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Stem cells maintain a subtle balance between self-renewal and differentiation under the
regulatory network supported by both intracellular and extracellular components.
Proteoglycans are large glycoproteins present abundantly on the cell surface and in
the extracellular matrix where they play pivotal roles in facilitating signaling transduction and
maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles
and their functions in the regulation of stem cell homeostasis, as well as recent progress
and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier
or bio-active molecules in bone regeneration.

Keywords: proteoglycan, glycosaminoglyans, mesenchymal stem cell, stem cell homeostasis, differentiation, self-
renewal, tissue engineering, osteogenesis

INTRODUCTION

Proteoglycans are large glycoproteins that are expressed abundantly on the cell surface and in the
extracellular matrix (ECM) with critical structural and functional roles in tissue development and in
the regulation of various physiological processes. Proteoglycans act as liaisons between the
intracellular and extracellular space by regulating multiple signals (Xie and Li, 2019). As a
consequence, proteoglycans are involved in various physiological processes, such as tissue
morphogenesis (Nakato and Li, 2016), stem cell homeostasis (Kraushaar et al., 2013; Izumikawa
et al., 2014), and the regulation of cellular growth and differentiation (Chen et al., 2007). The
expression patterns of proteoglycans hold temporal and spatial specificity to constantly adapt to
multiple biological environments. The rapid development of glycomic and glycoproteomic analytical
approaches make it possible to mediate the homeostasis of stem cells by determining and exploiting
their functional fragments (Sebastião et al., 2021). In addition, much attention has focused on
utilizing bio-synthesized functional glycosaminoglycan chains (GAGs) that decorate proteoglycans
to synthesize novel biomaterials and scaffolds for tissue regeneration. In this review, we summarize
the structural features and the roles of proteoglycan and GAGs in the regulation of stem cell
homeostasis and outline the application and prospects of proteoglycan/GAGs-derived biomaterials
in bone regeneration.
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STRUCTURAL AND FUNCTIONAL
CHARACTERISTICS OF PROTEOGLYCANS
AND GLYCOSAMINOGLYCANS
Proteoglycans are a unique class of glycoproteins consisting of a
core protein to which one or more GAGs are covalently attached.
They are ubiquitously expressed on cell surfaces and throughout
the ECM of eukaryotic cells (Iozzo and Schaefer, 2015). The
expression of proteoglycans present spatiotemporal features (Gao
et al., 2018; Wu et al., 2020a) during different biological and
pathological processes, such as stem cell homeostasis (Smith et al.,
2011; Mikami and Kitagawa, 2017; Wang et al., 2017; Yasa et al.,
2017), development of tissues and organs (Gualeni et al., 2013),
and cancer initiation and progression (de Wit et al., 2017;
Nagarajan et al., 2018).

GAGs are negatively charged unbranched polysaccharides
with repeating disaccharides. The composition of GAG chains
determines the biological function associated with proteoglycans
(Mikami and Kitagawa, 2017). Different types of sulfated
glycosaminoglycan are covalently attached to their core

proteins by identical linkages via an O-link to serine residues.
Based on the different patterns of their repeating disaccharide,
GAGs can be divided into heparan sulfate (HS), chondroitin
sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS),
hyaluronic acid (HA), and heparin (HEP). Among these types
of GAGs, HA is the only one with a linear and unbranched
backbone consisting of a repeating disaccharide unit composed of
glucuronic acid (GlcA) and N-acetyl-D-glucosamine (GlcNAc)
without any sulfate groups (Figure 1). GAGs undergo extensive
modifications by sulfotransferase and endosulfatase, which gave
rise to various sulfation patterns. HS are linear polysaccharides
composed of GlcA-GlcNAc repeating units and modified by
epimerization (C5-epimerase), sulfation (N-,2-O-,3-O-,6-O-
sulfotransferases), and by desulfation (endosulfatase). Similarly,
CS/DS chains are subjected to marked structural modification by
sulfation and epimerization of the repeating GalNAc-GlcA
disaccharide units. These modifications result in GAGs with
high heterogeneity in terms of chain length and size, sulfation
patterns and degrees (Karamanos et al., 2018) (Figures 1, 2).

In comparison with HS and CS/DS, the repeating disaccharide
units of KS are composed of Gal and GlcNAc (Figure 1). Based
on the different structures in the linkage oligosaccharides, KS can
be further divided in to KS-I, KS-II, and KS-III (Caterson and
Melrose, 2018). The N-linked KS-I is predominantly expressed in
the cornea where it displays variable degrees of sulfation ranging
from non-sulfated polylactosamine, mono-sulfated, and
disulfated disaccharide regions. O-linked KS-II is highly
expressed in cartilage, with a higher degree of sulfation and
disulfated disaccharides interrupted by occasional mono-
sulfated N-acetyllactosamine residues. KS-III is synthesized by
the extension of O-linkedmannose and is mainly expressed in the
brain and is highly sulfated.

Proteoglycans not only act as a matrix framework but also
regulate various signaling cascades governing biological process.
Proteoglycans and glycosaminoglycans have been involved in
multiple cellular signaling pathways (Figure 3). They help shape
the protein diffusion gradient in the ECM through interactions
with various protein ligands. During embryogenesis, proteoglycans
limit the diffusion of extracellular ligands such as Wnt proteins
(Mii and Takada, 2020) and fibroblast growth factor (FGF) (Ornitz
and Marie, 2015; Balasubramanian and Zhang, 2016) from freely
interacting with their receptors. In other conditions, proteoglycans
also serve as co-receptors for growth factors, facilitating signal
transmission. Heparan sulfate proteoglycans (HSPGs) on the cell
surface form a large complex with fibroblast growth factor 2
(FGF2) and fibroblast growth factor receptor 1 (FGFR1) in the
mediation of the FGF2/FGFR/extracellular signal-regulated kinase
1/2 (ERK1/2) signaling pathway (Ornitz, 2000). In addition,
proteoglycans also protect growth factors, cytokines, and
chemokines from proteolysis by binding to them.

Interestingly, both the core protein and GAG units contribute
to the biological activity of proteoglycans. GAGs are widely
studied due to their structural heterogeneity, which endows
them with potential diversity in modulation of biological
processes. Defects in GAGs biosynthesis have been associated
with human congenital diseases and disorders such as skeletal
and connective tissue dysplasia (Soares da Costa et al., 2017) and

FIGURE 1 | Structures of GAGs and their modification. HA, hyaluronan;
HS, heparan sulfate; Hep, heparin; CS, chondroitin sulfate; DS, dermatan
sulfate; KS, keratan sulfate; 2S, 2-O-sulfation; 6S, 6-O-sulfation; 3S, 3-O-
sulfation; 4S, 4-O-sulfation; NS, N-sulfated glucosamine.
Monosaccharides in this figure are represented in accordance with the symbol
nomenclature for glycans (SNFG) (Varki et al., 2015).
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disturbed embryonic development in several animal models
(Vogel et al., 2012). Currently, genetic modifications have been
the most popular and useful tool for elucidating the functions of
GAGs in mediating stem cell development and differentiation.
Ext-1−/− ESCs and GlcAT-1−/− ESCs failed to differentiate and
maintained pluripotency, indicating that HS and CS/DS play an
essential role in mediating stem cell lineage commitment
(Kraushaar et al., 2010; Izumikawa et al., 2014). Attenuated
differentiation was also observed in Ndst1/2−/− ESCs which
lacked the N-sulfation of HS (Lanner et al., 2010; Forsberg
et al., 2012). Although genetic modifications helped to unveil
the roles of GAGs to some extent, synergistic effects and
compensation mechanisms between different proteoglycans
and GAGs suggested a higher complexity of GAGs-mediated
stem cell behaviors (Corsi et al., 2002; Wadhwa et al., 2007;
Bachvarova et al., 2020). To better decipher the specific sulfation
pattern of proteoglycans, chemical, and enzymatic synthesis of
GAGs (DeAngelis et al., 2013; Gottschalk and Elling, 2021) with
well-defined structures as well as characterization techniques
such as nuclear magnetic resonance spectroscopy (NMR),
surface plasmon resonance (SPR), and chromatography have

been utilized to better understanding the binding interactions
between protein ligands and GAGs (Li et al., 2016; Pomin and
Wang, 2018; Vallet et al., 2021). These chemoenzymatically
synthesized GAGs have mainly been used for exogenous
addition to cellular and animal models with the objective to
determining how GAGs interact with growth factors in vitro and
in vivo. Linhardt and his group have developed a rapid and
convenient method that utilized heparin chip and SPR to reveal
the binding kinetics and affinities of hep with different growth
factors including FGFs, HFG and TGF β-1 in vitro. This method
also allows efficient exploration of GAGs chain-size dependence
and the effect of heparin sulfate group in growth factor
interaction (Zhang et al., 2009a; Zhang et al., 2019).

By systematic knockout and/or knock-in of the genes
encoding the enzymes in proteoglycans biosynthesis,
researchers have successfully constructed cell libraries
presenting distinct glycosaminoglycans with a broad repertoire
of modifications (Chen et al., 2018; Qiu et al., 2018). This has
enabled the exploration of the structure-function relationships of
GAGs in cell lines. Through mutant cell libraries of mouse lung
endothelial cells (MLEC) and Chinese hamster ovary cells

FIGURE 2 | The biosynthetic pathways of heparan sulfate and chondroitin sulfate/dermatan sulfate. HS, heparan sulfate; CS, chondroitin sulfate; DS, dermatan
sulfate; 2S, 2-O-sulfation; 6S, 6-O-sulfation; 3S, 3-O-sulfation; 4S, 4-O-sulfation; NS, N-sulfated glucosamine. XylT1/2, xylosyltransferase 1/2; FAM20B, family with
sequence similarity member 20-B; PXYLP1, 2-phosphoxylose phosphatase; GalT-I, galactosyltransferase-I; GalT-II, galactosyltransferase-II; GlcAT-Ⅰ,
glucuronyltransferase-Ⅰ; EXT1, exostosin glycosyltransferase 1; EXT2, exostosin glycosyltransferase 2; EXTL1, exostosin like glycosyltransferase 1; EXTL2,
exostosin like glycosyltransferase 2; EXTL3, exostosin like glycosyltransferase 3; NDST1, N-sulfotransferase; NDST2, N-sulfotransferase 2; NDST3, N-sulfotransferase
3; NDST4, N-sulfotransferase 4; HS6ST1, heparan sulfate 6-O-sulfotransferase 1; HS6ST2, heparan sulfate 6-O-sulfotransferase 2; HS6ST3, heparan sulfate 6-O-
sulfotransferase 3; HS3ST1, heparan sulfate 3-O-sulfotransferase 1; HS3ST2, heparan sulfate 3-O-sulfotransferase 2; HS3ST3a, heparan sulfate 3-O-sulfotransferase
3a; HS3ST3b, heparan sulfate 3-O-sulfotransferase 3b; HS3ST4, heparan sulfate 3-O-sulfotransferase 4; HS3ST5, heparan sulfate 3-O-sulfotransferase 5; HS3ST6,
heparan sulfate 3-O-sulfotransferase 6; GLCE, C-5 epimerase; HS2ST, heparan sulfate 2-O-sulfotransferase; GalNAcT- I, GalNAc transferase-I; GalNAcT- IIs, GalNAc
transferase-II; GlcAT- II,β1,3-glucuronyltransferase- II; C4ST, chondroitin 4-O-sulfotransferase; C6ST,; GalNAc4S-6ST,; UST, uronyl 2-O-sulfotransferase; DSE1, DS
epimerase1; DSE2, DS epimerase2; D4ST, dermatan 4-O-sulfotransferase; GalNAc4S-6ST, GalNAc 4-sulfate 6-O-sulfotransferase. Monosaccharides in this figure are
represented in accordance with the symbol nomenclature for glycans (SNFG) (Varki et al., 2015).
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(CHO), Qiu et al. (2018) and Chen et al. (2018) determined that
N-sulfation and 2-O-sulfation of HS are critical for FGF2 binding
and that the overall sulfation level was more important than the
sulfate pattern for FGF2-FGFR1 signaling.

By assembling specifically labeled GAGs on proteoglycans in
living cells, Wang et al. (2020) revealed the irreplaceable role of
HS in the formation of the glypican-3-frizzeld-7 complex, which
plays a vital in regulating Wnt signaling. Collectively, the
structural and compositional features of GAGs greatly
influence the biological functions of proteoglycans and their
ability to mediate signaling transduction. However, cell-based
libraries only provide information using specific cell-types such as
immortalized CHO cells and MLEC. Whether such structure-
relationships also apply to other mammalian cells remains
unclear. To provide a more comprehensive and systematic
view of GAGs-mediated regulation of signaling transduction,
further studies should be undertaken to investigate the
structure–function relationship of glycosaminoglycans in more
physiologically relevant cells.

DISTINCT PROTEOGLYCAN EXPRESSION
PATTERNS DURING STEM CELLS
DEVELOPMENT
Stem cells are characterized by their unique ability to self-renew
and differentiate into specialized cells (Yamanaka, 2020). There

are various sources of stem cells with varying potencies.
Pluripotent cells are embryonic stem cells (ESCs) derived
from the inner cell mass of embryos and induced pluripotent
cells are formed by reprogramming of somatic cells. They can
differentiate and form tissues of all three germ layers. In
addition, multipotent stem cells are characterized by less
potency compared to ESCs as they are derived from a single
germ layer, such as mesenchymal stem cells (MSCs), which can
differentiate along adipose, bone, and cartilage lineages. In
addition, oligopotent stem cells exist in different tissues to
form terminally differentiated cells of a specific tissue (Vats
et al., 2005). The homeostasis of stem cells requires tight
regulation by a precise intra/extracellular signaling network.
Accumulated evidence has demonstrated that intracellular
mediators such as growth factors, morphogens, non-coding
RNAs, and transcription factors are involved in the
controlled equilibrium between quiescence and activation of
stem cells (Sarkar and Hochedlinger, 2013; Garg et al., 2017;
Fico et al., 2019). Furthermore, extracellular factors including
signaling molecules, metabolites, environmental cues active in
the stem cell niche also contribute to the maintenance of stem
cell homeostasis (Morrison and Spradling, 2008; Ryall et al.,
2015). Moreover, the molecular mechanisms that govern the
self-renewal and differentiation of stem cell regulation is highly
cell-specific. The spatial and temporal context of a stem cell
greatly determines how the cell interprets the messages of
signaling molecules and the potentiation of downstream

FIGURE 3 | Roles of proteoglycans in stem cell homeostasis.
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signal transduction (Kléber and Sommer, 2004; Varga and
Wrana, 2005; Watabe and Miyazono, 2009; Semba et al.,
2020). Thus, substantial researches have demonstrated a
complex regulatory network of stem cell homeostasis and is
highly dependent on the spatio and temporal context. Despite
the significant advances in stem cell biology, relatively little is
known about the biological role of proteoglycans that are
present within the stem cell niche and serve as crucial
mediators for transmitting extracellular cues into the
intracellular responses.

A comprehensive insight into the biological functions of
proteoglycans in stem cell homeostasis and differentiation will
provide essential knowledge to better understand the dynamics of
cell fate specifications, and to establish improved stem cell-based
medical applications.

Embryonic Stem Cells
ESCs are pluripotent stem cells characterized by indefinite
proliferation and potential for differentiation into the cell
types constituted by the three embryonic germ layers,
providing an unlimited supply of cell resources for tissue
regeneration in vitro (Yamanaka, 2020). When removed from
feeder layers and transferred to suspension cultures, ESCs begin
to differentiate into multicellular aggregates, termed embryoid
bodies (EBs), which will later differentiate into three embryonic
germ layers and give rise to terminally differentiated cells such as
osteoblasts and hepatocytes under specific culture conditions
(Murry and Keller, 2008).

Understanding the expression patterns of GAGs and core
proteins is the first step in determining how these might
function during stem cell differentiation. Narin et al. (2007)
observed significant content and composition changes of both
core proteins and GAGs during differentiation of ESCs. The
authors reported that during the initial differentiation into EBs,
the expression levels of proteoglycans core proteins increased
(by > 10-fold) in 39% remained unchanged in 56%, and
decreased in 6% of the core proteins detected. Further, the
most striking increase was observed in glypican-5 (by 100-fold)
(Nairn et al., 2007), a type of HSPG located on the cell surface,
which have recently found to bind and sequester Shh in the
ECM to form a graded distribution of Hh essential for
embryogenesis (Guo and Roelink, 2019, 5). Apart from core
proteins, HA presented a 13-fold and 24-fold upregulation
during ESC differentiation into the extraembryonic ectoderm
(ExE) and EBs. CS/DS synthesis was elevated by 6-fold, 4-fold
higher in the ExE and EBs. HS synthesized by the ExE and EBs
was 5-fold and 8-fold higher respectively, compared to ESCs
(Nairn et al., 2007). In addition, GAGs sulfation also undergoes
strict regulation during ESCs differentiation. Sulfotransferases
such as NDSTs, HS6ST, HS3ST, UST, CHST11, CHST12, and
D4ST1 were upregulated, which is suggestive of increased
synthesis of highly sulfated GAGs such as CS-E, highly
sulfated HS, and enhanced 2-sulfation of both CS/DS and
HS during ESCs differentiation (Nairn et al., 2007).
Similarly, Fujitani et al. (2013) also confirmed the positive
role of GAGs sulfation during stem cell differentiation.
Their results demonstrated that hESCs and hiPSCs produced

significantly more nonsulfated/low-sulfated GAGs including
nonsulfated chondroitin (CS-0S), nonsulfated heparan (HS-
0S), 2- and/or 4-sulfated chondroitin (CS-2S4S, CS-2S, and CS-
4S), and N- or 6-sulfated heparan (HS-6S and HS-NS) than in
non-stem cells.

In the neural differentiation of ESCs towards Sox1+ neural
progenitor cells (NPCs), a comparison of the disaccharide
composition of HS from ESCs and NPCs showed a dramatic
increase in the amounts in N-sulfation, 6-O-sulfation, and 2-O-
sulfation which was in good agreement with the significant
increased mRNA levels of NDST4 (by 9000-fold), NDST3 (by
18-fold), 6OST-2 (by2.7-fold) and 6OST-3 (by 8-fold) expression
(Johnson et al., 2007).

GAGs profile is highly dynamic during stem cell differentiation
as demonstrated by previous researches. As the roles of GAGs and
how it affects stem cell behaviors are also cell-type specific.
Whether GAGs exert differential roles in different stem cells
remain unclarified. However, current studies are insufficient as
most results only reflected the transcript level of GAGs biosynthetic
enzymes during different differentiation process. Glycomic
analysis of stem cells in different lineage specification will
provide the foundation for understanding the distinct roles of
GAGs in different stem cells under specific physiological context.

Mesenchymal Stem Cells
MSCs are one of the most popular adult stem cells with
advantages including noninvasive sampling, sufficient supply,
and fewer ethical concerns (Grayson et al., 2015; Abdel
Meguid et al., 2018). Thus, MSCs have been widely applied in
the treatment of different diseases and represents an attractive cell
source for bone regeneration.

The expression of proteoglycans exhibits distinct
spatiotemporal patterns during osteogenic differentiation.
Upon osteogenic differentiation, HSPGs including syndecans
(syndecan-1,-2,-3, and -4), glypican-1, glypican-3, and
glypican-4 showed increased transcript levels, whereas only
minimal increases were observed in chondroitin sulfate
proteoglycans (CSPGs)/dermatan sulfate proteoglycans
(DSPGs) including decorin (DCN), biglycan (BGN) as 2-O-
sulfation and 6-O-sulfation of HS under osteogenesis as
expression of N-sulfotransferase1/2 (NDST1/2), heparan
sulfate 2-O-sulfotransferase (HS2OST) and heparan sulfate 6-
O-sulfotransferase (HS6OST) increased under osteogenic
induction (Haupt et al., 2009, 3). Zhao et al. also showed
marked upregulation of heparan sulfate 6-O-sulfotransferase-3
(HS6ST3), which encoded enzymes that performed sulfation at
the 6-O position in glucosamine in HS (Zhao et al., 2015). These
data displayed a distinct profile of proteoglycans/GAGs profile in
stem cells. Most analyses have been limited to transcriptomic
analysis in proteoglycans biosynthesis, but these data may not
reflect the true activity of core proteins as well as the exact
composition of GAGs. Further study utilizing large-scale
proteomic methods and advanced glycomic tools should be
undertaken to provide better information to better understand
distinct proteoglycans profiles as well as the regulation of
proteoglycans synthesis during stem cell development (Li
et al., 2016; Wu et al., 2019).
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Other Stem Cells
The dynamic profile of proteoglycans along with their sulfation
patterns are also observed in other stem cells. Expression of
several core proteins and their sulfotransferases exhibited
significant changes in neural stem cells (NSCs) and
differentiated neural cells. Upregulation of several HSPGs
including syndecan-4, glypican-1, CSPGs including aggrecan
and decorin was observed in the neuronal differentiation.
Glypican-4 and glypican-6 mRNA were upregulated in
astrocyte differentiation (Oikari et al., 2016). Apart from the
expression profile of core proteins, biosynthetic enzymes of
GAGs also indicates that sulfation patterns are different
between undifferentiated and differentiated NSCs. In the
differentiated neural cells, 2-O-sulfation increased as
demonstrated by the higher expressions of uronyl 2-O-
sulfotransferase and C5-epimerase mRNAs than NSCs. In
contrast, 4-O-sulfation and 6-O-sulfation were lower than
NSCs suggested by the decreased transcript level of
chondroitin 4-O-sulfotransferase, chondroitin 6-O-
sulfotransferase, and N-acetylgalactosamine 4-sulfate 6-O-
sulfotransferase (Yamauchi et al., 2011). In situ hybridization
also confirmed the expression of these enzymes in cells residing in
adult neural stem cells niche. In order to provide a more direct
and detailed profile of GAGs sulfation, (Akita et al., 2008)
performed disaccharide analysis of neurospheres and E13
mouse brain cells and demonstrated that the synthesized CS/
DS chains contained significant percentage of disaccharide units
with 4-O-sulfation (Over 50%) and 6-O-sulfation. Functionally,
degradation of CS by enzymatic treatment with ChABC led to
reduced differentiation of radial glia to neurons as well as self-
renewing radial glia (Sirko et al., 2007). Inhibition of GAGs
sulfation by sodium chlorate also resulted in decreased
number and size of neurospheres and disrupted cell cycle
progression of NSCs (Akita et al., 2008; Schaberg et al., 2021).
These results provide direct evidence that GAGs sulfation are
essential regulator of NSCs homeostasis. Moreover, simple
addition of specific GAGs chains (CS and Hep) failed to
restore the normal size and number of neurospheres. These
findings highlight that endogenous sulfation orchestrated by
numerous enzymes allows for adaptive modification and plays
an irreplaceable role in NSCs homeostasis.

Hematopoietic stem cells are capable of producing all blood
cell lineages, which is essential for tissue regeneration (Pouzolles
et al., 2016). Proteoglycans are key regulators of hematopoietic
stem cell niche and modulate hematopoietic progenitor cell
functions including adhesion, survival by binding and
localizing growth factors to specific niches within the
hematopoietic microenvironment (Siczkowski et al., 1992;
Bruno et al., 1995). Several studies have confirmed that highly
sulfated HS especially the N-sulfate rich domains are essential for
hematopoiesis (Gallagher et al., 1983; Turnbull and Gallagher,
1988).A recent research demonstrated that exogenous 6-O-
sulfate-rich bone marrow stromal cell-derived HS variant is
capable of maintaining a subset of primitive HSCs during ex
vivo expansion with improved clonogenicity and an increased
potential to form erythroid and granulocyte progenitors
(Bramono et al., 2011). Although current results indicates that

GAGs are important in shaping the hematopoietic
microenvironment, studies remain to be performed to better
understand the fine regulation of GAGs structures including
the developmentally orchestrated regulation of the biosynthetic
enzymes and chains modifications during the homeostasis of
hematopoietic stem cells. Furthermore, the results from different
stem cells show that sulfated GAGs have distinct cell-specific
roles in mediating the homeostasis of stem cells. For example,
adequate sulfation level is required for NSCs to maintain self-
renewal. Conversely, ESCs synthesize relatively low-sulfated
GAGs and required sulfated GAGs to exit from self-renewal
and commit lineage specification. Deciphering the cell-specific
mechanisms of GAGs will provide more insight in the
commitment of stem cell fate.

PROTEOGLYCANS MODULATE STEM
CELL SELF-RENEWAL
GAGs Sulfation Influences Stem Cell
Self-Renewal
Sulfation is a dynamic posttranslational modification; GAG
sulfation patterns specifically affect the stemness of different
stem cells. ESCs niches are distinguished by the presence of
low-sulfated GAGs, whereas the sulfation level remarkedly
increases as they undergo differentiation. Low-sulfation HS is
mainly located on pluripotent cells, whereas highly sulfated HS is
associated with differentiated cells (Kraushaar et al., 2013). Ext-
1−/− ESCs (Kraushaar et al., 2010, 2012) and Ndst1/2−/− ESCs
(Forsberg et al., 2012) were able to maintain in an
undifferentiated state after long-term culture. There are also
conflicting results observed in an Ext1 knockdown ESCs cell
lines prepared by RNA interference (RNAi), whereby HS
deficiency showed suppressed potential for self-renewal and
proliferation (Sasaki et al., 2008). These contradictory findings
may be attributed to differences in the Ext1 knockdown efficiency
between these methods because there was still a small amount of
residual HS-positive ESCs detected in the Ext1 knockdown group.
Also, the undersulfation of DS resulted in reduced activity of self-
renewal marker alkaline phosphatase of D4ST1 KD mESCs,
suggesting that sulfation contributes to the undifferentiated
state of mESCs (Ogura and Nishihara, 2021). The currently
available research does not provide detailed analysis of GAGs
profiles including changes in GAGs composition and content.
Thus, the potential requirement of a threshold HS/CS ratio or a
proper ratio of HS/CS in maintenance of ESCs self-renewal
cannot be ruled out.

ESCs are arrested in a naïve state and fail to exit from self-
renewal in the presence of GAGs deficiency, while sulfated GAGs
can facilitate GAG-deficient ESCs to exit from self-renewal.
Exogenous treatment with HS or Hep were effective in
rescuing the differentiation potential of ESCs along the neural
and hematopoietic lineages. Sulfation is essential for restoring
ESCs differentiation potential since no significant effect was
detected compared to the control group (Ext1−/− ESCs with no
treatment) when desulfated HS or Hep was added. These results
support the hypothesis that the pro-differentiation ability of HS
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and Hep are sulfation-dependent (Holley et al., 2011; Pickford
et al., 2011).

Specific sulfation patterns of GAGs are vital for promoting
different lineage commitment of ESCs. For example, N-sulfation
is vital for the neural specification of ESCs. Hep and HS can partially
restore the percentage of Sox1+ NPCs by nearly 60%. Conversely,
N-desulfated Hep was able to inhibit Sox1 acquisition by more than
20%, indicating the importance of the N-sulfate groups of Hep in
promoting neural differentiation. Pickford et al., 2011). Similarly,
N-sulfation and 6-O-sulfation of Hep were critical for hematopoietic
differentiation of ESCs (Holley et al., 2011). Therefore, sulfated
GAGs and their specific sulfation patterns are essential to allow
ESCs to exit from self-renewal and commit to lineage specification.

Compared with ESCs, MSCs are multipotent and have a
limited capacity for self-renewal. These fundamental
differences indicate that they are mediated by a distinct
regulatory network (Kléber and Sommer, 2004; Varga and
Wrana, 2005; Semba et al., 2020). Therefore, the roles of
GAGs and their sulfation in MSCs may differ from that of
ESCs. Likewise, sulfation also affects the stemness of MSCs.
HA, with no sulfate groups, was abundantly present in the
MSCs niche (Qu et al., 2014) and prolonged the longevity of
mouse MSCs (Chen et al., 2007). hMSCs cultured on HA-coated
surfaces maintained high expression level of stemness markers
(CD105, CD90) after a prolonged culture, and could preserve the
differentiation potential up to 19 passages (Wong et al., 2017).
However, unlike ESCs, highly sulfated GAGs were not inhibitors
of MSCs self-renewal. For example, HS8, a HS variant with high
affinity toward FGF-2, was decorated with 6-O-SO3 and bound
and stabilized endogenous FGF2 to promote the proliferation of
hMSCs through the FGFR1 signaling pathway. In vitro
supplementation of HS8 upregulated the expression of genes
preventing cells from aging (CD74, CCL2, FANCD2, MDM2,
SPRY2) and downregulated the expression of genes inhibiting cell
proliferation (SULF2, CDKN2B), maintaining the stemness and
potency of hMSCs (Ling et al., 2020).

Briefly, GAGs and their sulfation patterns are critical for the
homeostasis of both ESCs and MSCs. However, as the intrinsic
nature of ESCs and MSCs differs, the underlying molecular
mechanisms governing these two types of stem cells are
distinct and cell-specific (Bhaskar et al., 2014; Huang et al.,
2015). For example, FGF-2 functions as an inducer of
differentiation in ESCs. Elevated sulfation of GAGs enabled
better formation of the HS/FGF/FGFR complex and
downstream signaling transduction, which ultimately led to
differentiation of ESCs. Conversely, FGF-2 serves as potent
stimulator for proliferation in MSCs. Thus, enhanced binding
of HS with FGF-2 promoted proliferation in MSCs (Wijesinghe
et al., 2017). Also, whether there are differential roles for
endogenous and exogenous GAGs in different stem cell types
remains unclear. In ESCs, studies have used gene knockout to
evaluate the role of endogenously expressed GAGs. The
phenotypes of these GAGs-deficient ESCs can be rescued by
exogenous treatment of GAGs, indicating the possibility that
endogenous and exogenous GAGs exert similar roles in ESCs
homeostasis. In MSCs, only a few studies have constructed
GAGs-deficient models using GAGs enzymatic depletion,

whereas the role of exogenous GAGs is widely studied as a
coating materials or culture adjuvant which is usually modified
with a specific sulfation pattern (Manton et al., 2007; Wijesinghe
et al., 2017). Therefore, the currently available studies are
insufficient to determine whether exogenous and endogenous
GAGs exert a differential effect on different stem cells types as
well as whether they act on stem cells via different mechanisms.

GAGs-Regulated Signaling Transduction in
Stem Cell Self-Renewal
Accumulating evidence has suggested that GAGs regulate stem cell
homeostasis by continuously adapting their structures to selectively
bind to signaling molecules (Table 1). The intricate structure of
GAGs endows them with this essential biofunction. Ext-1−/− ESCs
were not capable of exiting from self-renewal due to HS deficiency
(Kraushaar et al., 2010), which resulted in hypoactivation of FGF-
FGFR signaling. This was further supported by a successful
replication of the Ext-1−/− ESCs phenotype in an FGF-inhibited
cell model. The inhibition of FGF induced phosphorylation of
ERK1/2 was also observed when the HS antagonist surfen
(Huang M. L. et al., 2018) or the sulphate inhibitor NaClO3- was
applied (Lanner et al., 2010). Conversely, supplementing exogenous
HS can stimulate stem cells to produce more FGF-2. Exogenous HS-
8, which is characterized by high affinity with FGF-2, can bind to
FGF-2 quickly by competing with endogenous HS, enabling FGF-2
to spread to other cells and exert its biological activity (Titmarsh
et al., 2017).

As two major categories of HS proteoglycans, sydencans and
glypicans participate in the regulation of FGF2 signaling by
stabilizing the molecular assembly of growth factors with their
receptors (Smock and Meijers, 2018). Specific sulfation groups of
HS such as NS and 2S residues lay the foundation for the
assembly of HS with FGF2, while the 6S residue is the key to
facilitating the bond between FGF2 with FGFR1 and subsequent
activation of downstream intracellular signaling (Yamada et al.,
2017; Qiu et al., 2018). N-sulfation of GAGs plays a vital role in
the regulation of fibroblast growth factor 4 (FGF4) signaling.
Ndst-1/2−/− ESCs were unable to bind to FGF4, resulting in
decreased ERK1/2 phosphorylation and self-renewal
dysfunction due to the lack of N-SO3 (Lanner et al., 2010). In
addition to the FGF family, it has been proposed that GAG chains
participate in the regulation of Wnt signaling via a restricted
diffusion mechanism, in which Wnt ligands are bound by HS
chains and transported by repeated association and dissociation
(Wang et al., 2019). Endosulfatase selectively removes the 6-O-
sulfate groups from HS proteoglycans and release Wnts for
binding with Frizzled and the low density lipoprotein receptor
related proteins 5/6 (LRP5/6) receptor, thereby activating the
subsequent signaling. The accumulation of β-catenin inside the
cell nucleus maintains the stemness and potency of MSCs (Dhoot
et al., 2001; Morimoto-Tomita et al., 2002; Ai et al., 2003).

As such, substantial studies have revealed that proteoglycans
and GAGs modulate stem cell behavior through their interaction
with growth factors and their corresponding receptors in multiple
signaling pathways. Exogenous addition of GAGs of different
sulfation patterns showed differential effects in restoring the
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lineage specification potential of Ext1−/−ESCs. The exogenous
addition of modified Hep and HS indicated that the N-sulfation is
vital for promoting the percentage of Sox1+ NPCs (Pickford et al.,
2011). Moreover, Ext1−/−ESCs were unable to differentiate into
hematopoietic lineages partially due to an impaired response to
BMP4. Using a range of chemically modified Heps, Holley et al.
(2011) determined that N-sulfation and 6-O-sulfation of Hep was
critical for rescuing the potential for hematopoietic
differentiation of Ext1−/−ESCs. Also, Hep addition restored the
activity of multiple signaling pathways including BMP with
activation of pSMADs, highlighting a critical role for HS as a
co-receptor in the BMP4 signaling pathway. These results
indicated that modifications of GAGs are essential for stem
cell differentiation since they are critical for interacting with
growth factors that trigger or activate the differentiation process.
However, due to the structural heterogeneity of GAGs, greater
efforts should be undertaken to better demonstrate the role of
different types of GAGs in facilitating or inhibiting a specific
signaling pathway. Moreover, the roles of sulfate groups as well as
endosulfatases in shaping GAGs sulfation and their subsequent
influence on stem cell pluripotency also awaits further
exploration.

PROTEOGLYCANS MODULATE THE
OSTEOGENIC DIFFERENTIATION OF
MESENCHYMAL STEM CELLS
Proteoglycans are closely related to the development and
regeneration of bone tissue. A large number of studies have
observed that DCN, BGN, perlecan (PLN), and aggrecan are

widely and differentially expressed in different stages of bone
tissue development (Kamiya et al., 2001; Domowicz et al., 2009;
Ishijima et al., 2012). The complete structure and function affect
complex bone tissue development and its regulation network. The
regulatory role of core proteins has been elucidated from
proteoglycan-deficient animal models that exhibited reduced
skeletal growth and bone mass, in addition to abnormalities in
collagen fibrils (Table 2). Moreover, core proteins widely
participate in osteogenic differentiation of MSCs by mediating
multiple signaling pathways including transforming growth
factor-β (TGF-β), bone morphogenetic protein (BMP) and
Wnt pathways (Table 3.). Furthermore, GAGs are also highly
involved in osteogenesis., Liu et al. (2018) observed abnormal
development of craniofacial bone characterized by deficient bone
mineralization and significantly enlarged cranial sutures by
constructing a GAGs-deficient mouse model, in which they
specifically knocked out FAM20B gene in neural crest derived-
MSCs. The exogenous addition of GAGs enhanced the osteogenic
differentiation of MSCs, resulting in upregulation of osteogenic
markers (Uygun et al., 2009) and accelerated bone healing
processes (Förster et al., 2017). These studies suggested that
the multiple functions of proteoglycans are related to both its
core protein and GAGs. However, the roles of GAGs are far more
complex.

To determine the contribution of GAGs to the functional
properties of proteoglycans in vivo, Moffatt et al. (2017) generated
a mutant mouse whose DCN lacked a DS chain by substituting an
alanine for serine at the DS attachment site of DCN. Surprisingly,
the body size and limb length were similar between groups. All
connective tissues appeared to be normal upon histological
examination and no abnormalities were found in the structure

TABLE 1 | Phenotypes of proteoglycan-deficient stem cells.

Cell type Proteoglycans
affected

Phenotype Mechanism (References)

Ext-1−/− ESCs HSPGs When cultured with no or low concentration of leukaemia
inhibitory factor (LIF), Ext-1−/− ESCs maintained the typical
morphology of ESCs, high ALP activity and high expression
of the pluripotency geneNanog and were unable to exit from
self-renewal

FGF and BMP signaling (Kraushaar et al., 2010,
2012)

GlcAT-I−/− ESCs HSPGs, CSPGs,
DSPGs

GlcAT-I−/− ESCs failed to initiate differentiation and showed
higher expression of two pluripotency genes Nanog and
Sox2 than GlcAT-I+/- ESCs and GlcAT-I+/+ ESCs

CS colocalizes with and
binds to E-cadherin

Izumikawa et al. (2014)

Ndst1/2−/−ESCs Sulfated
proteoglycans

Ndst1/2−/−ESCs can take the initial step toward
differentiation into all three germ layers but were arrested in a
primitive ectoderm and/or endoderm stage

FGF signaling Lanner et al. (2010);
Forsberg et al. (2012)

Ndst1/2−/−ESCs blocked differentiation and were
maintained in a naïve state

FGF4 signaling

Ext-1 knockdown cancer
stem cells

HSPGs Knockdown of Ext-1 in MCF7/ADR cells significantly
reduced cancer stem cell markers, mammosphere number
and the colony formation ability

FGF4 signaling Manandhar et al. (2017)

Ext-1−/− prostate stem/
progenitor cells (PrSCs)

HSPGs Deletion of Ext-1 in PrSCs disrupted their ability to self-
renew and attenuated prostate regeneration

TGF-β signaling Rai et al. (2020)

Surfen treated ESCs HSPGs Surfen treated ESCs were arrested in their pluripotent state
due to decreased binding sites for growth factors within their
GAG chains

FGF2/MAPK, RTK, and
VEGF signaling

Huang et al. (2018b)

HSPGs, heparan sulfate proteoglycans; CSPGs, chondroitin sulfate proteoglycans; DSPGs, dermatan sulfate proteoglycans; FGF, fibroblast growth factor; BMP, bone morphogenetic
protein; FGF4, fibroblast growth factor 4; FGF2, fibroblast growth factor 2; TGF-β, transforming growth factor-β; MAPK, mitogen-activated protein kinase; RTK, receptor tyrosine kinase;
VEGF, vascular endothelial growth factor.
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TABLE 2 | Proteoglycans deficient animal models with skeletal phenotypes.

Proteoglycan Phenotype
in hard tissues

(Refs.)

Decorin (DCN) No significant change in the skeletal systemwas found inDcn−/−mice Corsi et al. (2002) nor mutant mice with no
DS chains attached to Dcn Moffatt et al. (2017). However, abnormalities of collagens fibril in bone were
observed including decreased diameter and size of collagens fibrils

(Corsi et al., 2002; Moffatt et al.,
2017)

Biglycan (BGN) Disruption of biglycan gene resulted in reduced skeletal growth and bonemass leading to osteopenia Corsi et al.
(2002)

Corsi et al. (2002)

Decorin, Biglycan Dcn/Bgn double-knockout mice exhibited a more striking and early appearing skeletal phenotype including
shorter and wider long bones and marked osteopenia which was barely detectable in single mutant animals but
was markedly detectable in double-knockout mice at 2 months of age. Reduced overall collagen mass was
observed in bone Corsi et al. (2002)

Corsi et al. (2002)

Fibromodulin The lack of fibromodulin impaired dentin mineralization, increased the diameter of collagen fibrils in the predentin
and delayed enamel formation

Goldberg et al. (2006)

Glypican-3
(GPC-3)

GPC3-knockout mandibles were larger than wild-type mandibles for all dimensions Mian et al. (2017)

TABLE 3 | Proteoglycans are involved in osteogenic differentiation.

Proteoglycan Role in osteogenic
differentiation

(Refs.)

Glypican-3 Increased expression of the GPC-3 core protein was observed during the osteogenic
differentiation of MC3T3-E1 cells. Gpc3 knockdown abrogated the expression of
Runx2 and thereby suppressed osteogenic differentiation of MC3T3-E1 cells

(Haupt et al., 2009, 3)

Perlecan (PLN) Exogenous addition of PLN promoted osteogenic differentiation of MSCs whereas
blocking of intrinsic PLN resulted in reduced calcium apposition

Nakamura et al. (2014)

Biglycan Overexpression of BGN promoted the osteogenic differentiation of MSCs as
evidenced by increased ALP activity and upregulated expression of osteoblast specific
marker genes such as Runx2, OCN, and Col1 through activation of TGF-β signaling
pathway Wu et al. (2013)

Chen et al. (2004); Wang et al. (2010);
Wu et al. (2013)

BGN promoted osteoblast differentiation through ERK activated Runx2 pathway, and
through the Smad signaling pathway. Overexpression of BGN in MC3T3-E1 cells also
promoted mineralization Wang et al. (2010)
BGN has also been reported to promote bone morphogenetic protein-4 (BMP-4)
stimulated osteoblastic differentiation via its GAGs chains. BGN deficiency caused less
BMP-4 binding and reduced core-binding factor α1 (Cbfa1) expression and ultimately
affected osteoblast differentiation (Chen et al. (2004), 4)

Decorin Overexpression of Dcn in MC3T3-E1 resulted in delay of mineralization and thinner
collagen fibril whereas silencing Dcn led to accelerated mineralization and a greater
number of mineralized nodules, and thicker collagen fibril with larger diameters and
irregular direction

Mochida et al. (2009)

Keratocan (KERA) Kera−/− primary calvarial cell showed reduced expression of mature osteoblast
differentiation markers, such as BSP and OCN. And Kera−/− mice had a significantly
decreased rates of bone formation and mineral apposition

Igwe et al. (2011)

Proline/arginine-rich end leucine-rich
protein (PRELP)

The expression of PRELP increased with the osteogenesis induction of
preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA
reduced ALP activity, mineralization, and expression of osteogenic marker gene
Runx2 and suppressed osteogenic differentiation

Li et al. (2016)

Osteoadherin (OSAD) OSAD was upregulated during osteogenic differentiation of hMSCs (Im et al., 2016).
Overexpression of OSAD resulted in an increase of osteoblast differentiation features,
such as increased ALP activity and increased in vitro mineralization. This suggested
that OSAD overexpression enhanced the differentiation and maturation of osteoblasts

Rehn et al. (2008)

Osteoglycin (OGN) Overexpression of OGN promoted osteogenic differentiation as evidenced by the
increased levels of Wnt5b, Runx2, OCN, ALP and Col1 as well as bone formation
Chen et al. (2017), suggesting that OGN might positively promote osteogenic
differentiation

Im et al. (2016)

OGN stably overexpressed in MC3T3-E1 cells showed significantly decreased level of
Runx2 and Osterix expression, indicating that OGN might serve as suppressor for
early differentiation of osteoblastic progenitors Im et al. (2016)

Chen et al. (2017)

Betaglycan The disruption of betaglycan in MSCs completely blocked osteogenic differentiation
via elevated Wnt signaling

Cook et al. (2019)

Runx2, runt-related transcription factor 2; OCN, osteocalcin; COL1, collagen type 1; ALP, alkaline phosphatase; BSP, bone sialoprotein; TGF-β, transforming growth factor-β.
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of collagen fibrils (Moffatt et al., 2017). The findings suggested
that there was a compensatory mechanism between
proteoglycans, which explained the discrepancies in
phenotypes between mutant mice lacking the DS chains on
DCN and GAGs-deficient mice. This compensatory
mechanism has been mostly studied between the two SLRPs
members DCN and BGN. Bgn/Dcn double-deficient mice have a
more severe phenotype in both the long bone and skin compared
to wildtype or singly deficient SLRP mice. Bgn/Dcn double-
deficient mice exhibit a more striking and early appearing
skeletal phenotype including shorter and wider long bones and
markedly osteopenia which is barely detectable in single mutant
animals (Corsi et al., 2002). Further analysis also revealed a
similar compensatory up-regulation of BGN gene expression in
Dcn-deficient mice but DCN up-regulation was not observed in
Bgn-deficient mice (Zhang et al., 2009b). Immunohistochemistry
revealed that in the absence of BGN, DCN is up regulated
throughout the PFS (Wadhwa et al., 2007). However, in vitro
analysis did not reveal differences in transcriptional levels of BGN
in MC3T3-E1 derived clones expressing either higher or lower
levels of DCN (Mochida et al., 2009). Similarly, in cell clones
expressing higher and lower levels of BGN, only slight changes of
DCN levels were detected in the culture media (Parisuthiman
et al., 2005).

GAGs Sulfation Affects the Osteogenic
Differentiation of Stem Cells
As described above, the sulfation pattern of GAGs undergoes
continuous changes during osteogenic differentiation. The
sulfation level of GAGs is positively related to the differentiation
of SCs as differentiating cells expressed highly sulfated GAGs (Nairn
et al., 2007; Kraushaar et al., 2013). Highly sulfated GAGs are
decorated by abundant sulfate groups such as N-SO3, 2-O-SO3,
and 6-O-SO3 on HS and 2-O-SO3, 4-O-SO3, and 6-O-SO3 on CS/
DS. These sulfate groups provide binding sites for multiple growth
factors (Smock and Meijers, 2018) and help shape morphogen
gradients (Balasubramanian and Zhang, 2016).

HS is the most studied class of GAGs given its modulation of a
wide range of biological processes. The structural and functional
diversity of HS are conferred by the modification of sulfation at the
C2, C6, and C3 positions of uronic acid and at the N position of
glucosamine. These sulfate groups are the structural foundation for
cellular interaction as well as the affinity sites for HS binding for a
range of protein ligands (Köhling et al., 2019; Zhang et al., 2019).
N-sulfation provides critical binding sites for bone morphogenetic
protein 2 (BMP-2) and are necessary for subsequent downstream
signaling. The loss of the N-sulfate group remarkedly diminished the
sequestration of BMP-2 and resulted in nearly no calciumdeposition
in vitro and reduced amount of newly formed bone tissue in vivo due
to decreased Smad 1/5/8 phosphorylation (Smith et al., 2018).
N-sulfation was also essential for Wnt3a binding as well as the
formation ofWnt3a-HEP complexes, and enhanced osteogenesis via
PI3K/Akt/RUNX2 pathway. Depletion of N-sulfation markedly
reduced alkaline phosphatase (ALP) activity which was induced
byWnt3a-HEP complexes (Ling et al., 2010). Apart from facilitating
the interaction between ligands and their corresponding receptors,

HS also reduced interactions with the BMP-2 antagonist Noggin
(Murali et al., 2013) and the Wnt inhibitors dickkopf 1 (DKK1) and
sclerostin (SOST) (Simann et al., 2015). However, the role of
N-sulfation in reducing signaling pathway inhibitors is unknown.

The 6-O-sulfation of HS chains was also found to be positively
associated with to the osteogenic differentiation of MSCs (Zhao
et al., 2015). Knockdown of HS6ST3 in MSCs remarkedly
impaired osteogenic differentiation, thus halving ALP activity,
and reduced the expression of osteogenic markers such as OCN
and RUNX2 by 60 and 75%, respectively. Although the
underlying mechanisms remain unclear, evidence has shown
that 6-O-sulfation is relevant to the regulation of several
signaling pathways. For instance, 6-O-sulfation promotes
FGF2/ERK signaling (Chanalaris et al., 2019), and inhibits
Wnt (Gao et al., 2016) signaling in some cellular processes but
studies investigating its role in signaling transduction during
osteogenic differentiation are limited.

Apart from 6-O-sulfation, 2-O-sulfation has also been
implicated in osteogenesis. Upon secreting growth factors that
are essential for differentiation, MC3T3-E1 cells simultaneously
produce sulfated GAGs to stabilize growth factors and enhance
their biological functions. The GAGs derived from differentiating
MC3T3-E1 cells present significantly higher affinity for BMP-2
and basic fibroblast growth factor (bFGF) (Fukunishi and Tabata,
2018). The enhanced affinity for growth factors could be
attributed to increased content of 2-O-sulfation validated by
disaccharide analysis of secreted GAGs (Fukunishi and Tabata,
2018). These findings indicated that GAGs enriched with 2-O-
sulfation were upregulated to facilitate osteogenic differentiation
by binding with growth factors.

Consistent with the forementioned results, highly sulfated CS
promoted osteogenic differentiation. Oversulfated CS-E which
possesses 4,6-disulfates in N-acetyl-galactosamine, was found to
be significantly upregulated in the bone matrix during osteogenic
differentiation, and the enzymatic digestion of CS resulted in
impaired formation of mineral modules (Miyazaki et al., 2008).
Further, CS-E is a ligand for bone morphogenetic protein 4 (BMP4)
(Miyazaki et al., 2008), N-cadherin, and cadherin-11 (Koike et al.,
2012). By binding to N-cadherin and cadherin-11, CS-E decreased
ERK1/2 phosphorylation, activated Smad3 and Smad1/5/8 leading
to enhanced osteogenesis (Koike et al., 2012). Notably, monosulfated
CS-A, CS-B with 4-sulfation, and CS-C with 6-sulfation did not
enhance binding to BMP-4 (Miyazaki et al., 2008) nor did
N-cadherin or cadherin-11 (Koike et al., 2012). Altogether this
suggested that 4,6-disulfates in N-acetyl-galactosamine provided
binding sites for these protein ligands. Collectively, these data
suggest that a certain degree of sulfation is necessary for signaling
transduction during osteogenic differentiation.

PROTEOGLYCANS MODULATE THE
CHONDROGENIC DIFFERENTIATION OF
MESENCHYMAL STEM CELLS
Proteoglycans are a major component of cartilage and are
extensively involved in cartilage development and regeneration.
Extensive studies have demonstrated that DCN, syndecan, PLN,
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and aggrecan were widely and differentially expressed in different
stages of chondrogenesis (French et al., 1999; Prante et al., 2006). In
addition, proteoglycans are required for the modulation of
chondrogenic process by mediating signaling transduction
including BMP, TGF-β, and Wnt signaling pathways (Fisher
et al., 2006; Chen et al., 2016; Wang et al., 2019). Syndecan-3
modulates the interaction of BMP2 and its receptors thereby
limiting the strength of BMP signaling during limb cartilage
differentiation (Fisher et al., 2006). Further, PLN deficiency led to
reduced cartilage matrix production and Sox9 and Col2a1 mRNA
levels in vitro and impaired the incorporation of newly synthesized
ECM in vivo (Sadatsuki et al., 2017; Ar et al., 2020). Apart from core
proteins of proteoglycans, GAGs are also highly involved in
chondrogenesis. CS content significantly increased during
chondrogenic differentiation from about 60% to nearly 90% at
day 21 whereas the percentage of HS and HA decreased (Silva
et al., 2020). Furthermore, through conditionally ablating the Ext1 in
limb bud mesenchyme, Matsumoto et al. found that Ext1 mutant
mice displayed severe limb skeletal defects including shortened and
malformed limb bones, and the chondrogenic differentiation of
Ext1−/− MSCs was delayed and impaired (Matsumoto et al.,
2010). Furthermore, knockout of galnact1 (t1) and Csgalnact2
(t2) in cartilage revealed disrupted endochondral ossification and
impaired chondrocyte proliferation (Shimbo et al., 2017).

The biological roles of GAGs in chondrogenesis may also be
closely related to their sulfate patterns and levels. Undersulfation of
CS in the limb growth plate led to diminished Indian hedgehog (Ihh)
signaling and abnormal Ihh protein distribution in the ECM (Cortes
et al., 2009). Mutation in the sulfotransferase genes led to cartilage
and bone abnormalities, highlighting the significance of sulfation
patterns of GAGs in normal skeletal development (Klüppel et al.,
2005). Sulfotransferase are responsible for transferring sulfate to the
CS backbone and for synthesizing CS with different degrees of
sulfation and specific sulfation patterns. Mutation in the gene
encoding C6ST-1 leads to significantly reduced 6S and 2-6S
together with marked undersulfation of CS in spondyloepiphyseal
dysplasia (SED) Omani type patients (Thiele et al., 2004). Moreover,
ablation of the C4ST1 gene resulted in severe chondrodysplasia
characterized by disorganized cartilage growth plate. Amore detailed
analysis revealed an abnormal disruption in BMP levels and strong
activation of TGF- signaling in the developing skeleton and cartilage
growth plate, suggesting that 4S is indispensable for modulation of
balanced signaling transduction and cartilage growth plate
morphogenesis (Klüppel et al., 2005). Exogenous addition or
scaffold materials using specific GAGs also indicated that
sulfation pattern of GAGs in promoting chondrogenesis, where
CS-C and CS-E were more capable of enhancing chondrogenic
differentiation (Kawamura et al., 2014; Menezes and Arinzeh, 2020).
These findings confirm that both sulfation level and sulfation
patterns play a critical role in chondrogenesis.

GAGs-Based Materials in Bone Tissue
Regeneration
As natural components of the ECM, GAGs possess many
advantageous characteristics including biocompatibility,
degradability, and non-immunogenicity, making them

attractive candidates for biomedical applications for drug
delivery and tissue engineering. GAGs are essential
components of stem cell microenvironments, providing
structural supports for cells and docking sites for various
signaling molecules. This paradigm also applies to
osteogenesis, as bone cells constantly interact with their
microenvironment during osteogenic differentiation, ECM
deposition and biomineralization. GAG-based materials have
been developed in a variety of forms including hydrogels,
nano-and micro-particles, surface coatings, and scaffolds. In
addition, the modification of GAGs greatly enhances their
biological functions including anti-inflammatory and pro-
osteogenesis potentials (Hempel et al., 2014a).

Unsulfated GAGs
Pro-osteogenesis Potential
HA is the only GAGs with a linear and unbranched structure
without any sulphate groups. Its high molecular mass and large
hydrodynamic volumes influence the biomechanical properties of
the ECM, tissue hydration, receptor clustering, and receptor-
ligand interactions. On the cell surface, HA interacts with a wide
range of HA-binding proteins to influence cell proliferation and
differentiation, migration, angiogenesis, and inflammation.

Although many studies have shown that HA holds great
potential for promoting osteogenesis in vitro (Koca et al.,
2019; Yuan et al., 2019; Jang et al., 2020), recent findings have
demonstrated that HA serves more as an osteoinductive scaffold
since application of HA alone failed to induce sufficient bone
regeneration as compared to treatments involving graft materials
(Sindel et al., 2017; Diker et al., 2018). Similarly, the presence of
HA alone in the implant osteotomy also failed to yield improved
osseointegration (Yazan et al., 2019). Arpağ et al. found that when
combined with xenografts, HA contributed to new bone
formation but did not improve the quality of newly formed
bone (Arpağ et al., 2018). This suggested that HA alone was
insufficient for bone regeneration, therefore the combination of
HA and other material such as collagen and hydroxyapatite may
be essential for improving bone regeneration in vivo. Yuan et al.
(2019) developed a bio-degradable bone graft material consisting
of multiarm polyethylene glycol crosslinked with HA hydrogels,
which brought a significant improvement to ALP activity and
calcium mineralization in vitro. The multiarm PEG-HA
hydrogels also facilitated healing of the cranial bone defects of
rats. Modification of HA is also utilized to facilitate bone repair.
The HA and collagen (Col) are two of the major components of
the ECM, showing potential to be used as a template for
biomineralization. Li M. et al. (2019) developed a biomimetic
nanofiber network based on Col/oHAs and its mineralized
product. The results indicated that the oHAs-based scaffolds
promote the attachment of endothelial cells and facilitate the
osteogenic differentiation of MC3T3-E1 and BMSCs.

Pro-chondrogenesis Potential
As the major GAGs found in cartilage, HA are extensively
involved in a variety of biological processes such as increasing
the chondrogenic differentiation potential of MSCs as well as
supporting ECM production (Dvorakova et al., 2008; Sato et al.,
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2014; Alessio et al., 2021). Moreover, HA shows great promise as
a chondrogenic adjuvant in stem cell-based therapy for cartilage
repair (Wong et al., 2021). Compared to other hydrogels such as
collagen hydrogel, HA hydrogels facilitate chondrogenesis by
creating a relatively stable physical microenvironment for
MSCs and supported continuous production of cartilage-
related matrix (Yang et al., 2021).

HA is also easily modified or crosslinked with other
biomolecules and including peptides and RGD sequences for
promoting proliferation, adhesion, and greater chondrogenic
differentiation (Cavalli et al., 2019; Teng et al., 2021).
Modifications of HA hydrogel by aldehyde groups and
methacrylate (AHAMA) on the polysaccharide backbone
significantly improve its durability and stability under humid
environments as in native cartilage. AHAMA hydrogel exhibit
enhanced proliferation and migration of BMSCs in vitro.
Furthermore, through the incorporation of aldehyde groups
and methacrylate AHAMA hydrogel can localized on the
cartilage surface with multiple anchoring mechanisms, which
significantly promote integration between neo-cartilage and host
tissues, and significantly improved cartilage regeneration in vivo
(Chen et al., 2021a). Similarly, HA cross-linked with the
transglutaminase (TG) can attach covalently to fibrinogen and
fibrin, ensuring good tissue adhesion (Broguiere et al., 2016),
which is essential for long-term success for cartilage regeneration
in vivo. In an ovine osteochondral defects model, HA-TG adhered
to the native tissue and facilitated the recruitment and infiltration
of MSCs. It also preserved the adjacent cartilage, providing a
favorable environment for the generation of a neocartilage tissue
(Levinson et al., 2021).

Apart from chondrogenic property, HA-based hydrogels have
also been optimized as carriers for sustained drug delivery for
chondrogenesis under inflammatory environments, which is
desirable for the long-term treatment for osteoarthritic joints.
Jin et al. (2016) combined epigallocatechin-3-gallate (EGCG)
with tyramine-conjugated HA and gelatin to control
inflammation and enhance cartilage regeneration. EGCG not
only has an anti-inflammatory effect as it protected
chondrocytes against the pro-inflammatory factor, IL-1β, but it
also enhanced chondrogenic regeneration in vitro and in vivo.
Furthermore, Ziadlou et al. (2021) utilized HA enzymatically
crosslinked silk-fibroin/hyaluronic acid-tyramine composite
hydrogels (HA-SF) to carry the anti-inflammatory drugs
vanillic acid (VA) and epimedin C (EpiC) and achieved
sustained release over 60 days.

From the above evidence, it appears that HA-based materials
can be optimized through a wide range of modifications and these
products have great potential and opportunities for promoting
improvement of osteochondral defects and reducing
inflammation.

HA as Delivery Agent for Anti-inflammation
HA is also an encouraging drug delivery agent for local
orthopedic implants that are frequently the subject of
complications caused by local aseptic inflammatory reactions
and bacterial infections (Passi and Vigetti, 2019). Immobilized
HA on the surface of titania nanotubes (Ti-NTs) greatly

enhanced the biological activity of the implant and slow down
the release rate of the drug in Ti-NTs. In one study, a multilayer
coating consisting of Col and HA on the Ti-NT surface was
loaded with the antibacterial drug enoxacin (EN). This Col/HA
coating provided consistent and controllable drug release that
lasted for more than 7 days, which significantly improved the
release kinetics of drugs in the tubes compared with the control
group (Ti-NT + EN) (Li H. et al., 2019). The high hydration
capacity of HA has also been applied to biofilm repelling for its
high surface energy. Combined with a load of antibacterial drug
triclosan (TRI), the multilayer coating released about 25% of
loaded TRI within the initial period of bacterial adhesion and
continued as a bactericide reservoir, which made them potential
biomaterials for both inhibiting bacterial adhesion and restricting
bacteria viability during the critical post-implantation period
(Valverde et al., 2019). As such, HA could promote osteogenic
differentiation by providing an adaptable environment and
optimized drug effects through controllable long-term release,
making it an excellent candidate for bone tissue engineering
approaches.

Sulfated GAGs
Sulfated GAGs have been widely used in constructing bone tissue
engineering scaffolds for their pro-osteogenesis and pro-
chondrogenesis potential (Förster et al., 2017; Meghdadi et al.,
2019; Singh et al., 2020). In addition, the incorporation of sulfated
GAGs into hybrid scaffolds can fine-tune growth factor binding
and achieve controlled release so as to continuously release
cellular signals for promoting bone healing and regeneration
(Anjum et al., 2016; Huang B. et al., 2018).

Pro-osteogenesis Potential
Various aspects of sulfated GAGs, including modifications and
administration concentrations can be adapted to optimize
their potential. The negatively charged sulfate groups on
GAGs created an osteogenic suitable environment by
binding positive calcium and phosphate, which is dependent
on GAGs concentrations. To determine the optimized
concentration of GAGs, Kim et al. (2017) constructed a
PEGDA/CS-based hydrogel with various concentrations of
CS (0–10%) and identified a positive correlation between CS
levels and calcium phosphate binding. The authors found that
10% CS hydrogel induced relatively higher expression of
RUNX2 (9 times higher), COL1 (6 times higher), and ALP
(50 times higher) in vitro. Transplantation of the cell-laden
hydrogels showed threefold higher regenerated volume and
was integrated with native bone tissue. In contrast, although
loading of HS also resulted in positive effects in bone repair, no
differences were found between low and high concentration
loading (50 μg/ml or 500 μg/ml) (Liu et al., 2020). In vitro
experiments showed that low concentrations of HS exhibited
the best effect on promoting cell adhesion and differentiation,
whereas high concentrations of HS resulted in the inhibition of
cell proliferation. The discrepancies might arise from the
complex functions between GAGs as well as the differences
between components, and mechanical and biochemical
properties of these scaffolds.
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Modifications are another effective approach to improve the
biological functions of GAGs-based scaffolds, and include
sulfation and oxidation. Oversulfation of GAGs has been
validated for reducing inflammation and promoting new bone
formation. When cultured on an artificial ECM made of collagen
and oversulfated GAGs derivates, the inflammatory response of
hMSCs was inhibited. The formation of pro-inflammatory
mediators such as IL-6, IL-8, monocyte chemoattractant
protein-1, and prostaglandin E2 was reduced. In addition,
downstream events such as nuclear translocation of NFkB and
expression of pro-inflammatory mediators and COX-2 were
abrogated (Hempel et al., 2014a). Furthermore, the artificial
ECM promoted the osteogenic differentiation of hMSC as
indicated by an increased activity of tissue non-specific
alkaline phosphatase (TNAP) and calcium deposition (Hempel
et al., 2014a; 2014b). Selective desulfation of GAGs was proven
suitable for creating adjustable signaling gradients and effectively
controlling the fate and morphogenesis of MSCs in vitro (Atallah
et al., 2018). Oxidization of GAGs (oGAGs) also improved the
osteoinductive potential of scaffolds due to their higher thickness
and roughness compared to the native counterparts and were
capable of controlled release of BMP-2 (Anouz et al., 2018).

GAGs analogues, such as GAGs variants and GAGs mimics,
are potential tools as they were designed to sequester and stabilize
growth factors better and to overcome the drawbacks of native
GAGs including their natural heterogeneity in structure, difficulty
in modification, and uncertain biological roles (Tansik et al.,
2016). Quang Le et al. (2021) synthesized an HS variant with high
affinity toward BMP-2 named HS3 and constructed an HS3-
functionalised scaffold integrated with collagen and bone
granules with the aim to deliver BMP2 with sustained release.
These scaffolds were able to retain up to 58% of the initial amount
of BMP2 over 27 days, approximately 3-fold higher than scaffolds
without HS3, while sustaining the bioactivity of the retained
BMP2. By incorporating Hep-mimicking polysulfonates, poly-
vinylsulfonic acid (PVSA) or poly-4-styrenesulfonic acid (PSS)
into the MeGC hydrogel, Kim et al. (2018)observed a controllable
release of ∼30% of loaded BMP-2 compared to ∼60% of the
control group over a 21-day period, which resulted in a better
osteogenic ability as indicated by elevated ALP activity and
transcript levels of osteogenic markers.

Pro-chondrogenesis Potential
GAGs are major components of the cartilage matrix. CS
contributes to 70–80% of the GAGs in cartilage with
chondroitin-6-sulfate and chondroitin-4-sulfate accounting for
60% and 10–20%, respectively (Taylor and Miller, 2006). CS is
now extensively studied and has attracted increasing attention as
a potential biomaterial for cartilage tissue engineering. CS-based
materials support chondrocyte matrix deposition and
chondrogenic differentiation of MSCs as well as prevent
further differentiation into hypertrophic chondrocytes
(Varghese et al., 2008; Meghdadi et al., 2019; Alessio et al.,
2021). As other types of GAGs including DS and KS are only
composed of a small percentage of the cartilage matrix, studies
regarding their biological potential as materials for cartilage tissue
regeneration remain to be elucidated in the future.

CS is now widely functionalized into formats with adhesive
properties which facilitate better preservation of adjacent
cartilage tissue that are essential for recruitment of
endogenous MSCs. Using mussel adhesive-inspired catechol
chemistry, Shin et al. developed a functional CS hydrogel (CS-
CA hydrogels) that exhibits significantly superior adhesive
properties (∼3 N) over conventional CS hydrogels (and
∼0.05 N) thereby enhanced cartilage integration with host
tissue and neo-cartilage formation. In addition, CS-CA
hydrogels promote chondrogenic differentiation of MSCs by
providing a cartilage-like microenvironment (Shin et al., 2021).
Moreover, through modification or crosslink with other
biomolecules, CS-based materials are not only designed for
better recapitulation of the MSCs niche to promote
chondrogenesis but can also preserve the immunosuppressive
potential of MSCs and mediate repair under inflammatory
conditions. By crosslinking CS onto a collagen-based scaffold
(CSCL), this biomimetic scaffold was able to reduce inflammation
in vivo by limiting lymphocytic infiltration (Corradetti et al.,
2016). Moreover, crosslinking of CS into a CS-functionalized
scaffold (CSS), CS efficiently suppressed the production of pro-
inflammatory cytokines (NO and PGE2) and reduced the
expression of their inducible enzymes PGES and iNOS (Chen
et al., 2021b). Therefore, CS act as protective agent by decreasing
expression of pro-inflammatory cytokines and plays an
important role in moderating cartilage repair under
inflammation.

CS are known to interact with numerous growth factors
electrostatically via negatively charged sulfate groups.
Regulating the sulfation level of GAGs is a promising
approach for controlled growth factor delivery and release.
Desulfation of CS significantly increased the release of histone
by 1.5-fold over 8 days compared to natively sulfated CS, whereas
sulfated CS was able to sequester greater amount of growth factor
TGF-β1. Furthermore, chondrogenic differentiation was more
marked in desulfated-CS hydrogels in the presence of TGF-β1
since sulfated CS binds TGF-β1 and decreased the effective
concentration exposed to MSCs. These findings demonstrate
that sulfation level can be utilized as powerful tool to
modulate growth factor delivery and release as well as regulate
MSCs response to soluble cues (Lim and Temenoff, 2013).

Collectively, GAGs are widely used in cartilage and bone tissue
engineering for their multifactorial roles including promotion of
osteogenesis, chondrogenesis, drug delivery and sustained
released of growth factors. The biological functions of GAGs-
based scaffolds can be significantly enhanced throughmodulating
the concentration, modifications as well as designing GAGs
analogues. In the future, endeavors should be taken to identify
the key active domains of GAGs, and utilize their high affinity
with ligands to improve the osteoconductive properties of
materials in order to promote bone and cartilage regeneration.

FUTURE CHALLENGES AND PROSPECTS

With the rapid development of glycomic and glycoproteomic
approaches such as liquid chromatography tandem-mass
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spectrometry (LC-MS) (Bodet et al., 2017), GAGs microarray (Zong
et al., 2017; Pomin and Wang, 2018), GAGome (Chen et al., 2018;
Qiu et al., 2018), and bioinformatics, significant insights have been
gained regarding the disaccharide composition, detailed structure of
proteoglycans/GAGs, and their interactions with a wide range of
biological molecules. Although these analyses have provided
valuable insight into the biological functions of proteoglycans and
GAGs, the most convincing approach to exploring their context-
dependent functions lies in establishing specific animal models.
Unfortunately, a large number of proteoglycans/GAGs-deficient
animal models exhibit embryonic lethality. Future efforts should
be taken to elucidate more detailed proteoglycans/GAGs functions
with conditionally modified genetic models. In addition,
understanding the functional overlap or compensation between
proteoglycans/GAGs will also be important to defining the
structure-function relationship of proteoglycans/GAGs. Endeavors
should also be taken to improve our understanding of the distinct
structural features of each proteoglycan subfamily and to recognizing
the docking site for bio-active molecules within their core proteins
and GAGs side chains.

CONCLUDING REMARKS

Proteoglycans are ubiquitously expressed across tissues and
exert a multitude of effects on stem cell behavior and the
surrounding microenvironment. Accumulating evidence has
highlighted the significance of proteoglycans and their

biosynthetic machinery in regulating stem cell and tissue
homeostasis. In particular, the sulfate groups on GAGs give
rise to the complex structural heterogeneity of proteoglycans,
and are essential for the interactions with growth factors in the
regulation of tissue development and cell behavior. These
properties support GAGs as valuable tools for bone tissue
engineering as a bio-active scaffold or as an adjuvant for
exogenous growth factor administration. With the
advancements in biomimetic techniques, GAGs analogues
designed to recapitulate the interactions between
proteoglycans and growth factors, better outcomes are
expected to be achieved in bone regeneration.
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