby et al., 2006). Indeed, when a single or small group
of OPCs are ablated, nearby OPCs increase cell division to
replenish numbers, fill the space, and reinitiate tiling behaviours
(Kirby et al., 2006). This appears to be a largely conserved
mechanism between species, given that similar observations
were made in the cortex of mature mice, where neighbouring
OPC processes exhibited contact-mediated withdrawal, and
increased proliferation following damage to neighbouring OPCs
(Hughes et al., 2013). Recently, in a mouse model, the molecular
mechanism for this OPC-OPC interaction was proposed (Chavali
et al., 2020), conservation of which remains to be tested in
zebrafish, but appears likely, given the remarkable similarity in
associated cell behaviour across species.

Oligodendrocyte Progenitor Cell Diversity. The broadly accepted
view of OPCs is that they are principally sources of myelinating
oligodendrocytes. However, it is now becoming clear that OPCs
can exhibit a diverse array of functions beyond their roles in
making myelinating oligodendrocytes (Harrington et al., 2020;
Akay et al., 2021; Clayton and Tesar, 2021) (Figure 3).

The existence of OPCs with potentially distinct fates was
first investigated in zebrafish by Kucenas et al. (2008), who
showed that OPCs that express the transcription factor Nkx2.2a,
an ortholog of rodent Nkx2.2, typically differentiate into
myelinating oligodendrocytes, whereas OPCs that do not express
nkx2.2a mostly remain as non-myelinating OPCs. The fate of
distinct zebrafish OPCs was recently investigated further in a
study that combined fate mapping of individual OPC clones,
morphological characterisation of their dynamic behaviour
by time-lapse microscopy, and associated single cell RNA
sequencing (Marisca et al., 2020). This study confirmed the
existence of two discrete groups of OPCs in the zebrafish spinal
cord, those with cell bodies located within axonal tracts and
those with cell bodies surrounded by the cell bodies of other
cells, principally neurons (Marisca et al., 2020). Interestingly,
OPCs with cell bodies located in the axon-dense areas tended
to directly generate myelinating oligodendrocytes, whereas those
with cell bodies in neuron/soma-rich areas tended to self-
renew and remain relatively stable, although these cells could
also generate the OPCs that moved to axon-rich areas. These
two OPC types displayed both unique branching morphologies
and very different patterns of calcium activity and interactions
with axons. Interestingly, and perhaps surprisingly, OPCs with
their cell bodies within the neuron-rich areas had higher levels
of calcium activity, but yet infrequently differentiated, despite
having extensive processes that made very stable contact with
axons. Interestingly and correspondingly, these OPCs had a
molecular signature of being responsive to neuronal activity, and
it was these cells whose proliferation was responsive to changes
in activity noted earlier (Marisca et al., 2020). This suggests that
although neuronal activity can regulate OPC proliferation, it may
not, directly at least, influence oligodendrocyte differentiation.

The function of OPCs beyond their generation of
oligodendrocytes has been hard to experimentally disentangle,
but has recently been investigated in zebrafish, by taking
advantage of the presence of abundant OPCs in a brain area, the
optic tectum, that does not become myelinated in the developing
larva. The optic tectum is the largest retino-recipient brain
structure in zebrafish, receiving input from a large proportion
of retinal ganglion cell axons and is analogous to the superior
colliculus in mammals. Upon arrival at the tectum, distinct
retinal ganglion cell axons enter specific tectal layers where they
make precise connections with defined tectal neuron dendrites
(Erskine and Herrera, 2007). To investigate a potential role for
OPCs in connectivity with target neurons, Xiao et al. (2021)
ablated tectal OPCs and found that this resulted in enlarged
axonal arbors in the tectum and branching of retinal ganglion
cell axons beyond the tectal neuropil where target dendrites
are located. Indeed, live imaging implicated OPCs in regulating
axonal pruning/remodelling in vivo, which had previously been
predicted by in vitro studies in mammals (Goldberg et al., 2004).
Very interestingly, ablation of tectal OPCs in zebrafish also
resulted in impairments to visual function. Recent investigation
in rodent models suggest that OPCs can engulf axons in
mammals (Buchanan et al., 2021), and even directly modulate
neuronal activity (Sakry et al., 2014). Given the availability
of reporters to label OPCs as well as synaptic and neuronal
activity in zebrafish, it will be possible to directly and more
deeply interrogate how OPCs affect both neuronal structure
and function in vivo using zebrafish. As well as determining the
currently unrecognised roles of OPCs in larval zebrafish, another
exciting area of future study will be determining the functions
of OPCs in the adult zebrafish brain (Tsata et al., 2020), both in
health and disease.

Oligodendrocyte Differentiation. The process of oligodendrocyte
differentiation from OPCs is one that can occur by default in
the absence of axonal signals (Zeller et al., 1985; Lee et al., 2012;
Bechler et al., 2018), upon the activation of gene expression
programmes that ultimately converge on building the myelin
sheath [reviewed in Czopka and Lyons (2011), Bergles and
Richardson (2016), and D’Rozario et al. (2017)]. This default
differentiation programme appears to be conserved in vivo in
zebrafish, as evidence by relatively unaltered oligodendrocyte
differentiation observed in mutants with a large reduction
in axons fated for myelination (Almeida and Lyons, 2016).
As observed in mammals, there appears to be a critical
period following differentiation in which oligodendrocytes either
commit to myelination, or undergo cell death (Takada and
Appel, 2010; Almeida and Lyons, 2016). In general, the
molecular regulation of oligodendrocyte differentiation and
initiation of myelin gene expression appears well conserved with
mammals (Supplementary Table 1). For example, the lysosomal
transcription factor Tfeb was recently identified through a
forward genetic screen in zebrafish as a negative regulator of
myelination, whereby its abrogation leads to premature and
excess myelination (Meireles et al., 2018). In parallel, mice lacking
TFEB in oligodendrocytes were also found to exhibit precocious
and excessive myelination (Sun et al., 2018). In the mouse this

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 November 2021 | Volume 9 | Article 754606

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-754606 November 23, 2021 Time: 17:42 # 11

Neely and Lyons CNS Glia of Zebrafish

was found to be mediated, at least in part, by reduced cell death
of newly generated oligodendrocytes. It remains to be determined
precisely to what extent the molecular control of oligodendrocyte
survival and myelination are distinct or overlap downstream
of Tfeb, and how Tfeb and other major transcription factors
co-operate to control oligodendrocyte differentiation.

Myelination by Oligodendrocytes. Similar to other vertebrates,
zebrafish oligodendrocytes make multiple myelin sheaths on
many axons upon differentiation (Figure 3), and although some
differences in components have been noted the overall molecular
composition and ultrastructural nature of myelin in zebrafish and
mammals appears broadly similar (Jahn et al., 2009, 2020; Czopka
and Lyons, 2011; Preston and Macklin, 2015; Czopka, 2016; Siems
et al., 2021) (Figure 3). By live imaging of oligodendrocytes
in zebrafish over time using transgenic reporters, Czopka et al.
(2013) found that individual cells initiate formation of essentially
all of their sheaths within a matter of hours following the
initiation of the first sheath, pointing to a restricted period in
which oligodendrocytes have to select axons for myelination.
Following the selection of axons, the process of myelination
continues via wrapping of the innermost layer of the myelinating
process around and along the axon in a spiralling manner
(Snaidero et al., 2014; Nawaz et al., 2015). Following the initial
dynamic period of their formation, most sheaths are maintained
over time, except for occasional sheath retractions (Czopka et al.,
2013; Auer et al., 2018). Whereas initial myelin sheath formation
occurs over a matter of hours, imaging studies indicated that
subsequent wrapping-based sheath growth occurs over several
days, before slowing down and growing in step with the overall
growth of the tissue (Auer et al., 2018).

But how are specific axons selected for myelination and
why do oligodendrocytes avoid other axons, and indeed other
cellular targets for myelination? Almeida et al. (2018) recently
found that the relative abundance of oligodendrocytes and axons
fated for myelination influences targeting, given that in mutants
with fewer axons fated for myelination or in animals with
excess oligodendrocytes, oligodendrocytes made myelin around
inappropriate targets including neuronal cell bodies. In contrast
to myelinating neuronal cell bodies, oligodendrocytes in animals
with fewer axons fated for myelination do not myelinate incorrect
axons, suggesting more stringent mechanisms preventing their
myelination, likely a combination of typically being of smaller
axon calibre and expressing inhibitory signals (Klingseisen
and Lyons, 2018). Following a forward genetic screen in
zebrafish, it was subsequently found that the cell adhesion
molecule Neurofascin functions in oligodendrocytes to prevent
inappropriate myelination of cell bodies, a mechanism conserved
in rodents (Klingseisen et al., 2019). This finding was also made
in a parallel study, which implicated the neuronal partner of
oligodendrocyte Neurofascin, Contactin1, in mediating correct
myelin targeting (Djannatian et al., 2019). Studies in zebrafish
have also indicated that certain axons can positively influence
myelination (Almeida et al., 2011; Nelson et al., 2020), with
many studies now demonstrating that neuronal activity can
influence myelination (Nave and Werner, 2014; Baraban et al.,
2016; Swire and ffrench-Constant, 2018; Williamson and Lyons,

2018). Studies in zebrafish have contributed to this, with evidence
that blocking synaptic vesicle release from all neurons reduces
the number of myelin sheaths made by oligodendrocytes and
increasing activity increases sheath number (Mensch et al.,
2015). Correspondingly, experiments in which the synaptic
vesicle release of only some axons was affected indicated that
myelination is biased towards higher activity axons (Hines et al.,
2015; Koudelka et al., 2016), but interestingly that this only
remains true of certain neuronal subtypes (Koudelka et al., 2016),
a feature that has more recently also been shown to be true in
rodents (Yang et al., 2020).

The mechanisms by which vesicle release regulates
myelination was recently investigated by live-cell imaging a
transgenic reporter (SypHy) that allows assessment of vesicular
release along axons together with a reporter that allows
assessment of myelination along the same axons. Somewhat
surprisingly, it was found that axonal synaptic vesicle fusion
increases upon myelination, and in fact requires myelination.
Upon myelination, axonal vesicular fusion becomes enriched
adjacent to sites of myelin sheath formation, where it becomes
increased upon increasing neuronal activity, which in turn
promotes myelination. This led to a feedforward model of
activity-regulated myelination, whereby myelination stimulates
the localised axonal vesicular release that in turn consolidates
myelin sheath growth along axons (Almeida et al., 2021).
Although the various molecular mechanisms that regulate
the axonal vesicular release remain to be determined, the cell
adhesion molecule N-cadherin has been proposed to mediate
the effects of neuronal activity on myelination in zebrafish (Chen
et al., 2017), and may do so by influencing vesicular recycling,
as has been shown in mammals (Van Stegen et al., 2017).
Recent data has also indicated that axons employ mechanisms
that consolidate synapse formation in myelination. This was
evidenced by observations that oligodendrocytes in zebrafish
can localise the postsynaptic scaffold protein Psd95 to myelin
sheaths, and that myelination can be dysregulated by interfering
with molecules involved in synapse organisation (Hughes and
Appel, 2019; Supplementary Table 1), also seen in mammals
(Elazar et al., 2019). In addition to direct signalling between
axons and myelinating processes, recent studies have also shown
that neuronal activity can influence myelination indirectly,
including through regulation of endothelin signalling from
the vasculature, which influences myelin sheath production
by oligodendrocytes in an Endothelin receptor B dependent
manner in both fish and mice (Swire et al., 2019). Future
studies will be required to elucidate the potentially multiple
activity related axonal signals that influence myelination and the
receptors on myelinating processes or on intermediate cells that
mediate these effects.

Although the mechanisms of activity-regulated myelination
remain to be fully disentangled, two parallel studies in zebrafish
indicated that they may influence specific codes of Ca2+ activity
in myelin sheaths, that in turn affect myelination. By live imaging
individual myelin sheaths, distinct modes of Ca2+ activity were
found to prefigure either myelin sheath retractions or myelin
sheath elongation (Baraban et al., 2018; Krasnow et al., 2018).
Global inhibition of neuronal activity indicated that roughly half
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of the calcium transients in myelin sheaths were regulated by
neuronal firing (Krasnow et al., 2018). A causal role for localised
myelin Ca2+ in mediating myelination was evidenced by the
finding that localised Ca2+ dependent Calpain protease activity
was responsible for driving myelin sheath retractions, Baraban
et al. (2018) and that manipulating free Ca2+ levels influenced
sheath elongation (Krasnow et al., 2018). How the firing patterns
of individual neurons influences distinct Ca2+ activities in
myelin sheaths remains to be determined, but is likely to be
experimentally tractable in zebrafish by combining optogenetic
control of neuronal activity with analyses of corresponding
myelin responses. Another mechanism that has been proposed
to influence myelination downstream of neuronal activity is that
of the local translation of proteins, including myelin structural
proteins such as myelin basic protein at the axon-myelin interface
(Wake et al., 2011). It has been known for some time that
oligodendrocytes transport mRNAs encoding myelin proteins
to their distal myelinating processes (Colman et al., 1982),
and a forward genetic screen in zebrafish revealed that such
mRNA transport in oligodendrocytes is dependent on the kinesin
motor protein Kif1b (Lyons et al., 2009). A more recent study
has shown that neuronal activity can affect the regulation of
mRNAs within myelin sheaths in zebrafish, and that specific
3′UTR elements in mbp mRNA regulate its localisation and local
translation (Torvund-Jensen et al., 2018). To further investigate
the mechanisms that regulate mRNA localisation to myelin
sheaths, Yergert et al. (2019) tracked mRNAs as they were
transported in vivo in the zebrafish. In doing so, distinct 3′UTR
elements were identified which direct mRNA to areas of active
sheath growth. This study also showed that additional mRNAs
have conserved 3′UTR sequences, which appear to drive their
localisation to myelin sheaths, including the mRNA encoding
the RNA binding fragile X mental retardation protein FMRP,
fmr1 (Yergert et al., 2019). The importance of fmr1 in directing
sheath growth has also been demonstrated in zebrafish, whereby
oligodendrocytes lacking fmr1 have shorter myelin sheaths (Doll
et al., 2020), a phenotype that will be important to pursue in
the context of understanding circuit function and relevance to
developmental disorders.

In addition to mechanisms potentially related to activity-
regulated myelination, studies in zebrafish have also provided
insight into fundamental cell biology of myelination by
oligodendrocyte in the CNS. Live imaging studies in zebrafish
placed actin as a major regulator of sheath wrapping, as in
mammals (Nawaz et al., 2015; Zuchero et al., 2015), and more
recently this has been shown to be influenced by the p21-activated
kinase 1 (Pak1) in zebrafish (Brown et al., 2021). In parallel
to its role in influencing myelin targeting, oligodendrocyte
Neurofascin has been shown to support the growth of myelin
sheaths along axons, likely through its interaction with axonal
Caspr (Klingseisen et al., 2019). In addition to the regulation
of the growth of individual myelin sheaths, the total amount
of myelin made by oligodendrocytes is an important factor,
and one that has been shown to be regulated by the akt-mtor
pathway (Mathews and Appel, 2016a), under the influence of
the ubiquitin ligase Fbxw7 (Kearns et al., 2015), a factor that
when absent can lead to Schwann cells in the peripheral nervous

system myelinating multiple axons like oligodendrocyte through
an unknown mechanism independent of its control of Mtor
(Harty et al., 2019). Perhaps surprisingly, it remains unclear how
the overall production of myelin is regulated over time, an area
important for investigation in the future.

How Does Myelin Affect Circuit Function?
Myelin sheaths are well known to facilitate rapid action potential
propagation along axons, through their lipid-rich, multilamellar
composition (Nave and Werner, 2014; Stadelmann et al., 2019),
their physiology (Suminaite et al., 2019), and their role in
organising key ion channels along axonal subdomains, such as
nodes of Ranvier (Sherman and Brophy, 2005; Stassart et al.,
2018). In addition, myelin sheaths are thought to represent a
conduit for the metabolic support of axons by oligodendrocytes,
which has also been proposed to regulate axonal function and
integrity (Nave, 2010; Nave and Ehrenreich, 2018) (Figure 3).
Furthermore, the fact that myelination can be modified by
neuronal activity (Figure 3), and that changes in myelination can
affect conduction, has led to the hypothesis that activity regulated
myelination may contribute to nervous system plasticity (Fields,
2015; Chang et al., 2016; Almeida and Lyons, 2017; Monje,
2018; Suminaite et al., 2019). The zebrafish offers a unique
opportunity to investigate these questions. The first steps towards
investigating how CNS myelin in zebrafish affected neural circuit
function were however only recently investigated by Madden
et al. (2021) in a mutant with disrupted myrf, myelin regulatory
factor, which affected axonal conduction and zebrafish behaviour.
They found that Myrf was required for normal myelination in
the CNS (Supplementary Table 1), as in rodents (Bujalka et al.,
2013), and that zebrafish myrf mutants displayed reduced action
potential conduction velocity and have a decreased ability to
sustain high frequency action potential firing. To assess the effects
of these changes in circuit function on behaviour zebrafish startle
responses were studied, which displayed an increased latency to
perform startle responses and an aberrant behavioural choice
upon sensory stimulation (Madden et al., 2021). Although much
remains to be discovered, this study highlights the potential
of the zebrafish to integrate electrophysiological protocols with
live in vivo imaging and behavioural assays, which could also
be combined with functional imaging of neuronal and circuit
activity to fully interrogate how myelination affects neuronal
function and circuit plasticity.

Microglia
Microglia Formation
Microglia are the resident immune cells of the central nervous
system (Ransohoff and Cardona, 2010) (Figure 4). Recent genetic
tracing, live cell imaging and transcriptomic sequencing data
has revealed two waves of microglial development within the
zebrafish (Xu et al., 2016; Ferrero et al., 2018; Wu et al.,
2020) (Figure 1). The first wave originates from a population
of primitive macrophages in the yolk sac (Herbomel et al.,
2001; Ginhoux et al., 2010; Schulz et al., 2012). These migrate
to the hematopoietic tissue [the rostral blood island (RBI)],
and then from peripheral tissues to the optic tectum during
early embryonic development (Herbomel, 1999). A second wave,
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FIGURE 4 | Key characteristics and functional properties of zebrafish and mammalian microglia. The use of “. . .” refers to areas of microglial biology which require
further investigation.

which derives from hematopoietic stem cells from the ventral
wall of the dorsal aorta replaces the original population later in
development (Ferrero et al., 2018; Wu et al., 2020; Silva et al.,
2021). A number of conserved transcription factors have been
shown to be required for microglia development in zebrafish
and mammalian models including Pu.1 and Irf8 (Rhodes et al.,
2005; Li et al., 2011; Shiau et al., 2015) (Supplementary Table 1).
Additionally, studies in the zebrafish have identified factors
essential for the infiltration of yolk sac derived macrophages
into the brain. For example, the receptor for macrophage-
colony- stimulating factor (Csf1r), has been shown to be essential
for microglia migration, as loss of function mutations in both
paralogs which encode this receptor induce a complete loss of
microglia in the developing zebrafish brain (Herbomel et al.,
2001; Wu et al., 2018) (Supplementary Table 1), similar to
findings in mammals (Ginhoux et al., 2010). Further dissection of
the role of Csf1r using fate-mapping have identified distinct roles
for the distinct paralogs of the csf1r gene in the zebrafish (Braasch
et al., 2006); csf1ra and csf1rb. Whereas csf1ra is important for the
initial developmental wave, and later microglia maintenance in
the adult zebrafish brain, csf1rb has been shown to be essential

for colonisation of the CNS by the second microglial wave
(Ferrero et al., 2021).

Further studies have also highlighted an essential role for
Xpr1, a phosphate exporter, in microglial colonisation of
the brain (Meireles et al., 2014), where disruption of both
paralogs reduces microglial number in the CNS (Supplementary
Table 1). However, unlike the csf1r paralogs which independently
impair microglial number, xpr1b appears to play a much more
fundamental role in microglial function than xpr1a which was
not required for microglial formation. Like the csf1ra mutants,
xpr1b mutants do have a primitive macrophage population but,
unlike the csf1ra mutation, even after migration into the brain
these cells fail to differentiate into microglia, even in later larval
developmental stages. Also deriving from a forward genetic
screen for genes that regulate microglial formation was the
identification of the Nod-like receptor Nlrc3-like gene as being
essential for microglial infiltration to the brain. Interesting, Nlrc3l
appears to function to downregulate excessive inflammation,
whereby mutants exhibited hugely increased inflammation and
aggregation of primitive macrophages in the yolk and vasculature
preventing their migration to the brain (Shiau et al., 2014)
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(Supplementary Table 1), bringing up important questions on
how peripheral inflammation can regulate CNS microglia, a topic
of increasing broad interest.

Upon entry into the CNS, differentiation of microglia is
classified based on up-regulation of apoE, downregulation of l-
plastin and a ramified cell morphology (Herbomel et al., 2001),
which can be regulated via a number of signalling pathways
(Yang et al., 2021). Recent work indicates that the process
of microglial precursor colonisation of the zebrafish CNS is
promoted by programmed neuronal cell death, a normal aspect
of early nervous system development in vertebrates (Nijhawan
et al., 2000; Dekkers et al., 2013). Interestingly, recent studies in
the zebrafish have shown a direct link between the numbers of
neurons undergoing apoptosis in different CNS regions and the
level of microglial infiltration into them. This was demonstrated
by Xu et al. (2016) who showed that inhibition of neuronal cell
death reduces the number of microglial precursors which enter
the optic tectum in the developing zebrafish. To investigate the
signals which may mediate this process, Casano et al. (2016)
utilised a photoconvertible protein expressed in microglia to
track the progress of microglia in a system with inducible
neuronal cell death. Enhanced infiltration of microglia into
specific regions with significant neuronal apoptosis was shown
to be mediated by nucleotide-mediated chemotaxis, which has
also been reported in murine studies (Haynes et al., 2006), where
nucleotide release is associated with cell or tissue damage. Taken
together these data demonstrate that neuronal apoptosis mediates
microglial CNS infiltration into specific regions, which is used
during zebrafish development to colonise the CNS and influence
microglia number.

Functional Roles of Microglia
The process by which microglia engulf dying neurons has
been investigated in the zebrafish by time-lapse imaging
(Peri and Nüsslein-Volhard, 2008). Neuronal engulfment is
reliant on combined interactions between Tim-4 and Bai1,
two phosphatidylserine receptors on the microglial surface
(Supplementary Table 1). Specifically, Bai1 is involved in
phagosome formation and transport whilst Tim-4 is necessary
for phagosome stabilisation via actin polymerisation (Mazaheri
et al., 2014). Once phagocytosed, the Rag-Regulator complex is
essential in the formation of lysosomes and efficient digestion
of neuronal debris (Shen et al., 2016). Further investigations
have added to the list of phagocytic signals that could prompt
engulfment of dying neurons by microglial cells in the zebrafish
including lysophosphatidylcholine, a phospholipid known to be
released from apoptotic neurons (Xu et al., 2016) which is also a
potent chemoattractant for microglia in rodents.

But how can microglia coordinate their migration towards
phagocytic targets, and how are microglia recruited long
distances throughout the CNS? One candidate signalling
pathway, which has been shown to facilitate long range migration
of microglia to damaged neurons is calcium signalling. Utilising
a targeted laser neuronal ablation approach to damage neurons
in the brains of larval fish expressing calcium reporters in
microglia Sieger et al. (2012) observed rapid calcium waves
which determined the direction and magnitude of the microglial

response, as killing fewer neurons resulted in shorter range
Ca2+ waves and migration of local microglia only. Furthermore,
preventing the formation of such Ca2+ waves or chelating
extracellular Ca2+ reduced microglia migration to sites of
damage, suggesting that Ca2+ signalling plays an essential role
in neuronal-microglial interactions. But how could neuronal
signalling influence the generation of Ca2+ waves within
microglia? Interestingly, the generation of Ca2+waves was found
to be dependent on glutamate and NMDA-receptor signalling,
which may facilitate communication between neuronal and
microglial cells in a number of physiological as well as disease/
injury situations, given that microglial contacts with neurons
have been shown to be affected by neuronal activity (Hughes
and Appel, 2020). Microglia have also been implicated in synapse
formation and function including synaptic pruning and removal
of inappropriate synaptic contacts in mammals, which is a
normal aspect of vertebrate development. In the zebrafish the
contribution of glia to synapse formation, strengthening and
pruning is far less extensively studied than in mammals, and
remains an exciting area for future research. That being said,
there is evidence to suggest that microglia in the zebrafish may
play important roles in synaptogenesis. For example, a recent
study from Silva et al. (2021) describe a novel subpopulation
of synapse-associated microglia present in the midbrain and
hindbrain. Synapse-associated microglia express the complement
gene C1qc, a known protein which also regulates synaptic
engulfment by microglia in rodents (Stevens et al., 2007; Hong
et al., 2016), which could suggest that it may mediate similar
functions in the zebrafish.

Microglia can also regulate homeostatic neuronal activity
in zebrafish. This was explored in a study by Li et al.
(2012) who integrated in vivo imaging of microglial cells,
whole-cell electrophysiology recording, and glutamate uncaging.
By monitoring microglial morphology, process dynamics and
neuronal activity they showed that local increases in neuronal
activity attracted microglial processes, which contacted the somas
of highly active neuronal cells. Once microglia-neuron contacts
were established after about 5 min this contact downregulated
spontaneous activity in the neuron, which remained at a low level
for at least 7 min even after the interaction. Further mechanistic
investigation showed that this process was dependent on
pannexin-1 hemichannels on the neuronal soma, triggering
the release of signals which attract microglia via activation
of the small Rho GTPase Rac in resting microglia (Li et al.,
2012). Intriguingly, a recent study utilising a mouse model has
provided further evidence that microglia may mediate negative
feedback mechanisms to protect the brain from excessive activity,
highlighting a conserved feature of microglia biology across
species (Badimon et al., 2021). Together these results raise
fascinating questions about the roles of microglia in regulating
neural excitation in the healthy CNS, the potential roles of
microglia at synapses, and the effects these may have on neuronal
function if such interactions become perturbed in disease.

Interestingly, neuronal regulation of microglial function has
recently been demonstrated to include microglial phagocytosis
of non-neuronal cells. For example, microglia have recently been
proposed to be capable of phagocytosing myelin sheaths during

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 November 2021 | Volume 9 | Article 754606

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-754606 November 23, 2021 Time: 17:42 # 15

Neely and Lyons CNS Glia of Zebrafish

development. Similar to synapses and neurons, more myelin
sheaths are initially produced in development than are eventually
maintained over time. Whilst much of this was demonstrated
to be driven by oligodendrocytes retracting myelin sheaths, as
visualised in vivo in the zebrafish, Hughes and colleagues have
recently described a contribution of microglia to developmental
myelin sheath elimination. By studying the interactions of
microglia with myelinated axons, they observed close association
of microglia with both neuronal somas and myelinated regions
of the axon (Hughes and Appel, 2020). Very interestingly, in
animals with fewer microglia, individual oligodendrocytes had a
greater number of myelin sheaths, without any significant effect
on oligodendrocyte number, directly implicating microglia in the
control of myelination by single oligodendrocytes (Hughes and
Appel, 2020). This data raises a number of questions regarding
the potential impacts of microglia in life long myelin plasticity
and refinement of neural circuit structure and function, which
await investigation. Microglia remain in the CNS throughout
life with the ability to quickly transition into distinct functional
states. Given that recent gene expression profiling studies have
shown larval zebrafish microglia to have a conserved microglia
signature in vivo compared to other model organisms, this places
the zebrafish in a central position for future study of these
cells (Mazzolini et al., 2019), in the healthy nervous system, but
also in various disease modelling contexts, which are becoming
established in zebrafish.

DISCUSSION

The current landscape of zebrafish glial research is an
exciting one given the rapid advances in genetic manipulation
strategies, imaging techniques, probes for labelling, fluorescent
reporters, ablation techniques, optogenetics, drug screening and
the ability to integrate many of these whilst also studying
behavioural responses. Additionally, advances in cell type specific
investigation of gene function, and platforms to simultaneously
investigate glial and neuronal function within the context of
behavioural outputs will, no doubt, place the zebrafish in a central
position for future investigation of glial cells in health and disease.

Recent research has highlighted the diversity of functions
played by glia in the zebrafish, and how their similarities
with other model organisms can be used to identify conserved
biological pathways. Moreover, differences between the highly
regenerative zebrafish and other organisms provide a useful
comparison where novel pathways with potential implications

in repair can be investigated. Given the range of essential roles
that glia perform in development, circuit function and lifelong
maintenance of the healthy nervous system, it follows that
disruption to glia, or changes to the functional roles which they
play can characterise disease. The zebrafish, as a model organism,
is emerging as a popular choice to study glial cells in disease
and regeneration. For example, the roles of glial cells in epileptic
seizures, brain tumours, degenerative disease, remyelination,
peripheral nerve regeneration, retinal regeneration, and spinal
cord repair are now being studied in zebrafish models of disease
(Mokalled et al., 2016; Sifuentes et al., 2016; Karttunen et al., 2017;
Chia et al., 2018, 2019; Frøyset et al., 2018; Saleem and Kannan,
2018; Diaz Verdugo et al., 2019; Neely et al., 2020). Given the
applications of zebrafish to investigate glial cells throughout life,
in disease and for screening applications we believe that this
makes for exciting future research into glial cell function to
complement that in other models.
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