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Cell proliferation is associated with increased energy and nutrients consumption.
Metabolism switch from oxidative phosphorylation to glycolysis and telomerase activity
are induced during stimulation of proliferation, such as tumorigenesis, immune cell
activation, and stem cell differentiation, among others. Telomerase RNA is one of the
core components of the telomerase complex and participates in survival mechanisms that
are activated under stress conditions. Human telomerase RNA protein (hTERP) is encoded
by telomerase RNA and has been recently shown to be involved in autophagy regulation. In
this study, we demonstrated the role of hTERP in the modulation of signaling pathways
regulating autophagy, protein biosynthesis, and cell proliferation. The AMPK signaling
pathway was affected in cells deficient of hTERP and when hTERP was overexpressed.
The appearance of hTERP is important for metabolism switching associated with the
accelerated proliferation of cells in healthy and pathological processes. These findings
demonstrate the connection between telomerase RNA biogenesis and function and
signaling pathways.
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INTRODUCTION

Cell proliferation requires accelerated production of proteins, lipids, and nucleic acids with the
biosynthesis of these components being regulated by a network of metabolic pathways. Most
somatic cells do not proliferate, but accelerated proliferation occurs during tumorigenesis, T-cell
activation, and stem-cell differentiation. The increased proliferation requires increased
consumption of nutrients, which is accompanied by switching from oxidative phosphorylation
to glycolysis, a process known as the Warburg effect (Hanahan and Weinberg, 2011; Burgess et al.,
2014; Almeida et al., 2016). The stimulation of proliferation and increased rates of cellular division
also results in a shortening of telomeres, special structures located at the ends of linear eukaryotic
chromosomes. Telomeres contain many copies of TTAGGG repeats associated with protein
complex shelterin and are involved in the stabilization and protection of chromosome ends, as well
as in the regulation of telomerase binding and telomeric DNA synthesis (Monaghan and Ozanne,
2018). Cell division leads to a progressive loss of telomeres due to incomplete DNA replication
(Olovnikov, 1973; Chow et al., 2012) and nuclease activity (Pfeiffer and Lingner, 2012). When
telomeres become critically short arrest of senescence and cell death are induced (Fumagalli et al.,
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2012; Hewitt et al., 2012). Telomerase is a large
ribonucleoprotein complex responsible for the synthesis of
telomeric DNA repeats, thereby compensating for telomere
loss (Lingner et al., 1995). Telomerase is inactivated in the
majority of somatic cells and its reactivation is associated with
accelerated proliferation during tumorigenesis, T-cell
activation, and stem-cell differentiation.

Human telomerase consists of two core components: human
telomerase RNA (hTR), also known as human telomerase RNA
component (hTERC), and human telomerase reverse
transcriptase (hTERT). The expression of hTERT correlates
with telomerase activity and is regulated at the transcriptional
level (Feng et al., 1995; Roake and Artandi, 2020). However,
hTERC is present in most somatic cells and it’s amount depends
not only on the transcriptional activity of hTERC, but also on the
turnover of hTERC primary transcripts (Roake and Artandi,
2020). The primary transcript of hTERC is synthesized by
RNA polymerase II from a dedicated locus and its own
promoter (Blasco et al., 1995; Feng et al., 1995). The hTERC
transcript is synthesized as an extended precursor molecule of
approximately 461 nucleotides with heterogenous 3′-end, which
is processed into the mature 451-nucleotide RNA (Roake et al.,
2019). Longer hTERC precursors exceeding 1500 nucleotides in
length may represent either a very early hTERC precursor that is
rapidly processed into the shorter forms or is targeted for
destruction by RNA surveillance (Tseng et al., 2015). The
Integrator complex facilitates transcription from the hTERC
promoter and regulates hTERC transcription termination via
an unknown mechanism. Depletion of the major Integrator
subunit results in the accumulation of an extended transcript
of 571 nucleotides (Rubtsova et al., 2019) that functions as a
template for synthesis of endogenous human telomerase RNA
protein (hTERP). Previously, we detected hTERP in
HEK293T cells and demonstrated its protective function
under stress conditions (Rubtsova et al., 2018). Although the
function of this protein is largely unknown, we have shown that
mutations at the N-terminus of hTERP affect basal levels of
autophagy. Currently, there is limited data on the function of
telomerase components outside the telomerase complex
(Rubtsova and Dontsova, 2020). We propose that appearance
of different products of biogenesis of hTERC primary transcript
may define the metabolic program and level of proliferation
of cell.

Different signaling pathways regulate autophagy, cellular
proliferation, and cell growth. The tuberous sclerosis complex
(TSC), which consists of proteins TSC2, TSC1, and TBC197
(Menon et al., 2014), is regulated by AMP-activated protein
kinase (AMPK) and RAC-alpha serine/threonine protein
kinase (AKT1) signaling in response to different stimuli
(Kwiatkowski and Manning, 2005; Huang et al., 2008; Hoxhaj
and Manning, 2020). TSC2 acts as a GTPase-activating protein of
the small GTPase protein Ras homolog enriched in the brain
(Rheb) (Inoki, 2003). GTP-bound Rheb activates mammalian
target of rapamycin complex 1 (mTORC1), which plays a
conserved role in the regulation of cell growth, proliferation,
survival and autophagy activation (Condon and Sabatini, 2019).
mTORC1 stimulates cellular growth and proliferation by

phosphorylation of ribosomal S6 kinase 1 (p70S6K1) and the
translation initiation factor 4E binding protein 1 (4E-BP1),
thereby stimulating cap-dependent translation (Holz et al.,
2005). Activated mTORC1 phosphorylates and thereby
inhibits autophagy activating Unc-51 like autophagy activating
kinase 1 (ULK1) (Figure 1). AMPK is involved in autophagy
stimulation upon glucose starvation, amino acids deficiency and
when ATP levels are low (Hardie et al., 2012; González et al.,
2020). AMPK activates TSC2 via phosphorylation at Thr1271
and Ser1387 (Inoki et al., 2003). TSC2 activation leads to the
suppression of Rheb activity, and as a result to mTORC1
inhibition. Thus, the activation of AMPK leads to the
inhibition of protein synthesis and cell proliferation and
stimulation of autophagy. The activity of the TSC complex is
also regulated by the phosphorylation of TSC2 at various sites by
AKT-kinase involved in the cellular response to growth factors,
DNA damage, the regulation of glucose metabolism and
glycolysis in cancer cells (Skeen et al., 2006; Hoxhaj and
Manning, 2020). Activation of AKT leads to phosphorylation
of TSC2 at Ser939, which stimulates mTORC1 activity and
inhibits autophagy (Dibble and Cantley, 2015). Thus, the
activation of AMPK leads to the inhibition of protein
synthesis and cell proliferation, and the stimulation of
autophagy. Meanwhile, activation of the AKT signaling
pathway has an opposite effect on stimulating protein
synthesis and cell proliferation and inhibiting autophagy.

In the current study, we analyzed the level of basal autophagy
and the status of various signaling pathways in hTERP-deficient
and hTERP-overexpressing cells under various conditions
affecting cellular metabolism in order to demonstrate the
connection between telomerase RNA biogenesis and function
and signaling pathways.

MATERIALS AND METHODS

Cell Culture
Human HEK293T and U2OS cells were grown in DMEM/F12
medium supplemented with Glutamax (Thermo Fisher
Scientific), 10% fetal bovine serum (FBS), 100 units/mL
penicillin, and 100 μg/ml streptomycin at 37°C and 5% CO2.
Cultures were examined under an inverted microscope to
determine confluency and viability. The cells were confirmed
to be negative for mycoplasma contamination.

To generate an hTERP open reading frame (ORF) knockout
HEK293T cell line (dhTERP), we applied CRISPR/Cas9
technology as previously (Rubtsova et al., 2018). Briefly,
oligonucleotides corresponding to the single guide RNA
(sgRNA) sequence after hybridization were ligated with the
pX458 vector (Ran et al., 2013) digested with BbsI endonuclease.
The obtained plasmid was confirmed by sequencing and
transfected into HEK293T cells using Lipofectamine 3000
reagent. Cells transfected with plasmids and expressing green
fluorescent protein (GFP) allowed us to enrich and clone the
population by cell sorting using a FACSAriaIII flow cytometer
(BD). Analysis of the monoclones revealed only 1 cell line with
a full knockout of the hTERP ORF, which was confirmed by
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PCR-amplification followed by sequencing of obtained product.
To generate cell lines overexpressing hTERP fused with a
C-terminal 3HA tag (hTERP-3HA) or 3HA alone as a
control, we cloned the corresponding coding sequences into
pSBtet-Neo vector (Kowarz et al., 2015) digested initially with
SfiI endonuclease. The obtained plasmid was confirmed by
sequencing and transfected into cells using Lipofectamine
3000 reagent. Cells after transfection were cultivated in a
medium containing G418 antibiotic for selection of cells
containing the expression cassettes. Cell lines with a
doxycycline-induced expression of hTERP-3HA or only 3HA
were cultivated in a medium containing G418 antibiotic for
selection of cells expressing the cassettes. Selected cells were
treated with doxycycline to induce the expression of hTERP-
3HA and 3HA.

Cell Treatment
Cells were seeded at 3.0 × 103/cm2 into a 6-well plate and treated
with 10 µM chloroquine (cat. #C66288, Sigma-Aldrich) for 6 h to
inhibit autophagy progression or with the adenosine analog
2 mM 5-aminoimidazole-4-carboxamide ribonucleotide
(AICAR; 9944, Cell Signaling Technology) for 1 h to stimulate
AMPK activity. For amino acid starvation, cells were incubated
with medium lacking amino acids (20 mM HEPES, pH 7.4;
140 mM NaCl; 1 mM CaCl2; 1 mM MgCl2; 5mM glucose) for
1 h at 37°C with or without chloroquine. Inhibition of glycolysis
was performed by treating the cells with 2 mM 2-deoxy-D-
glucose (2-DG) for 48 h.

Immunoblotting
Cells were rinsed with cold phosphate-buffered saline (PBS) and
lysed with NETN buffer (150 mM NaCl; 1 mM EDTA; 50 mM
Tris-HCl, pH 7.5; 0.5% NP-40) containing Halt Protease and
Phosphatase Inhibitor Cocktail (Promega) for 30 min on ice.
The lysates were then sonicated for 15 s and centrifuged at

14 000 × g for 10 min at 4°C. Protein concentrations were
determined by measuring the optical density (OD) at
absorbance of 280 nm (A280) using a NanoDrop 2000
spectrophotometer (Thermo Fisher). Equal amounts of
protein extracts (20 µg) were boiled for 5 min in NuPAGE
LDS sample buffer (Life Technologies) and the proteins
separated on NuPAGE 4–12% Bis-Tris gels (Life
Technologies) under denaturing conditions when we
analyzed the phosphorylation status. The proteins were
separated in 15% PAGE under denaturing conditions for
analysis of LC3I protein conversion to LC3II form.
Immunoblotting was performed according to standard
methods and analyzed using the following primary
antibodies: anti-MAP LC3 alpha/beta (cat. #sc-398822; Santa
Cruz Biotech), anti-AKT (cat. #9272; Cell Signaling
Technology), anti-phospho-AKT (Thr308) (cat. #4056; Cell
Signaling Technology), anti-AMPK alpha (cat. #5832; Cell
Signaling Technology), anti-phospho-AMPK alpha (Thr172)
(cat. #2535; Cell Signaling Technology), anti-p70S6K (cat.
#9202; Cell Signaling Technology), anti-phospho-p70S6K
(Thr389) (cat. #9206; Cell Signaling Technology), anti-TSC2
(cat. #4308; Cell Signaling Technology), anti-phospho-TSC2
(Ser1387) (cat. #5584; Cell Signaling Technology), anti-
phospho-TSC2 (Ser939) (cat. #3615; Cell Signaling
Technology), anti-ULK1 (cat. #8054; Cell Signaling
Technology), anti-phospho-ULK1(Ser555) (cat. #5869; Cell
Signaling Technology), anti-phospho-ULK1(Ser757) (cat.
#6888; Cell Signaling Technology), anti-4E-BP1 (cat. #9452;
Cell Signaling Technology), anti-phospho-4E-BP1(Thr37/46)
(cat. #2855; Cell Signaling Technology), anti-HA-HRP (3F10)
(cat. #12 013 819 001; Roche), anti-GAPDH (cat. #Ab9485;
Abcam). The HRP-conjugated secondary antibodies included
anti-mouse (cat. #G2-6520; Thermo Fisher), anti-goat (cat.
#G1-1620; Thermo Fisher), and anti-rabbit (cat. #7074; Cell
Signaling Technology). We used previously obtained polyclonal

FIGURE 1 | Schematic illustrating the signaling pathways involved in regulation of mTORC1 activity, autophagy, and protein synthesis.
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anti-hTERP antibodies (Rubtsova et al., 2018) for analysis of
hTERP level.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7.0
software (GraphPad, La Jolla, CA, United States). Statistical
significance was determined using one-way and two-way
analysis of variance (ANOVA) and differences between the
analyzed samples were determined using Sidak’s or Dunett’s
multiple comparison tests. Each experiment was repeated at
least three times.

RESULTS

hTERP is Involved in Regulation of Induced
Autophagy
We previously demonstrated that mutations in the N-terminus of
hTERP affect basal levels of autophagy (Rubtsova et al., 2018).
Here, we aimed to determine the precise step of the autophagic
process at which the inhibition occurs. To investigate whether
hTERP is involved in the regulation of signaling pathways and
any potential mechanisms, we used the hTERP-deficient
HEK293T cell line generated by CRISPR/Cas9 genome editing

FIGURE 2 | hTERP-deficiency influences autophagy progression. (A,B) Immunoblotting of lysates from wild-type and dhTERP HEK293T cells for LC3
under normal conditions (AA+) and during amino acids starvation (AA−) (A) and under normal conditions and AICAR treatment (B). To block autophagy
progression, cells were treated with 10 µM chloroquine (CQ). GAPDH was used as loading control. (C,D) Immunoblotting of lysates from wild-type and
overexpressing-hTERP-3HA HEK293T cells for LC3 under normal conditions (AA+) and during amino acids starvation (AA−) (C) and under normal
conditions and AICAR treatment (D). (E)Quantification of the conversion rate of LC3-I to LC3-II in wild type, dhTERP and overexpressing hTERP HEK293T cells
starved of amino acids or treated with AICAR. The ratio of LC3-II to LC3-I in chloroquine treated amino acids starved cells (A,C) or cells under AICAR treatment
(B,D) was normalized to the ratio of LC3-II to LC3-I in chloroquine treated cells cultivated in normal conditions. Conversion rate of LC3 for mutant cells was
normalized to the same ratio for wild type cells. The conversion rate of LC3-I to LC3-II was determined from three independent experiments (mean ± SEM) and
quantified using GraphPad Software. ***p < 0,001 by Dunett’s multiple comparison test. (F,G) Immunoblotting of lysates from wild-type and overexpressing
hTERP-3HA U2OS cells for LC3 under normal conditions (AA+) and during amino-acids starvation (AA−) (F) and under normal conditions or AICAR treatment
(G). (H) Quantification of the conversion rate of LC3-I to LC3-II in wild type and overexpressing hTERP U2OS cells starved of amino acids or treated with AICAR.
The ratio of LC3-II to LC3-I in chloroquine treated amino acids starved cells (F) or cells under AICAR treatment (G) was normalized to the ratio of LC3-II to LC3-I
in chloroquine treated cells cultivated in normal conditions. Conversion rate of LC3 for mutant cells was normalized to the same ratio for wild type cells. The
conversion rate of LC3-I to LC3-II was determined from three independent experiments (mean ± SEM) and quantified using GraphPad Software. **p < 0.01 and
*p < 0,05 by Dunett’s multiple comparison test.
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and the telomerase-positive HEK293T or telomerase-negative
U2OS cell lines overexpressing hTERP that were obtained
using the Sleeping Beauty transposase system (Kowarz et al.,
2015). CRISPR-Cas9 treatment results in the absence of 5
nucleotides after start AUG-codon (Supplementary Figure
S1A) that entailed the ORF disturbance and the absence of
hTERP protein (Supplementary Figure S1B) while the
exogenous expression of hTERP ORF increased slightly the

level of hTERP protein in the case of wild type HEK293T and
restored the basal level of hTERP in knockouted HEK293T cells
(Supplementary Figure S1B). The expression of hTERP-3HA
was confirmed by western blotting using antibodies specific to
HA-epitope (Supplementary Figures S1C,D) or using antibodies
specific to hTERP (Supplementary Figure S1B).

To investigate the role of hTERP in autophagy progression
we subjected cells to amino acids starvation or to treatment with

FIGURE 3 | hTERP modulates activity of kinases of relevant signaling pathways in HEK293T cells. (A) Lysates from wild-type and dhTERP HEK293T cells with or
without 2 mM 2-deoxy-D-glucose (2DG) were probed with the indicated antibodies. (B,C). Lysates prepared from wild-type HEK293T cells (B) and dhTERP
HEK293T cells (C) exogenously expressing 3HA (HA) or hTERP-3HA (hTERP o/e) with or without 2 mM 2-DG were probed with the indicated antibodies. (D)
Quantification of phosphorylation levels of the indicated proteins. Black bars correspond to the ratio of phosphorylated protein to total protein levels in wild-type
HEK293T cells. Grey bars correspond to the ratio of phosphorylated protein to total protein level in dhTERP cells. Dark grey bars correspond to the ratio of
phosphorylated protein to total protein level in overexpressing hTERP HEK293T cells treated with doxycycline. Light grey bars correspond to the ratio of phosphorylated
protein to total protein level in overexpressing hTERP dhTERP HEK293T cells treated with doxycycline. The ratio for modified cells was normalized to the ratio for wild
type HEK293T cells from three independent western blots (mean ± SEM) and quantified using GraphPad software. ****p < 0.0001 by Dunett’s multiple comparison test.
(E) Quantification of phosphorylation levels of the indicated proteins. Black bars correspond to the ratio of phosphorylated protein to total protein levels in wild-type
HEK293T cells treated with 2-DG compared to that of the ratio in untreated cells. Grey bars correspond to the ratio of phosphorylated protein to total protein levels in
dhTERP cells treated with 2-DG compared to that of the ratio in untreated cells. White bars correspond to the ratio of phosphorylated protein to total protein levels in
overexpressing hTERP dhTERP HEK293T cells treated with doxycycline (doxy+), or 2-DG normalized to the ratio for overexpressing-3HA dhTERP HEK293T cells
treated with doxycycline (2DG+/doxy+), or cells not treated with 2-DG (2DG−). The same quantification was performed for samples not treated with doxycycline (doxy−),
or treated with 2-DG relative to the ratio of cells not treated with doxycycline (2DG+/doxy−), or cells not treated with 2-DG (2DG−). The normalized data were used for
quantification of changes in the phosphorylation rate of targeted protein upon the exogenous expression of hTERP [(doxy+, 2DG+/doxy+, 2DG−)/(doxy−, 2DG+/doxy−,
2DG−)]. The ratio for cells treated with 2-DG was normalized to the ratio for untreated cells from three independent western blots (mean ± SEM) and quantified using
GraphPad software. **p < 0.01, ***p < 0.001, and ****p < 0.0001 by Dunett’s multiple comparison test.
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5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)
(Figures 2). Both treatments regulate signaling pathways
related to autophagy initiation and regulation of cell
proliferation. The conversion of LC3-I to LC3-II as a result
of conjugation of phosphatidylethanolamine to LC3-I during
authophagy was analyzed by western blotting when
autophagosome-lysosome fusion was blocked by chloroquine
(Kabeya, 2000). We found that amino acids starvation resulted
in the inhibition of autophagy while AICAR treatment activated
the autophagy in hTERP-deficient cells (Figures 2A,B,E).
Overexpression of hTERP in HEK293T cells (Supplementary
Figures S1B, S1C) activated autophagy in amino acids starved
cells (Figures 2C,E) and inhibited it in cells treated with AICAR
(Figures 2D,E). Overexpression of hTERP in the U2OS cells
(Supplementary Figure S1D) resulted in inhibition of
autophagy under amino acids starvation (Figures 2F,H) and
after AICAR treatment (Figures 2G,H).

hTERP Modulates AMPK, TSC2, and ULK1
Phosphorylation Under Glycolysis Inhibition
To compare the activity of the kinases that participate in signaling
pathways regulating mTORC1 activity in cells where hTERP was
deleted (Figure 3A) or overexpressed (Figure 3B), we calculated
the ratios of phosphorylated kinase to total kinase in cells at
normal conditions (Figure 3D). We observed that hTERP level
influences the phosphorylation of AMPK and p70S6K1
significantly (Figure 3D). Interestingly, both depletion and
overexpression of hTERP result in enhanced phosphorylation

of p70S6K1 (Figure 3D). The level of phosphorylated p70S6K1 in
knockouted cells restored to wild type HEK293T cells after
exogenous expression of hTERP (Figures 3C,D). The level of
phosphorylation of AMPK was increased in cells without hTERP
and exogenous expression of hTERP in knockouted cells restored
the phosphorylation of AMPK to wild type level. Overexpression
of hTERP in wild type HEK293T cells didn’t influence on AMPK
modification.

Both treatments (amino acids starvation and AICAR
treatment) that we used to analyze the influence of hTERP on
basal autophagy modulate the AMPK activity (Hardie et al., 2012;
González et al., 2020). To explore the possible mechanisms of
hTERP action on processes that regulate cellular responses to
stressors, we decided to modulate the inhibition of glycolysis by
treating the cells with 2-deoxy-D-glucose (2-DG) that also
influences AMPK activity.

To confirm the involvement of hTERP in the regulation of
kinase activity, we analyzed their phosphorylation status in wild-
type and mutant HEK293T cells (Figures 3A–C) and wild type
U2OS cells and U2OS cells overexpressing hTERP (Figure 4A).
Cell lines with a doxycycline-induced expression of hTERP-3HA
or only 3HA were treated with doxycycline to induce the
expression of hTERP-3HA and 3HA and treated with 2 mM
2-DG for 48 h. The expression of hTERP-3HA was confirmed by
western blotting using antibodies specific to hTERP and HA
(Supplementary Figures S1B–D). Cells treated with only
doxycycline or 2-DG were used as controls. Levels of total and
phosphorylated forms of the kinases involved in the cellular
response to glucose deficiency were analyzed by western

FIGURE 4 | hTERPmodulates activity of kinases of relevant signaling pathways in U2OS cells. (A) Lysates prepared from U2OS cells exogenously expressing 3HA
or hTERP-3HA treated with or without 2 mM2-DGwere probed with the indicated antibodies. (B)Quantification of phosphorylation levels of the indicated proteins. Black
bars correspond to ratio of phosphorylated protein to total protein levels in overexpressing-3HA U2OS cells treated with doxycycline (doxy+), or 2-DG treated cells
normalized to the ratio for cells treated with doxycycline (2DG+/doxy+), cells not treated with 2-DG (2DG−). Grey bars correspond to ratio of phosphorylated protein
to total protein levels in overexpressing-hTERP cells treated with doxycycline (doxy+), or 2-DG treated cells normalized to the ratio for cells treated with doxycycline
(2DG+/doxy+), or cells untreated with 2-DG (2DG−). The same quantification was performed for the samples not treated with doxycycline (doxy−), or treated with 2-DG
relative to the ratio of cells not treated with doxycycline (2DG+/doxy−), or cells not treated with 2-DG (2DG−). Those normalized data were used for quantification of
changes in the phosphorylation rate of targeted protein upon the exogenous expression of hTERP [(doxy+, 2DG+/doxy+, 2DG−)/(doxy−, 2DG+/doxy−, 2DG−)]. The
ratio for cells treated with 2-DG was normalized to the ratio for untreated cells from three independent western blots (mean ± SEM) and quantified using GraphPad
software. ***p < 0.001, and ****p < 0.0001 by Dunett’s multiple comparison test.
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blotting (Figures 3A–C, 4A). The ratios of levels of
phosphorylated kinase to total kinase obtained for wild-type
and dhTERP HEK293T cells treated with 2-DG were
normalized to the ratios obtained for untreated cells (Figures
3E, 4B).

We observed that dhTERP HEK293T cells demonstrated
reduced activation of AMPK compared with that of wild-type
HEK293T cells in response to 2-DG treatment (Figures 3A,E),
which was complemented in cells overexpressing hTERP-3HA
(Figures 3C,E). Phosphorylation of AMPK was increased in
U2OS cells overexpressing hTERP-3HA in response to 2-DG
treatment (Figures 4A,B). However, phosphorylation of the
direct targets of AMPK, ULK1 Ser555 and TSC2 Ser1387,
increased slightly in dhTERP cells compared with that of wild-
type HEK293T cells (Figures 3A,E), which should have resulted
in the activation of autophagy in hTERP-deficient cells. The levels
of phosphorylation of ULK1 at Ser555 and TSC2 at Ser1387 were
restored by hTERP-3HA overexpression to levels similar to those
observed in the wild-type cells. On the other hand, p70S6K and
4E-BP1 phosphorylation were increased in dhTERP cells
(Figure 3A), providing for the activation of protein synthesis
and stimulation of cell proliferation. We did not observe any
significant changes in the phosphorylation of AKT kinase or its
target TSC2 at Ser939 (Figures 3B,C,E). Overexpression of
hTERP-3HA in U2OS cells resulted in a slight inhibition of
phosphorylation of TSC2 at Ser1387 and ULK1 at Ser757 and
increased phosphorylation of pULK1 at Ser555 and p70S6K1
(Figures 4A,B) under 2-DG treatment. As phosphorylation of
ULK1 Ser757 inhibits autophagy, hTERP is involved in the
regulation of the signaling pathway responsible for sensing
cellular energy status. On one hand, hTERP-deficiency led to
the activation of protein biosynthesis with increased
phosphorylation of p70S6K1 and 4E-BP1, while on the other
hand it led to activation of autophagy with increased
phosphorylation of ULK1 at Ser555. Notably, we observed the
influence of hTERP on the phosphorylation of downstream
targets of mTORC1, such as ULK1 Ser757, p70S6K1, and 4E-
BP1, suggesting hTERP is involved in regulation of the mTORS1
signaling pathway.

DISCUSSION

Nutrient starvation results in growth arrest and the activation of
autophagy, which allows for the acquisition of deficient resources
by digestion of intracellular components. AMPK is a crucial
regulator of cellular metabolism in eukaryotes and it regulates
cell growth and autophagy (Mihaylova and Shaw, 2011). As a
sensor that detects cellular energy status, AMPK is activated when
cellular ATP levels are low (Kwiatkowski and Manning, 2005)
and its activation has been suggested to prevent cellular
senescence and aging (Salminen and Kaarniranta, 2012).
Moreover, AMPK activity is regulated by serine-threonine
kinase LKB1 tumor suppressor signaling and it is an upstream
component of the mTORC1 pathway. AMPK-deficient cells are
resistant to oncogenic transformation and tumorigenesis
(Shackelford and Shaw, 2009). AMPK and mTORC1 regulate

autophagy via ULK1 kinase, an inducer of the autophagy
activator complex. The double-negative feedback loop between
AMPK and mTORC1, with participation of ULK1, controls the
signaling pathway network involved in autophagy regulation
(Watanabe et al., 2011). Hyperactivation of mTORC1 leads to
the inhibition of AMPK and autophagy (Holczer et al., 2019).
Interestingly, ULK1 downregulates AMPK activity via a negative
feedback loop that generates a homeostatic response with respect
to cellular stress (Löffler et al., 2011). The dephosphorylation of
AMPK is crucial in order to prevent the hyperactivation of self-
cannibalism, which may have a dramatic effect on the cell
(Holczer et al., 2019). The involvement of telomerase
components in the regulation of autophagy has also been
demonstrated in several studies (Cheng et al., 2015; Harris and
Cheng, 2016; Roh et al., 2018; Rubtsova et al., 2018).

The hTERP protein was discovered several years ago and
identified as a protein encoded by human telomerase RNA. Full-
length protein can be translated from the elongated precursor of
telomerase RNA (Rubtsova et al., 2018). Furthermore, it is known
that the processing of telomerase RNA is tightly regulated, as the
level of telomerase RNA should be constant in order to maintain
cellular homeostasis (Tseng et al., 2015). Telomerase RNA is
expressed in the majority of somatic cells and is expressed
independent of telomerase activity, although at much lower
levels in comparison with that of telomerase-positive cells
(Artandi et al., 2002; Roake and Artandi, 2020).

The stimulation of cell proliferation is associated with a switch
in metabolism from oxidative phosphorylation to glycolysis,
which is needed to provide the energy and nutrients necessary
for an increased rate of cellular division. The activation of
telomerase in cells with an increased proliferative rate results
in telomere lengthening, which allows the cells to safely increase
the number of divisions. Both hTERT and hTERC are involved in
the regulation of regulatory cascades (Ségal-Bendirdjian and Geli,
2019; Rubtsova and Dontsova, 2020). It has been shown
previously that hTERC is imported into mitochondria,
processed there and released to the cytosol as TERC-53
fragment with unknown function (Cheng et al., 2018).
hTERC-53 accumulates in cytoplasm when membrane
potential of mitochondria is impaired. It was recently
demonstrated that p70S6K1 is persistently phosphorylated and
mTORC1 is hyperactivated in Terc−/−mice (Ferrara-Romeo et al.,
2020). TERC knockout leads to the absence of telomerase RNA,
which is a component of the telomerase complex that maintains
telomeres and codes for the hTERP protein. These functions of
telomerase RNA may be involved in maintaining cellular
homeostasis as short telomeres result from non-functional
telomerase, the defects in mitochondria transport of hTERC
and the absence of hTERP protein may play a role in the
regulation of signaling pathways and cellular metabolism.

In the current study, we demonstrated that cells deficient in
hTERP exhibited enhanced autophagy under conditions of
AICAR treatment and autophagy was reduced when amino
acids were scarce. Amino acids deprivation leads to mTORC1
inhibition and autophagy stimulation. Meanwhile, AICAR
activates AMPK and induces autophagy (Kim et al., 2016) as a
result of AICAR treatment leading to decreased binding of class
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III phosphoinositide 3 (PI3) kinase to beclin-1, which counteracts
and reverses the positive effect of AMPK activity on autophagy
(Viana et al., 2008). Moreover, AMPK-induced activation of AKT
leads to stimulation of compensatory pro-survival mechanisms
and the inhibition of autophagy (Leclerc et al., 2010; Zhao et al.,
2017). In order to identify the signaling pathway in which hTERP
participated, we analyzed the phosphorylation status of proteins
from signaling pathways regulated by AMPK and AKT in cells
deficient of hTERP under conditions of 2-DG treatment-induced
glycolysis inhibition. This compound is a glucose derivative that
is phosphorylated by hexokinase 2 and produces 2-DG-
phosphate (2-DG-P). The phosphorylated product is then
trapped within the cell and cannot be used in subsequent
steps of glycolysis, resulting in the accumulation of 2-DG-P
and inhibition of hexokinase 2. This results in the inhibition
of glycolysis and depletion of ATP. The depletion of ATP leads to
the activation of AMPK, stimulation of autophagy, and inhibition
of protein synthesis. The 2-DG treatment induces
phosphorylation of AKT and its downstream targets in an
AMPK-independent manner (Zhong et al., 2008).

We observed decreased levels of phosphorylation of AMPK, but
no differences in phosphorylation of AKT. The overexpression of
hTERP-3HA in cells deficient in hTERP resulted in the
phosphorylation of AMPK being restored to wild-type level. In
addition, we observed increased phosphorylation of ULK1 at
Ser757 in hTERP-deficient cells, which is known to occur
during mTORC1 activation and autophagy inhibition. Increased
phosphorylation of ULK1 Ser555 and TSC2 Ser1387, which are
downstream targets of AMPK, were also detected in cells deficient
in hTERP. AMPK and mTOR kinases are involved in regulating
the signaling pathways that control autophagy, protein
biosynthesis, cell growth, and cell proliferation (Mihaylova and
Shaw, 2011; Porta et al., 2014). Furthermore, energy deficiency is

known to stimulate autophagy (Condon and Sabatini, 2019). The
inhibition of glycolysis by 2-DG stimulates AMPK activity, which
results in the activation of autophagy and inhibition of cellular
proliferation (Hardie et al., 2012). Taken together, these data
indicate that hTERP is involved in the regulation of AMPK and
mTORC1 activity.

The design of experiments performed in this study was made
in a way to discriminate between hTERP and hTERC function.
We performed the knockout of short RNA fragment that results
in the absence of hTERP ORF translation, but not eliminate
whole hTERC gene. To restore the level of hTERP in knockout
cells we expressed it from the fragment with the sequence
corresponding to the hTERP ORF, but not the full length
hTERC or hTERC-53. We detected similar effects in
telomerase positive HEK293T and telomerase negative U2OS
cells that use the alternative mechanism of telomere lengthening.
All these arguments strongly argue that indeed protein hTERP is
involved in the regulation of AMPK- and mTORC1-signaling.

Based on our data we propose mechanism of action of hTERP
in AMPK-mTORC1 signaling (Figure 5). We observed
disturbance of the signaling pathway axis. Activation of
AMPK should result in phosphorylation of TSC2 at Ser1387
and inhibition of mTORC1 followed by decreased
phosphorylation of p70S6K1. We demonstrated activation of
mTORC1 and increased phosphorylation of p70S6K1 in cells
deficient or overexpressed hTERP. However, the phosphorylation
of AMPK was decreased in cells deficient by hTERP and
increased when hTERP was overexpressed, but the
phosphorylation status of TSC2 at Ser1387 was the opposite of
the expected. It was decreased in cells overexpressed hTERP and
increased in cells where hTERP was absent. Taken together these
findings we suggest that hTERP regulates the phosphorylation of
TSC2 at Ser1387 by AMPK and its subsequent interaction and

FIGURE 5 | Schematic illustrating the role of hTERP in the regulation of TSC2 phosphorylation at Ser1387 by AMPK.
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activation of Rheb. We propose that hTERP may be involved in
the regulation of interaction between AMPK and TSC2 that leads
to the decreased phosphorylation of the last protein. At the same
time, the absence of hTERP stimulates the protein’s interaction
and phosphorylation of TSC2 leading to the complex
stabilization. Stable interaction of TSC2 with AMPK will lead
to the inability of TSC2 to stimulate the GTPase activity of Rheb
and activation of mTORC1 as a result.

Our findings reveal the connection between telomerase RNA
biogenesis and function in telomerase and beyond and signaling
pathways that is important for metabolism switching associated
with the accelerated proliferation of cells in healthy and
pathological processes. The molecular mechanism of hTERP
function in the regulation of cellular metabolism is a
promising subject for further investigation.
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