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Background:RNAmodifications have emerged as important posttranscriptional changes
in multiple tumor cellular processes and tumorigenesis, including hepatocellular carcinoma
(HCC). However, the potential roles and the interaction between regulators of RNA
modifications and the tumor microenvironment (TME) are unclear in HCC.

Methods: The gene expression profiles of 26 RNA modification “writers” were
investigated in the TCGA cohort. The unsupervised clustering approach was used to
class these RNAmodification regulators. The characteristics of immune cell infiltration from
TME for each cluster was tested by the CIBERSORT method. Additionally, we established
a scoring model to evaluate the RNA modification characteristics of individual tumors. The
associations between the scoring model and genetic as well as clinical characteristics,
drug sensitivity, and response to immunotherapy were also analyzed.

Results: We mapped the somatic mutations and somatic copy number variation of the
RNA modification regulators. The expression of all selected regulators was detected, and
two modification patterns were identified that featured distinct immune cell infiltration
characteristics. Subsequently, we developed a scoremodel (termed asWM-Scoremodel).
Furthermore, the survival analysis showed that the WM-Score value was associated with
HCC patient prognosis. The results of the ROC curves analysis and multivariate analysis all
confirmed that the WM-Score value was strongly associated with anti-cancer drug
resistance and therapeutic efficacy of immunotherapy, thus could be used as an
independent risk factor in HCC.

Conclusion: Our research identified two RNA modification patterns characterized by
distinct TME, and the WM-Score model was developed that might serve as reliable
prognostic and immunotherapeutic effect predictor of HCC.
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INTRODUCTION

In 2018, hepatocellular carcinoma (HCC) was predicted to be the
sixth most prevalent cancer worldwide (Bray et al., 2018), with a
5 years survival rate as low as 9.1%, and an overall median
survival of 9 months (Giannini et al., 2015). Infection by HBV
or HCV, chronic alcohol consumption, and obesity-related
NASH are the principal causes of HCC (Llovet et al., 2021).
The condition is usually diagnosed at an advanced stage,
therefore, effective treatments for advanced metastatic HCC
are limited. Although there are surgical and chemotherapy
options, the mortality rate of HCC remains high. Forms of
immunotherapy, such as immune checkpoint inhibitors (ICIs)
have been used to capture the disease progression and to enhance
adaptive immunity in advanced HCC (Ou et al., 2020).
Meanwhile, only a subset of patients show therapeutic
response to ICIs, and this response it is difficult to predict.
Therefore, a deeper understanding of the molecular
mechanism of HCC is necessary to improve patient survival.

Recently, RNA modifications, coined the “epitranscriptome”,
have emerged as crucial posttranscriptional regulators of the gene
expression process (Barbieri and Kouzarides, 2020). Increasing
evidence has revealed that these modifications have huge
implications for human pathophysiology, including cancer
(Frye et al., 2016; Jonkhout et al., 2017; Nachtergaele and He,
2017; Ontiveros et al., 2019). Accordingly, over 170 different
types of chemical modifications of cellular RNAs have been
described, among which methylation modifications account for
two-thirds and are widely present in various RNA types (Barbieri
and Kouzarides, 2020). The most abundant and better
characterized internal RNA modification is N6-
methyladenosine (m6A) that regulates multiple aspects of RNA
metabolism, such as RNA processing, RNA translation, and
nuclear export (Roundtree et al., 2017; Sun et al., 2019). N1-
methyladenosine (m1A) is an important post-transcriptional
RNA modification that has been found in tRNA, rRNA,
mitochondrial RNA and mRNA (RajBhandary et al., 1966;
Peifer et al., 2013; Li et al., 2017; Safra et al., 2017). APA is an
RNA-processing mechanism that generates distinct 3′ termini on
mRNAs and other RNA polymerase II transcripts (Tian and
Manley, 2017). RNA editing mediated by adenosine deaminase
acting on RNA enzymes a well-documented post-transcriptional
mechanism altering nucleotide in selected transcripts (Nishikura,
2010). RNAmodification is catalyzed by RNAmethyltransferases
called “writers” (they add a specific modification), demethylases
or “erasers” (they remove a specific modification), and
m6A-binding proteins or “readers” (they recognize and bind
modified nucleotides). The RNA modification is a dynamic
process, and the interaction between each type of methylation
modification has not yet been fully elucidated (Davalos et al.,
2018; Xue et al., 2020; Nombela et al., 2021).

Accumulating evidence supports the prominent role of the
complex and diverse tumor immune microenvironment (TIME),
including cancer cells, locally infiltrating immune cells, stromal cells,
and active medium, in tumor cell proliferation, invasion, and
metastasis (Azambuja et al., 2019; Fu et al., 2019). Non-malignant
cells are not only one of the major players of cancer progression, but

also determine the immunotherapeutic response (Lu et al., 2019).
Therefore, a comprehensive analysis of the diversity of TME and
different immune phenotypes can guide and improve
immunotherapeutic responsiveness (Binnewies et al., 2018).

In this study, we focused on the most heavily modified RNA
types, including m6A, alternative polyadenylation (APA), m1A,
and A-to-I RNA editing. Furthermore, we comprehensively
analyzed the correlation between various types of RNA
modification regulators and cell-infiltrating characteristics of
TIME by integrating the genomic and transcriptomic
alterations of samples from The Cancer Genome Atlas - Liver
Hepatocellular Carcinoma (TCGA-LIHC) databases. Two
distinct modification patterns with different immune cell
characteristics were identified. In addition, we developed the
WM-Score model to quantify the efficacy of “writers” in
modifying individual tumors and to predict the prognosis and
immunotherapeutic response of HCC patients.

METHODS

Data Acquisition and Processing
The gene expression profiles and clinical annotations were
downloaded from the Cancer Genome Atlas (TCGA) portal
(http://cancergenome.nih.gov/). Data cohorts with missing
information were removed. A total of 356 cases of TCGA-
LIHC were used for further analysis. The R Bioconductor
package and R (version 3.6.2) were employed for data analysis.

Drug sensitivity data were collected from The Genomics of
Drug Sensitivity in Cancer (GDSC) database (www.
cancerRxgene.org) (Yang et al., 2013). Spearman’s correlation
analysis was utilized to evaluate the association between the
scoring model and drug reaction, where |Rs| > 0.2, and FDR
<0.05 was considered significant correlation.

The immunotherapy dataset IMvigor210 cohort was used to
explore the immunotherapy response and prognosis of HCC
patients with differentWM-Score values. The standardized RNA-
sequencing data of 1111 HCC patients with detailed
clinicopathological data were downloaded from http://
research-pub.gene.com. The data were analyzed using the
IMvigor210CoreBiologies R package.

Unsupervised Clustering Analysis
In order to explore the robust clustering of HCC cases, we
employed the unsupervised clustering approach to analyze the
gene profiles of RNA modification writers. A total of 26 RNA
modification regulators, including seven m6A modification
enzymes (KIAA1429, METTL14, ZC3H13, METTL3, WTAP,
RBM15B, and RBM15), 12 APA modification enzymes
(CPSF1, CPSF2, CPSF3, CPSF4, CSTF1, CSTF2, CSTF3, CF1,
PCF11, CLP1, NUDT21, and PABPN1), four m1A modification
enzymes (TRMT10C, TRMT6, TRMT61A, and TRMT61B), and
three A-I modification enzymes (ADARB1, ADARB2 and
ADAR) were analyzed. An NMF-based consistent clustering
algorithm was used to determine RNA modification patterns
based on the mRNA expression of analyzed regulators.
Unsupervised cluster analysis was performed by The
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Consensus Cluster Plus package as previously described
(Wilkerson and Hayes, 2010).

Gene Set Variation Analysis (GSVA)
GSVA is a gene set enrichment method that provides increased
power to estimate changes of subtle pathway activity over a sample
population in an unsupervised manner (Hänzelmann et al., 2013).
We conducted GSVA analysis to explore the association between
RNAmodifications and biological processes. The gene set “h.all.v7.2”
and “c2.cp.kegg.v7.1”were derived from the MSigDB database (Zhu
et al., 2020). The functional annotation of 26 “writer” genes was
conducted by the clusterProfiler R package, with a cutoff value of
FDR <0.05. An adjusted P with value < 0.05 was considered as
indicative of statistical significance.

Cell-type Identification by Estimating
Relative Subsets of RNA Transcripts
(CIBERSORT)
CIBERSORT is a method that can accurately estimate the fraction
of diverse cell subsets in gene expression profiles from complex
tissues (http://cibersort.stanford.edu) (Newman et al., 2015). To
predict the immune subset composition of HCC samples from
gene expression profiles, CIBERSORT was used to estimate the
relative abundance of 22 types of immune cells (model � absolute,
permutation � 1,000, disable quantile normalization for RNA-Seq
data as recommended).

Construction of the WM-Score Scoring
System
Firstly, the RNA modification-related differentially expressed genes
(DEGs) among distinct RNA modification clusters were collected
using “limma” package of R software. Next, we performed univariate
cox regression model to analyze the correlation of each gene with
overall survival, and the significant prognosis DEGs were used for
further analysis. Subsequently, distinct genomic subtypes were
determined by unsupervised clustering analyses. In addition, the
prognostic analysis was performed for each genomic subtype and
extract principal component 1 and 2 as the signature scores. Finally,
the RNA modification score was defined using a method similar to
that used in analyzing gene-gene interactions (GGIs):WM-Score � Σ
(PC1i + PC2i), which is defined as the expression of final RNA
modification phenotype-related genes (Sotiriou et al., 2006; Zeng
et al., 2019).

Statistical Analysis
A Wilcoxon rank-sum test was utilized to compare differences
between two groups, and Kruskal-Wallis test was used for
comparisons of multiple groups. The discrimination accuracy of
the WM-Score model was described by receiver operating
characteristic (ROC) analysis. Kaplan-Meier method estimate
curves were generated for prognostic analysis, and the differences
between groups were evaluated by a log-rank test. Univariate and
multivariate analyses were further carried out to assess independent
risk factors. All data were analyzed by the R 4.0.1 software. A two-
tailed p < 0.05 was considered as statistically significant.

RESULTS

Landscape of Genetic Alterations of 26 RNA
Modification “Writers”
A total of 26 RNA modification “writers” were selected in this study,
which included seven m6A modification “writers”, three A-I
modification “writers”, 12 APA modification “writers”, and four
m1A modification “writers” (Supplementary Table S1) (Li et al.,
2016; Tang S. J. et al., 2020; Shen et al., 2021). To explore the genetic
alterations in RNA modification writers, we examined the incidence
of somatic mutations and somatic copy number variation (CNV) for
all “writers” based on the TCGA database. Among 356 samples from
TCGA-LIHC, 42 (11.8%) exhibited genetic changes of these writers,
and the details was shown in the Figure 1A. The highest mutation
frequency was presented in CPSF1, followed by ADARB2 and
KIAA1429 (Figure 1A), while METTL3, METTL14, TRMT61A,
TRMT61B, CSTF3, and NUDT2 did not show any mutations in
tumor samples. Next, we used the hallmark gene set to perform gene
set variation analysis (GAVA) to compare the mutation groups and
those without mutation in “writers”. The GSVA indicated
significantly enriched carcinogenic activation pathways in the
mutation group, such as those of E2F targets, G2M checkpoint,
MYC, and MTORC1 signaling pathway (Figure 1B). Furthermore,
the investigation of CNV alteration in 26 regulators showed that
ADAR, CPSF1, CPSF4, TRMT10C and KIAA1429 had a widespread
frequency of CNV gain, while ZC3H13, CF1, METTL14, NUDT21,
and WTAP had a significant CNV loss (Figure 1C). To explore
whether the above CNV alterations affected the expression of the 26
RNA modification regulators, we compared the expression level of
these regulators between tumor samples and paired normal samples.
The results showed increased mRNA levels of most “writers” in
tumor samples in comparison to normal samples (Figure 1D),
suggesting that CNV might be the major factor leading to the
aberrant expression of medication regulators. Notably, the mRNA
levels of some “writers”were increased, while the frequencies of CNV
loss for those were high. Therefore, further investigations were
performed. According to the CNV value, patients were divided
into 3 groups, including CNV amplification group, CNV deletion
group, and normal group, and the mRNA expression of “writers”
were compared between these groups (Figure 1E). The results
showed mostly elevated expression for the group of patients with
CNV amplification compared with the other groups with CNV
deletion or normal CNV in these “writers”. Taken together, we
mapped the genetic alterations of the 26 RNAmodification “writers”
between control tissues and tumor tissues, suggesting that these
changes might play vital functions in HCC tumorigenesis and
progression.

The RNA Modification Patterns Are
Characterized by Distinct TIME Cell
Infiltration Characteristics
In order to further understand the role of RNA modification
“writers” in HCC, we performed univariate analysis of the 26
regulators based on the TCGA-LIHC cohort. We found that 16 of
26 “writers” were markedly correlated with the OS of HCC
patients (Figure 2A). Next, we explored the relationship
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among “writers” and found that most were positively or
negatively correlated with each other (Figure 2B). Thus, it is
suspected that the crosstalk between different “writers”may have
a vital function in the different modification patterns of HCC.

We performed consensus clustering to classify patients into
distinct RNA modification patterns based on the mRNA
expression of “writers” (Supplementary Table S2). Eventually,

two RNA modification patterns with 204 cases were determined
in pattern 1 (cluster 1), and 113 cases in pattern 2 (cluster 2)
(Figure 2C). Subsequently, “GSVA” enrichment analysis was
employed to further understand the biological behaviors
between the distinct two clusters. Our results indicated that
cluster 1 was significantly enriched in metabolism and drug
metabolism pathways, such as sulfur metabolism, primary bile

FIGURE 1 | Expression pattern of 26 RNA modification “writer” genes in TCGA-LIHC (A) Frequency of mutations of the 26 identified regulator genes (B) Gene set
variation analysis (GAVA) was used to compare the regulator mutation group and the non-mutation group (C) The CNV mutation frequency of 26 regulator genes in
TCGA-LIHC (D) The expression of 26 RNA modification regulator genes between tumor tissues and control tissues (F) The mRNA expression of “writer” among three
groups, including amplification group, CNV deletion group, and normal group.
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acid biosynthesis, tyrosine metabolism, tryptophan metabolism,
drug metabolism cytochrome P450, drug metabolism other
enzymes, renin angiotensin system, while cluster 2 enrichment
pathways were mainly linked to proliferation and signal
transduction, including cell cycle, calcium conduction, etc.
(Figure 2D).

Emerging evidence suggests that RNA modifications interact
with the tumorigenic environment, thus affecting tumor
occurrence, development, and prognosis (Jiang et al., 2020;
Chen H. et al., 2021; Chong et al., 2021). Therefore, the
function of the RNA methylations in the TME were further
explored. The association analysis using the CIBERSORT
method revealed that the identified RNA modification

regulators might have close links with immune cell infiltration
from the TME (Figure 3A). For instance, METTL14, ZC3H13,
CSTF3, and ADAR were markedly negatively associated with Mo
macrophage differentiation, while their positive association was
observed with METTL3, RBM15B, KIAA1429, TRMT61A,
TRMT6, CPSF1, and NUDT21. Moreover, we analyzed the
difference in immune cell infiltration from TME between
cluster 1 and cluster 2. The results revealed that the
infiltration of M2, T cells, mast cells, and monocytes was
higher in cluster 1. Notably, though, the infiltration of M1,
regulatory T cells and follicular helper T cells was higher in
cluster 2 (Figures 3B,C). Overall, cluster 2 was usually enriched
in immunosuppressive cells, indicating a poor prognosis, whereas

FIGURE 2 | RNA methylation modification pattern and related biological pathways (A) The univariate cox regression analysis shows that 16 of 26 regulators are
associated with of patient prognosis in the TCGA-LIHC cohort (B) Heatmap of the Spearman’s correlation analysis presenting negative (blue) and a positive (red)
correlation among the “writers” in HCC (C) Unsupervised cluster analysis of 26 “writers” in HCC. Blue represents low expression of “writers” genes; red represents high
expression of these genes (D) GSVA enrichment analysis of KEGG pathway chances between cluster 1 and 2. Blue indicate not activated pathways, and red
indicates activated pathways.
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cluster 1 was characterized by immune cell activity, indicating a
beneficial prognosis. These findings suggested that RNA
modification “writers” play crucial roles in immune cell
infiltration and TME formation.

Generation of RNA Modification Signature
Model
Our results above demonstrated the important role of RNA
modification in TME formation and patient prognosis, while
these findings were based on RNA modification patterns and
could not accurately evaluate the capacity of the RNA
modification as a prognostic predictor in individual HCC
patients. The underlying genetic alterations in these two RNA
modification patterns were still unclear. Based on these queries,

we examined the transcriptional expression change between the
two patterns. A total of 273 DEGs related to RNA modification
patterns were identified, and the further enrichment analysis
showed that these DEGs were enriched in many essential
biological processes, including DNA-binding transcription
activator activity, signaling receptor activator activity, and
multicellular organismal response to stress (Figures 4A–C).
Subsequently, according to unsupervised clustering analysis
based on the 273 DEGs, patients were classified into two
stable transcriptomic subtypes: cluster A and cluster B
(Figure 4D), with 242 and 75 of the 317 HCC patients,
respectively. The prognosis of patients in cluster B was poorer
than those in gene cluster A (Figure 4E; p < 0.0001, log-rank test).

Furthermore, we developed a score model based on the DEGs
between gene clusters. As described in the Methods section, a

FIGURE 3 | Tumor immune microenvironment characterization of the RNAmodification patterns (A) The correlation between the 26 “writers” and TME in HCCwas
analyzed by CIBERSORT (B) The different characters of immune cell infiltration between clusters. Log(FC) > 0 represents that the immune cells were enriched in cluster
1 (C) The types of immune cells between distinct RNA modification patterns.
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scoring model named writers of RNA modification-score (WM-
Score) was constructed. We discovered that cluster 1 had a higher
WM-Score value than cluster 2 (Figure 4F). Consistently with
this, cluster A also showed a higher score value than cluster B
(Figure 4G). To evaluate the association of WM-Score value with
TME, we further calculated the abundance of immune cell
infiltration for the low and the high WM-Score value groups.
We found that the infiltration rate of M0 macrophages,
monocytes, and TfCD8 was higher in the high WM-Score

value group, and that of activated NK-activated cells and M1
macrophages was higher in the low WM-Score value group
(Figure 4H).

Association Between WM-Score and
Clinical Characteristics
After confirming the efficacy of the WM-Score model in
predicting patient prognosis, we investigated whether this

FIGURE 4 | Construction of RNA modification model (A–C). GSVA enrichment analysis revealed the DNA transcription signaling pathways. Stress reception
signaling pathways (A) and signal transduction activation signaling pathways (B) were correlated with (C) 273 DEGs between cluster 1 and cluster 2 (D). Unsupervised
clustering of the 273 DEGs to identify two genomic subtypes (E) Survival analysis showing the poor prognosis of patients in cluster A group compared with those in
cluster B group (p < 0.0001, Log-rank test) (F). The score of cluster 1 was higher than that of cluster 2.G. The score of cluster A was significantly higher than that of
cluster B (H). The difference of immune cell infiltration abundance between WM-Score groups calculated by the CIBERSORT algorithm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7613917

Xing et al. RNA Modification Pattern in HCC

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


model could be applied to determine the tumorigenesis,
progression, invasion and metastasis of HCC. The prognostic
efficiency of the scoring model was explored through classifying
patients into low and high score groups the using “survminer”
package. As expected, patients with high score demonstrated a
poorer prognosis than those with low score in the TCGA-LIHC
cohort (Figure 5A). We used ROC curve analysis to determine
the discrimination accuracy of the scoring model in predicting
patient prognosis. The area under the ROC curves (AUCs) of
WM-Score values were 0.84, 0.76 and 0.79 at 1, 3 and 5 years
overall survival, respectively (Figure 5B). Multivariate analysis
for the TCGA-LIHC cohort also demonstrated that the WM-
Score could serve as an independent prognostic predictor in HCC

(Figure 5C). All of these results indicated that the WM-Score
model has accurate prognostic value for HCC patients. The
analysis of difference in WM-Scores between different TNM
grades and clinical grades in the TCGA database indicated
that samples with higher clinical grades and TNM stages
usually have higher WM-Score values (Figures 5D,E). In
addition, considering the EMT-related pathways, the samples
with different WM-Score value had different pathway
characteristics. For the TCGA database, samples with high
WM-Score value were significantly related to cell cycle, DNA
damage repair, and DNA replication, while samples with low
WM-Score value were related to EMT,WNT target, and cell cycle
regulators (Figure 5F).

FIGURE 5 | The clinical characteristics and prognosis of HCC correlated with the WM-Score model. (A). Kaplan-Meier overall survival for HCC patients in the high
and lowWM-Score groups. (B). The predictive accuracy of theWM-Score model in the TCGA-LIHC cohort (AUC: 0.84, 076, and 0.79, corresponding to 365, 1,095, and
1825 days OS, respectively). (C). Multivariate cox regression analysis of factors, which included WM-Score, stage-T, stage, stage-M, gender, stage-N, patient age, and
grade in the TCGA-LIHC cohorts. (E). WM-Score differences among grade and stage-T of HCC in TCGA-LIHC. (F). Heatmap showing the GSVA score of EMT
signaling pathways between different WM-Score groups in TCGA-LIHC.
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Value of WM-Score Model in Chemotherapy
and Therapy Sensitivity
For several years, sorafenib has been approved a treatment option for
advanced HCC patients, while efficacy of sorafenib is limited by drug
resistance (Gnoni et al., 2019).Aiming to further investigatewhether the
WM-Score value affected drug sensitivity, we evaluated the correlation
between the scoring model and the drug response of tumor cell lines.
Using Spearman’s correlation analysis, 15 significant correlation pairs
were identified in the Cancer Drug Sensitivity Genomics (GDSC)
database between scoring model and drug reaction (Yang et al.,
2013). Among them, eight pairs of drug sensitivity were related to
WM-Score value, and seven pairs showed resistance related to WM-
Score value (Figure 6A). In addition, we also analyzed the signaling

pathways of these drugs to determine target genes.We found that drugs
associated with high WM-Score value mainly target KIT, CLAP, and
cell cycle signaling pathways. In contrast, drugs related to low WM-
Score value mostly target apoptosis regulation and cell cycle signaling
pathways (Figure 6B). Taken together, these findings indicate that the
WM-Score values are related to drug reaction, and thus might offer a
framework to guide the treatment strategy of HCC.

Role of WM-Score Model in Predicting
anti-PD-1/L1 Immunotherapy
In recent years, immune checkpoint inhibitors (ICIs) have made
breakthroughs in the treatment of advanced HCC, while biomarkers

FIGURE 6 | Correlation of scoring model with drug reaction and immunotherapeutic response. (A). Spearman’s analysis was used to determine the correlation
between score and drug response in GDSC. (B). The association between drugs and targeted signaling pathways. (C). The difference in the score between
immunotherapeutic responder in the IMvigor210 cohort. (D). The percentage of patients with different responses (including SD, PD, CR, and PR) to PD-L1 blockade
immunotherapy. E-G. Total samples, or Stage I + II samples, or Stage III + IV samples in the IMvigor210 cohort all showed a significant difference in survival between
samples with high and low WM-Scores based on survival analysis.
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that could effectively predict the efficacy of immunotherapy are still
lacking. Herein, we explored whether the WM-Score model could
predict therapeutic response to ICI therapy in HCC patients. For the
IMvigor210 cohort, the therapeutic efficacy was significantly better in
patients with low WM-Score value compared to those with high
WM-Score value (Figure 6C). The frequency of response to anti-PD-
1/L1 treatment in the low WM-Score value group was higher than
that in the high WM-Score value group (Figure 6D). We also
analyzed the survival difference of all samples of IMvigor210 and
those under different stages. The results showed that total samples
(Figure 6E), or Stage I + II samples (Figure 6F), or Stage III + IV
samples (Figure 6G) all exhibited a marked difference in survival
between samples with high and low WM-Score value. Especially in
the prediction of high-stage clinical samples, the WM-Score value
demonstrated extremely high power. Collectively, our results proved
that the WM-Score model might serve as a potential predictor of
response to anti-PD-1/L1 immunotherapy.

DISCUSSION

A growing pool of evidence indicates that RNA modifications play a
key role in gene expression, whose disruption impacts the
pathogenesis of human disease, including cancer (Frye et al.,
2016). Although RNA modifications as genetic or epigenetic
alterations of genes are not traditionally considered as cancer
drivers, cumulative evidence suggests that abnormal RNA
modifications are functionally correlated with many hallmarks of
cancer, such as proliferation, invasion, migration, differentiation, self-
renewal, and response to therapy (Cui et al., 2017; Weng et al., 2018;
Jin et al., 2019).

For instance, N6-methyladenosine (m6A) is an RNAmethylation
that is themost abundant formof internalmRNAmodification. Yang
et al. reported the involvement of the m6A modification in the 3′-
UTR of oncogene CDCP1 mRNA in bladder cancer cell growth and
progression (Yang et al., 2019). Lang et al. indicated that the m6A
modification showed an important function in regulating the stability
of viral transcripts and EBV-mediated tumorigenesis (Lang et al.,
2019). Furthermore, Lan et al. reported that m6A methyltransferase
KIAA1429 was high expressed in HCC tissues and knockdown
KIAA1429 inhibited cell proliferation and metastasis in vitro and
in vivo (Lan et al., 2019). Chen et al. found the writer CPSF1 of APA
was significantly increased in HCC tissues and associated with poor
survival outcomes (Chen S.-l. et al., 2021). All these studies focused on
one or two modification regulators to explore their dysregulation,
function, and underlying mechanism in cancer, however, the
deposition of RNA modifications is a dynamic process involving
multiple modification regulators. In the present study, we
comprehensively described the molecular and biological features
of different regulators of RNA modifications and identified two
distinct RNA modification subtypes based on multiple
modification regulators. Importantly, the two subtypes (cluster 1
and cluster 2) are not only associated with clinical survival, but also
with the abundance of immune cell infiltration.

Considering the diversity and complexity of TME, the
thorough understanding of its implications in cancer is a
significant challenge. In recent years, some research groups

have documented that RNA modifications were closely
associated with TME. Shen et al. attempted to explore the role
of m6A regulators in HCC immune cell infiltration and prognosis,
and identified three m6A subtypes based on TCGA and GEO
database, which were related to three known immune phenotypes
(including immune-inflamed phenotype, immune-excluded
phenotype, and immune-desert phenotype) (Shen et al., 2021).
Chong et al. also discovered three m6A modification patterns
among 1,370 colon cancer cases, which were correlated with
different outcomes and TME characterization (Chong et al.,
2021). Three m6A modification patterns with distinct TME
cell-infiltrating characteristics were also determined in gastric
cancer (Zhang et al., 2020), lung adenocarcinoma (Li et al., 2020),
pancreatic adenocarcinoma (Tang R. et al., 2020), and gliomas
(Xu et al., 2020). Similar with our analysis, these studies were
based on a large number of samples in the subject database, such
as TCGA and GEO, in order to clarify the role of modification in
tumor immune regulation and progression. In our study, we
further identified two stable transcriptomic subtypes based on the
DGEs of the two RNA modification clusters. Especially, the
transcriptomic subtypes were significantly associated with the
immune cell activation and prognosis of HCC patients. Thus, the
systematical evaluation of RNA modification patterns provides
novel clues for understanding TME characterization in HCC. Gu
et al. found 3 m 5C regulator-mediated methylation modification
patterns based on the expression of 13 m 5C regulators which
were closely associated with different immune cell infiltration
characteristics in HCC (Gu et al., 2021). Shen et al. demonstrated
three m6A modification patterns which affect tumor immune
infiltrates and prognosis of patients with HCC (Shen et al., 2021).
Previous studies mainly centered upon one types of RNA
modification to explore their effect on TME. Here, we
performed a comprehensive analysis of multiple types of RNA
modification and highlights the cross-talk and the roles of RNA
modifications in the TME and response to immunotherapy.We
developed the WM-Score model to accurately predict the
prognostic value of the RNA modification in individual
patients. We found that this model could be applied to
assessing clinicopathological features, such as clinical grades
and TNM grades, and patients with higher clinical grades and
TNM grades usually had higher WM-Score value.

In addition, the RNA modification pattern with higher WM-
Score value tended to correlate with immune cell suppression in
the tumor microenvironment, while the pattern with lower WM-
Score value was usually associated with immune activation. In the
IMvigor210 cohort, WM-Scores model was found to be linked
with immune cell infiltration in TME as well as response to anti-
PD-1/L1 immunotherapy, suggesting the application potential of
WM-Score model for predicting HCC anti-PD-1/L1
immunotherapy.

CONCLUSION

In the present work, the RNA modification regulators were
comprehensively analyzed, and the correlation was
demonstrated between RNA modification patterns and cell-
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infiltrating characteristics in the TME. The systematic evaluation
of individual tumor RNA modification pattern might serve as a
useful predictor of prognosis for HCC patients and act as a
valuable tool for developing more effective immunotherapy
strategies.
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