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Remodeling of the extracellular matrix (ECM), which provides structural and biochemical
support for surrounding cells, is vital for adipose tissue regeneration after autologous fat
grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat
grafting by promoting neovascularization, regulating stem cells differentiation, and
suppressing chronic inflammation. The degradation and deposition of ECM are
regulated by various factors, including hypoxia, blood supply, inflammation, and stem
cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic
relationship between them. Although researchers have attempted to identify the cellular
sources of factors associated with tissue regeneration and regulation of the
microenvironment, the factors and mechanisms that affect adipose tissue ECM
remodeling remain incompletely understood. This review describes the process of
adipose ECM remodeling after grafting and summarizes the factors that affect ECM
reconstruction. Also, this review provides an overview of the clinical methods to avoid poor
ECM remodeling. These findings may provide new ideas for improving the retention of
adipose tissue after fat transplantation.
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1 INTRODUCTION

Autologous fat grafting, which is widely used to augment volume and restore contour during soft-
tissue reconstruction (Geeroms et al., 2019), has multiple advantages, including being minimally
invasive, readily available, and inexpensive (Spear et al., 2016). Moreover, autologous fat can be easily
harvested, and grafting can be performed multiple times, enabling its frequent use for filling and
reshaping contour anomalies during both breast reconstruction and aesthetic operations (Ruan et al.,
2019). Although the retention of grafted fat has become more predictable, it remains less than ideal
(Mineda et al., 2014; Yu et al., 2015), requiring an in-depth understanding of fat regeneration after
grafting and the development of various techniques to assist fat transfer (Cheriyan et al., 2014;
Khouri and Khouri, 2017). The mechanism underlying the retention of transplanted adipose tissue is
thought to involve a balance between successful (regeneration) and unsuccessful (cicatrization) tissue
remodeling (Yoshimura et al., 2011). The morphogenesis of adipose tissue results from a self-
organization process principally driven by simple mechanical interactions between adipocytes and
the adipose extracellular matrix (ECM), with regeneration after injury involving the same
mechanisms as regeneration after grafting (Peurichard et al., 2019). During the entire process of
fat tissue regeneration, adipose ECM not only undergoes dynamic remodeling but also provides
three-dimensional scaffolds for various types of cells and plays a pivotal role in optimizing outcomes,
especially during the period of adipogenesis and angiogenesis (Kato et al., 2014). Therefore,
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improved understanding of the components, sources, and
functions of adipose ECM, and optimizing the conditions
affecting these factors, may facilitate the development of
clinical strategies to improve the long-term retention of
engrafted fat (Strong et al., 2015). This review focuses on the
relationship between ECM remodeling and the
microenvironment, a relatively neglected phenomenon during
ECM reconstruction after fat grafting. This review also provides
an overview of the potential consequence(s) of fat grafting and
discusses its clinical applications.

2 WHAT HAPPENS IN THE ADIPOSE
EXTRACELLULAR MATRIX DURING FAT
GRAFTING?
2.1 Adipose Extracellular Matrix
Composition
Adipose ECM is comprised of complex structural and functional
proteins, including collagen types I–VII, XVIII; non-collagenous
proteins such as osteopontin, hyaluronan, and thrombospondin;
and various types of adhesion proteins, such as fibronectin,
laminin, proteoglycans, and elastins (Alkhouli et al., 2013;
Aikio et al., 2014; Saunders et al., 2015; McKee et al., 2019).

Collagen, primarily collagen types I, III, IV, VI, and XVIII, are
the most abundant proteins in the pericellular basement
membrane and interstitial fibers of adipose tissue (Nakajima
et al., 2002; Mariman and Wang, 2010; Mori et al., 2014; Liu
et al., 2020). Type I collagen provides the main complex
framework needed to maintain the structure and function of
mesenchymal tissue (Liu X. et al., 2018). Type IV collagen, which
is located below the vascular endothelial cell layer and acts as the
basement membrane of the adipocyte region, provides binding
sites for bioactive molecules, regulates cell behavior, and plays
other important roles as a structural and functional protein
(Streuli, 1999; Brown et al., 2011). Type VI collagen, which
consists of three subunits, α1, α2, and α3, necessary for stable
protein formation, provides a structural framework for adipose
tissue formation (Theocharidis et al., 2016). Type VI collagen
may also act as a fibrotic component that restricts adipose tissue
expandability (Kokai et al., 2019). Studies in collagen VI knockout
mice have shown that in the presence of expanding adipocytes,
restricted ECM, mainly collagen VI, resulted in inflammation,
hypoxia, and insulin resistance (Lawler et al., 2016). In addition,
elimination of the increased collagen VI in adipose tissue under
conditions of obesity resulted in healthier adipocytes (Sorisky
et al., 2013). Type XVIII collagen is a ubiquitously expressed and
structurally complex basement membrane proteoglycan, which
supports pre-adipocyte differentiation and maintains the
differentiation state of adipocytes (Aikio et al., 2014; Petäistö
et al., 2020).

In addition to collagen, fibronectin and laminin participate in
forming networks and provide attachment points for integrins
anchored in the adipocyte membrane (Pope et al., 2016).
Fibronectin is a ubiquitous and abundant adipose ECM
protein, and a constituent of the primary mechanical
structural fiber in adipose tissue (Lee et al., 2013; Zhang et al.,

2020). Fibronectin has been shown to enhance cell adhesion,
proliferation, and migration, as well as stem cell differentiation,
including adipose conversion during adipose tissue development
(Lee et al., 2013; Zhang et al., 2020). Laminin is a major
component of the basement membrane, along with collagen I
and collagen IV, spreading tightly over adipocytes (Vaicik et al.,
2014; Zhang et al., 2020).

2.2 Adipose Extracellular Matrix
Remodeling Process After Fat Grafting
Throughout the entire process of fat grafting, the physiological
state of fat tissue is disrupted, and the ECM goes through a
program involving its degradation, synthesis, and deposition.
Significant changes in the ECM alter the physiological
functions of the encapsulated cells, including stem cells,
mature adipocytes, endothelial cells, and fibroblasts, ultimately
affecting the retention rates of fat grafts (Cai et al., 2017; Zhang
et al., 2020).

Specifically, liposuction at the donor site disrupts the integrity
of adipose tissue, with ECM fibers cut into small pieces, and some
mature adipocytes and partly regeneration-related cells detaching
from the highly complex framework of the ECM (Sun et al., 2013;
Khouri et al., 2014a). The lipoaspirates injected into the recipient
area subsequently experience severe ischemia and hypoxia. Local
hemorrhage at the injured recipient tissue activates platelet
cascade reactions, resulting in the release from activated
platelets of platelet-derived growth factor (PDGF), epidermal
growth factor (EGF), and transforming growth factor-β (TGF-
β) (Aiba-Kojima et al., 2007). The surviving adipocytes are
covered by platelets, which rapidly coagulate, forming a clot at
the injection site within a few hours. The thin layers of fibers
(fragile collagen) secreted by platelets form a loose connection
between adipose lobules and each other within 1 day (Cai et al.,
2017). Simultaneously, basic fibroblast growth factor (bFGF),
tumor necrosis factor-α (TNF-α), TGF-β, EGF, damage-
associated molecular pattern molecules, and some proteases
are likely released by dying cells, as well as by the “broken”
ECM and injured host tissue (Soulez et al., 2010; Peurichard et al.,
2019). These factors activate mesenchymal stem cells, including
adipose-derived stem cells (ASCs) and bone marrow
mesenchymal stem cells (BMSCs), which recruit inflammatory
cells (mainly neutrophils and macrophages) and endothelial
progenitor cells, all of which play pivotal roles in the repair
process (Suga et al., 2010; Yoshimura et al., 2011; Kato et al.,
2014). For example, ASCs cooperate with pericytes and
endothelial cells, both cells being partly derived from ASCs, to
induce neovascularization in the grafts and form larger vessels
that connect the grafts and recipient areas (Han et al., 2018). Then
infiltrating neutrophils, granulocytes, and macrophages promote
the clearance of free oil and the phagocytosis of dead cells
following fat grafting, enhancing angiogenesis and
adipogenesis (Phipps et al., 2015; Liu et al., 2018a). Moreover,
these inflammatory reactions significantly stimulate the synthesis
of several ECM proteins, including collagen, fibronectin, laminin,
and elastins, by surviving cellular components, such as ASCs,
preadipocytes, and adipocytes (Mariman and Wang, 2010; Lu
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et al., 2011; Zhang et al., 2020). Subsequently, most fat lobules are
surrounded by a temporary network of collagen fibers, which are
secreted by platelets and myofibroblasts within 3 days (Luo et al.,
2016) (Figure 1). Until day 7, these fragile collagen fibers
gradually thicken and form a complete ECM framework, with
electron microscopy showing that almost all adipocytes were
embedded in this newly formed cytoskeleton in the regenerating
zone (Cai et al., 2017). However, a different process is observed in
the core/necrotic zone, in which adipose tissues are loosely
connected and collagen fibers are more fragile, thus preventing
the establishment of a complete ECM framework (Kato et al.,
2014; Khouri and Khouri, 2017) (Figure 2).

During the whole remodeling process of adipose ECM, the
dynamic balance between matrix metalloproteinases (MMPs)
and their inhibitors, tissue inhibitors of metalloproteinases

(TIMPs), plays a vital role in ECM degradation (Lin et al.,
2016). MMPs are a family of calcium-dependent and zinc-
containing endopeptidases that digest ECM proteins under
both physiological and pathological conditions, resulting in the
degradation and turnover of connective tissue and basement
membrane proteins, such as collagens, proteoglycans, and
elastin, as well as several circulating and cell surface
components, thereby regulating cell behavior in numerous
ways (Stamenkovic, 2003; Li et al., 2020). To date, 23 MMPs
have been identified in human tissues; these proteins can be
categorized as soluble-type (ST-MMPs) and membrane-bound
type (MT-MMPs) (Sternlicht and Werb, 2001; Berg et al., 2019
Feb).Whereas ST-MMPs are secreted and diffuse directly into the
ECM, MT-MMPs are bound to the plasma membrane and exert
their enzymatic function(s) at the cell surface. The MMP most

FIGURE 1 | Dynamic regulation of adipose ECM within 72 h after fat grafting. Local hemorrhage after injection of fat grafts at the recipient area activates platelet
cascade reactions. The adipocytes are covered by platelets and form clots within a few hours. The thin layers of fibers (fragile collagen) secreted by platelets and
myofibroblasts form a loose connection between adipose lobules and “broken” ECM within 24 h. During this period, dying adipocytes, SVF, and “broken” ECM secrete
various cytokines, including bFGF, TNF-α, TGF-β, and EGF; damage-related molecular pattern molecules; and some proteases, primarily MMPs and TIMPs. These
factors recruit inflammatory cells (mainly neutrophils and macrophages), activate regenerative cells (such as stem cells and endothelial cells), and promote ECM
synthesis, all of which play pivotal roles in the regeneration process. Abbreviations: SVF, stromal vascular fraction; bFGF, basic fibroblast growth factor; TNF-α, tumor
necrosis factor-α; TGF-β, transforming growth factor-β; EGF, epidermal growth factor; MMPs, matrix metalloproteinases; TIMPs, tissue inhibitors of metalloproteinases.
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enriched in adipose tissue is MMP14, a key pericellular
collagenase that can produce endotrophins (ETP) (Zhao et al.,
2016; Li et al., 2020). ETP is a potent co-stimulator that triggers
fibrosis, macrophage accumulation, and inflammation by
digesting COL6α3, which accumulates in hypoxic adipose
tissue (Park and Scherer, 2012). ETP can also digest collagens
to prevent over-accumulation of the ECM in fat tissue and make
room for new blood vessels, thus promoting the healthy
regeneration of adipose tissue (Li et al., 2020). Mice with a
heterozygous deletion of the gene encoding MMP-14 cannot
undergo regular ECM reconstruction, reducing their fat
regeneration ability (Chun et al., 2010). After fat grafting,
MMP14 plays a vital role in maintaining mechanical stresses,
allowing healthy ECM digestion/remodification, including
ameliorated inflammation and fibrosis, as well as improved
glucose and lipid metabolism (Nacu et al., 2008; Chun et al.,
2010). Other MMPs are also important for degrading collagen
and participate in vasculature remodeling, angiogenesis,
inflammation, and atherosclerotic plaque rupture (Catalán
et al., 2012). MMP-12 is the major MMP that degrades elastin

in mice, whereas both MMP-3 and MMP-10 degrade fibronectin;
laminin; gelatins-I, III, IV, and V; collagen fibers; and
proteoglycans (Filippov et al., 2003; Ruiz-Ojeda et al., 2019).
MMP-2 and MMP-9 have been shown to be necessary for
degradation of adipose ECM, with rapid degradation of these
damaged ECM being the first step in the angiogenic process
during remodeling (Miksztowicz et al., 2017; Berg et al., 2019
Feb). Moreover, MMP-2 and MMP-9 synthesis and release are
increased during adipocyte differentiation in mice. Preadipocyte
treatment with MMPs-2 and -9 inhibitors markedly decreased
adipocyte differentiation, suggesting that MMPs-2 and -9 could
profoundly affect the behavior of cells residing on the ECM by
altering ECM components (Bouloumié et al., 2001). MMP-7 and
MMP-26 hydrolyze fibronectin/gelatins and digest human
plasminogen, generating a fragment that inhibits angiogenesis,
which may lead to poor adipogenesis after grafting (Maquoi et al.,
2002; Hopps and Caimi, 2015).

MMPs are inhibited by specific endogenous TIMPs, a family of
four protease inhibitors: TIMP-1, -2, -3, and -4 (Brew et al., 2000).
TIMP-1 mostly inhibits ST-MMPs, whereas TIMP-2 can inhibit

FIGURE 2 | Adipose ECM remodeling ≥7 days after fat grafting. In an environment of healthy adipose ECM remodeling, the establishment of a new vascular
network is accompanied by gradual thickening of the fragile collagen fibers, forming a complete ECM framework (left). Almost all adipocytes were embedded in this
newly formed cytoskeleton, after which the inflammation subsides gradually. By contrast, in an environment of poor adipose ECM remodeling (right), excessive
deposition of ECM is observed, increasing adipose tissue stiffness (right, above). Although high tissue stiffness can promote the migration of ASCs, it will inhibit the
formation of new blood vessels. Due to poor neovascularization, oil cysts form and are surrounded bymacrophages. Alternatively, the insufficient synthesis of ECM (right,
below) can result in adipose lobules not being tightly embedded in the ECM framework. These floating fat cells will release oil droplets after necrosis, recruiting an excess
number of macrophages and inducing chronic inflammation.
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both ST- and MT-MMPs, with deletion of the gene encoding
TIMP-2 inhibiting MMP14 (MT1-MMP)-dependent MMP2
activation (Chun et al., 2004; Kandalam et al., 2010). TIMP3
inhibits the DLK1 sheddase ADAM17 and MMP14, which has
been implicated in ECM turnover, thereby modulating sDLK1
shedding and collagen I degradation (Fenech et al., 2015). TIMP3
expression is downregulated during adipogenesis and by
inflammatory signals in adipocytes (Bernot et al., 2010).
Although TIMPs may act as endogenous inhibitors of MMPs
that are responsible for degrading excess ECM, it remains unclear
whether the beneficial effects of increased TIMP activities are due
solely to their suppression of MMP activities and their increase in
ECM stability. Alternatively, beneficial effects of increased TIMP
activities may be due to their targeting of other molecules,
including ADAM (a disintegrin and metalloproteinase) and
ADAMTS (ADAM with a thrombospondin type-1 motif)
(Murphy, 2011).

The synthesis of ECM is the main process occurring in the
recipient area during fat grafting. Relatively little is known,
however, about the dominant cell type responsible for the
synthesis of ECM. TGF-β1 was found to activate fibroblasts,
resulting in the expression of the myofibroblast marker α-smooth
muscle actin (α-SMA) and the production of ECM (Worthen
et al., 2020). The fat regeneration process after grafting is partly
similar to the tissue regeneration process during wound healing
(Yoshimura et al., 2011; Kato et al., 2014; Horsley andWatt, 2017;
Plikus et al., 2017). According to the classical view of skin wound
healing, fibroblasts recruited from the dermis of intact skin
adjacent to the site of inflammation promote wound healing
and tissue repair by differentiating into myofibroblasts and
depositing ECM (Shook et al., 2018). However, the expression
of α-SMA during ECM production is not unique to a specific
subset of fibroblasts. According to the fibrosis model of the liver,
kidneys, and lungs, epithelial cells express α-SMA following
dedifferentiation during the process of epithelial-mesenchymal
transition, suggesting that epithelial cells may be the source of
myofibroblasts (Iwano et al., 2002). Use of a pericyte fate
mapping-technique showed that adult spinal cord scar-
forming cells are derived from pericyte progeny, indicating
that pericytes are the cellular origin of fibrosis (Göritz et al.,
2011). Myofibroblasts expressing α-SMA may therefore
differentiate from a variety of cells, including fibroblasts,
astrocytes (Villesen et al., 2020), pericytes (Humphreys et al.,
2010), epithelial cells (Radisky et al., 2007), endothelial cells
(Soucy and Romer, 2009), and stem cells (Desai et al., 2014).

The quantitative contribution of different cell types to ECM
deposition in adipose tissue is difficult to determine. Treatment of
human ASCs with TGF-β1 increased their expression of α-SMA
and induced their differentiation into myofibroblasts, which
increased ECM gene expression (Kakudo et al., 2012), with a
subset of myofibroblasts that express CD26 reported to
contribute to ECM deposition (Shook and Rodeheffer, 2017).
Experiments in adipose tissue obtained from obese people have
shown that contact between preadipocytes and inflammatory
cells in adipose tissue may contribute to the synthesis of
selective ECM molecules, suggesting that preadipocytes play a
role in the formation of interstitial fibrosis (Keophiphath et al.,

2009). Stimulation of human preadipocytes with macrophage
secretions was shown to enhance the synthesis of collagen,
fibronectin, and fibrous depots (Divoux and Clement, 2011).
Furthermore, cells in white adipose tissue (WAT) expressing
PDGFRα, Gp38, CD29, and CD34 have strong regeneration
ability, indicating that these cells have adipogenic potential
and are involved in proliferation and fibrosis (Marcelin et al.,
2017). Moreover, these cells can be subdivided according to their
level of expression of CD9. CD9high cells express genes related to
ECM deposition and have a greater fibrotic ability than CD9low

cells (Marcelin et al., 2017). These findings indicate that the
synthesis of ECM during adipose tissue regeneration is not
dominated by a single cell type, but may be completed by the
cooperation of multiple cell types. Among them, the
myofibroblasts that express CD26 and the preadipocytes that
express high levels of CD9 may be the main cell types responsible
for ECM synthesis (Marcelin et al., 2017; Shook and Rodeheffer,
2017).

3 FACTORS AFFECTING EXTRACELLULAR
MATRIX REMODELING

The process of ECM remodeling after grafting is regulated by
their cellular contexts and microenvironments (Hyldig et al.,
2017) (Figure 3).

3.1 Hypoxia and Inflammation
Hypoxic conditions are critical for ECM formation and
remodeling in successful soft-tissue repair (Steinbrech et al.,
1999). Adipose tissue has the highest (50–60 mmHg) partial
oxygen tension (pO2) among organs. After grafting, adipose
tissue enters a state of severe ischemic hypoxia (such as pO2 <
15 mmHg) (Yoshimura et al., 2011). A recent study performed in
HIF-1a knockout mice suggests that hypoxia is a powerful trigger
of ECM remodeling, significantly affecting the ECM proteins
synthesized by preadipocytes, as well as cell metabolism,
including the secretion of high concentrations of elastase,
cathepsin G, and/or MMPs (Pham, 2006; Keophiphath et al.,
2009; Lu et al., 2011). Adequate hypoxia was shown to not only
promote the proliferation and migration of ASCs (differentiable
preadipocytes) and their secretion of growth factors (Chung et al.,
2009; Chen et al., 2016; Riis et al., 2016), but to enhance the
synthesis of ECM components, resulting in fibrosis (Sun et al.,
2013). Hypoxia activates genes encoding collagen prolyl (P4HA1
and P4HA2) and lysyl (PLOD2) hydroxylases expression through
hypoxia-inducible factor-1 (HIF-1) (Gilkes et al., 2013; Pang
et al., 2020). P4HA1 and P4HA2 are necessary for collagen
synthesis and regulate the proper 3D folding of newly
synthesized procollagen chains (Aro et al., 2015). PLOD2
mediates remodeling of the ECM by adjusting its
alignment, composition, and mechanical properties (Rosell-
García et al., 2019). Hypoxia was also found to up-regulate the
expression of the α-1 chain of collagen types 1, 3, and 7. The
α-1 chain of collagen type 3 has been linked to the formation
of type I collagen, the crucial component of the ECM (Dong
et al., 2018).
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Severe hypoxia may play a fundamental role in the initiation of
inflammation (Crewe et al., 2017). At present, neutrophils are
believed to be one of the first types of cells recruited to trauma
sites and are regarded as frontier inflammatory cells that initiate
the regulation of inflammation downstream of fat grafting, and to
play a key role in acute inflammation after fat transplantation (de
Oliveira et al., 2016; Friedman et al., 2017; Liu et al., 2018a)
(Figure 1). Neutrophils react quickly with and migrate to
damaged tissue sites in response to molecular chemical
inducers, including (C-X-C motif) ligand (CXCL) 1 to 3,
macrophage inflammatory protein-1α, C5a, and leukotriene B4
(Sadik et al., 2011; Lehman and Segal, 2020). At these sites,
neutrophils phagocytize cell fragments and bacteria, forming
neutrophil extracellular traps (Nets) and releasing reactive
oxygen species (ROS), antimicrobial peptides, and serine

proteases to remove necrotic and damaged tissue (Wilgus
et al., 2013). Neutrophils also secrete large numbers of
cytokines and pro-inflammatory factors, including interleukin
(IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1 (MCP-
1), and CXCL1, which regulate inflammatory responses and
induce immune cells (Trayhurn, 2014), mainly monocytes, to
migrate to the anoxic zone, where they differentiate into pro-
inflammatory macrophages (Pasarica et al., 2009; O’Rourke et al.,
2011; Fujisaka et al., 2013). Neutrophils were shown to regulate
angiogenesis by secreting MMP-9 (Deryugina et al., 2014).
Moreover, high levels of neutrophils were found to be
associated with enhanced angiogenesis (Dumitru et al., 2012;
Tazzyman et al., 2013; Kim and Bae, 2016), which is crucial to
adipose ECM remodeling (Lee et al., 2021). However,
upregulation of neutrophils was recently found to lead to

FIGURE 3 | ASCs, macrophages, and the regulation of adipose ECM remodeling after grafting. ASCs have the potential to differentiate into preadipocytes and
myofibroblasts. M2macrophage signals promote the adipogenesis of preadipocytes (e.g., osteopontin) and are suppressed byM1macrophage signals (e.g., IL-6, TNF-
α). The ECM synthesis potential can trigger the myofibroblast phenotype in ASCs by M1macrophages signals (e.g., TGF-β, TNF-α). Adipocyte death will release profuse
oil droplets, which activate M1 macrophages, promote abnormal ECM deposition, and induce the formation of myofibroblasts. Hypoxia stimulates
neovascularization, which is beneficial to the synthesis of ECM and promotes healthy adipogenesis. Abbreviations: IL-6, interleukin-6; TGF-β, transforming growth
factor-beta; TNF-α, tumor necrosis factor-alpha; M1 macrophages, classically activated macrophage; M2 macrophages, alternatively activated macrophage.
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increased secretion of ROS and severe tissue damage, whereas
downregulation of neutrophils reduced the expression of MMP-9
and inhibited angiogenesis (Souza et al., 2013; Chakraborty et al.,
2020; Fetz et al., 2021). These findings suggested that the
depletion and upregulation of neutrophils during early stages
of fat transplantation impaired their long-term retention,
indicating that undisturbed neutrophil function is the key to
initiating downstream reactions that lead to the survival and
evolution of transplanted fat grafts (Liu K. et al., 2018).

Three days after fat grafting, the numbers of neutrophils began
to decrease and the numbers of macrophages began to increase,
with macrophages becoming the main inflammatory cell
component of fat grafts (Cai et al., 2017; Cai et al., 2018; Roh
and Orgill, 2018). Macrophages play essential roles in fat
regeneration after transplantation by, for example, removing
apoptotic and necrotic cells, regulating angiogenesis,
differentiating adipocyte precursors, and, especially, regulating
collagen synthesis during early stages and remodeling the ECM
during later stages (Schipper et al., 2012) (Figure 2). During the
process of ECM remodeling, macrophages can significantly
stimulate preadipocytes to synthesize several ECM proteins
(Keophiphath et al., 2009); secrete high levels of elastase,
cathepsin G, and MMPs; and degrade the ECM (Lu et al.,
2011). Moreover, changes in polarization and cell density can
allow macrophages to secrete large amounts of type VI collagen,
leading to graft fat fibrosis (Schnoor et al., 2008).

During the first week after transplantation, grafts seem to enter
an “inflammatory phase”, similar to that after wound injury (Koh
and DiPietro, 2011; Nissinen and Kähäri, 2015; Kim and Nair,
2019; Kloc et al., 2019). During this “inflammatory phase”, most
M1 macrophages become polarized and express high levels of
TNF-α, whereas pathogens and dead cells are cleared by
neutrophils and macrophages (Cheng et al., 2019). M1
macrophages have phagocytic activity, produce pro-
inflammatory mediators, and promote the fibrotic
environment of local tissue (Werner and Grose, 2003; Wang
et al., 2018). After grafting, M1 macrophages promote ECM
remodeling by engulfing cellular debris, digesting damaged
ECM components, and inducing the transformation of
fibroblasts into ECM-secreting myofibroblasts by producing
cytokines, including PDGF, TGF-β, and insulin-like growth
factor (IGF)-1 in the grafts (Duffield et al., 2013). In addition,
the M1 phenotype also can directly activate M1 factors, which
drive a “feed-forward” state of inflammation and remodeling (IL-
1b), and increase the production of MMPs and TIMPs, which
drive ECM remodeling (Brown et al., 2012) (Figure 3).

Grafts are regarded as entering the “regeneration phase”
2–12 weeks after transplantation (Phipps et al., 2015). M2
macrophages gradually become the main macrophage group,
producing high levels of TGF-β and secreting a large number
of angiogenic factors, such as vascular endothelial growth factor
(VEGF), bFGF, andMMPs, a process involving RhoA/Rho kinase
signaling and the induction of endothelial cell migration (Hoang
et al., 2004) (Figure 3). This period is characterized by active
adipogenesis and the gradual maturation of new microvascular
networks (Seaman et al., 2016; Cai et al., 2018; Roh and Orgill,
2018). In addition, M2 macrophages can regulate or reverse the

abnormal accumulation of ECM by secreting MMPs and other
M2 factors, such as IL-10, RELMα, and Arg-1 (Brown et al.,
2012). Mounting research suggests that the ECM remodeling of
transferred fat is position-dependent and that M2 macrophages
dominate in the deposition of ECM (Liao et al., 2011; Cai et al.,
2017; Motz et al., 2021). The SEM results suggested that single
dead adipocytes in the surviving zone are phagocytized by M1
macrophages, without excessive ECM deposition (fibrosis). By
contrast, a mass of dead adipocytes in the regenerating and/or
necrotizing zones are surrounded by an innermost single layer of
M1 macrophages and outer multilayered M2 macrophages. This
process is accompanied by the clearance of free oil and the
phagocytosis of dead cells by M1 macrophages, along with
excessive fibrosis by M2 macrophages (Kato et al., 2014).

Depletion of macrophages from fat grafts was shown to block
angiogenesis and delay ECM remodeling by reducing MMP-2
expression (Debels et al., 2013; Cai et al., 2018). Moreover, low
macrophage levels resulted in the downregulation of collagen
synthesis and decreased collagen types I and VI expression,
thereby inhibiting ECM deposition (Cai et al., 2017). By
contrast, high macrophage levels at the early stage have been
associated with increased angiogenesis and hematopoietic stem
cell recruitment, enhancing ECM reconstruction and improving
the survival rate of fat grafts (Roh and Orgill, 2018). In addition,
upregulation of macrophage levels is time-dependent, and the
excessive accumulation of early inflammatory cells may lead to
extreme degradation of ECM (Cai et al., 2017). In comparison,
the persistence of hyper-macrophages after the “regeneration
phase” of transplanted fat seems to lead to excessive fibrosis,
suggesting the need to control macrophage levels within a
moderate range (Mineda et al., 2014).

3.2 Angiogenesis
Scanning electron microscopy (SEM) has shown that ECM
remodeling is strongly linked to location and blood supply
(Cai et al., 2017). After grafting, the fat lobules are closely
embedded in the ECM framework around the capsule, where
the survival area is located, with immunostaining showing high
levels of type I collagen expression around the capsule. In the
regenerated area, the adipose tissue seems to be less condensed,
whereas in the necrotic area, the complete ECM framework has
not yet been established, and the area positive for type I collagen is
significantly reduced (Cai et al., 2017). These findings suggest that
ECM remodeling after fat grafting is in agreement with the
classical “three-zone” hypothesis, suggesting the importance of
angiogenesis to ECM deposition (Eto et al., 2012). Stimulation of
hypoxia promotes neovascularization through the angiogenesis
induced by hypoxia-inducible factors-1α (HIF-1α) and 2α (HIF-
2α) (Zhang et al., 2010; García-Martín et al., 2016) (Figure 3). An
important determinant of their difference in activity is the
abundance of specific PHD enzymes, which differ in specific
proline hydroxylation sites on HIFα isoforms (Appelhoff et al.,
2004). Moreover, they can interact with each other to induce
angiogenesis. Interestingly, HIF-1α alone is unable to induce an
effective pro-angiogenic response in adipose tissue. Although
HIF-1α and HIF-2α have overlapping effects on aspects of
angiogenesis and ECM remodeling, increasing evidence
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indicates that HIF-1α and HIF-2α play unique roles in tissue
regeneration (Skuli et al., 2009). HIF-1α can increase expression
of VEGF, PDGF, and nitric oxide synthase (NOS) (Feng et al.,
2016), whereas HIF-2α is thought to regulate the expression of
Tie2 (the receptor tyrosine kinase for angiopoietin, Ang1, and
Ang2), integrin, VEGF, VEGF receptor-1 (Flt-1), and VEGF
receptor-2 (Flk-1), and can reduce inflammatory states (Skuli
et al., 2009; Sun et al., 2013; Lee et al., 2014). Together with HIF-
2α, HIF-1α facilitates cellular adaptation to hypoxia and oxygen
delivery by stimulating angiogenesis, erythropoiesis, and
anaerobic glucose metabolism, thereby effectively promoting
adipose tissue regeneration (Rankin et al., 2007).

Neovascularization during the regeneration stage after fat
grafting depends on physical ECM guidance cues and is
regulated by pro-angiogenic factors, such as VEGF, PDGFs,
and bFGF (Siegel-Axel et al., 2014). Specifically, ASCs secrete
MMPs (mainly MMP-2 and MMP-9) and cathepsins to further
break down the ECM, liberate pericytes and endothelial cells from
cell niches, and convert the characteristics of the basement
membrane into a pro-angiogenic environment (van Dongen
et al., 2019). In addition, the degradation of ECM also releases
TGF-β and various growth factors, such as VEGF and bFGF, from
immobilized matrix stores (Plaks et al., 2015). As a vital regulator
of physiological angiogenesis, VEGF promotes the growth of
endothelial cells in vitro and causes angiogenesis in vivo.
VEGF plays a key role in preventing endothelial cell apoptosis,
regulating vascular permeability and inducing endothelial
fenestration in some vascular beds (Lin et al., 2017). TGF-β
and PDGF are important regulators in the process of
maintaining proper vascular function by coverage of mural
cells and facilitating vessel maturation. They can up-regulate
VEGF-A mRNA expression, and might act in concert to
regulate angiogenesis and ECM production (Itoh et al., 2012).
In addition, PDGF can stabilize endothelial cell channels by
recruiting PDGF receptor-β pericytes (Lin et al., 2017). Thus,
the intimate homeostatic interactions among MMPs, pro-
angiogenic factors, and other components of the ECM are
critical in promoting the survival, migration, and proliferation
of endothelial cells and their eventual differentiation into
functional tubular networks (Van der Donckt et al., 2015).

In addition to increasing the rigidity of the vascular system,
adipose ECM can directly promote or inhibit angiogenesis.
Neovascularization and capillary morphogenesis after fat grafting
partly depend on the balance between degradation and synthesis of
the surrounding ECM (Lee et al., 2021). Formation of a stiffness-
appropriate (∼2–4 kpa) network of collagen fibers within 7 days after
fat grafting might promote the migration, proliferation, and
differentiation of endothelial cells into functional tubular networks
and the formation of functional blood vessels, which are essential for
subsequent adipogenesis and tissue remodeling (Kniazeva and
Putnam, 2009; Li et al., 2019). By contrast, excessive ECM
deposition can affect the angiogenic properties of adipose tissue
(Mongiat et al., 2016). For example, type IV collagen, a major
vascular basement membrane protein, was found to inhibit initial
neovascular sprouting during angiogenesis (Delaney et al., 2006).
Another ECM component that plays a role in this process is type VI
collagen, the main component of oil cyst walls that form after

grafting. These ECM components are expected to stiffen tissue,
making them less suitable for the proliferation of capillaries and
the expansion of adipocytes (Kniazeva and Putnam, 2009; Kobayashi
et al., 2020). Ultimately, a decrease of capillary density in new adipose
tissue will negatively affect remodeling of the ECM, forming a vicious
circle (Sun et al., 2013).

3.3 Adipose-Derived Stem Cells
ASCs are found within the stem cell niche and are surrounded by
the ECM (Pope et al., 2016). In this specialized
microenvironment, ECM proteins and various soluble factors
regulate cell phenotype via the assembly of integrins, focal
adhesions, and cytoskeletal reorganization to control the fates
of ASCs (Rozario and DeSimone, 2010; Mecham, 2012; van
Dongen et al., 2019) (Figure 3). ASCs, in turn, are closely
associated with the composition, stiffness, and ligand pattern
of the ECM (Flaim et al., 2008; Rozario and DeSimone, 2010;
Choi et al., 2012; Harvestine et al., 2018).

The stiffness of adipose ECM plays a crucial role in cellular
behavior, including the migration, proliferation, and
differentiation of ASCs through mechanical transduction
pathways. ECM deposition could increase adipose tissue
stiffness, which promotes the migration of ASCs by up-
regulating the expression of cell migration-related proteins
CDC42, RhoA, and dynamin (Zhang et al., 2020). However,
excessive stiffness could affect the differentiation of ASCs,
inhibiting their ability to differentiate into adipocytes and
promoting the fibrosis of adipose tissue (Li et al., 2019).

The composition of ECM proteins secreted by ASCs undergoing
remodeling during adipogenesis in vitro changes dynamically from
fibronectin-rich to laminin-rich (Zhang et al., 2019). Similar results
were observed in vivo, in that the cells moved from the growth phase
to the differentiation phase, while the ECM transitions from a fibrillar
to a laminar structure (Cai et al., 2016). Laminin has been shown to
enhance adipogenesis (Hoshiba et al., 2010). Upregulation of laminin
expression during the early stage has been found to initially increase
the expression of type I collagen, but later to decrease its expression
significantly (Mariman and Wang, 2010), followed by the alteration
of ECM components from fibrillary collagen types I, III, and V to
basement membrane types IV and VI(Mor-Yossef Moldovan et al.,
2019). The components and proteins secreted by ASCs and
preadipocytes optimized ECM remodeling and produced critical
biochemical and physical signals (Morissette Martin et al., 2018).
Exosomes derived from human adipose mesenchymal stem cells
(hASCs-Exos) can be recruited to soft-tissue wound areas of a mouse
skin incisionmodel, increasing the production of collagen types I and
III during early stages (Hu et al., 2016). During later stages, exosomes
may reduce fibrosis by inhibiting the expression of collagen. ASCs
have the potential to differentiate into fibroblasts (Hong et al., 2013;
Ebnerasuly et al., 2017; Zhou et al., 2018), with VEGF promoting the
differentiation of ASCs into fibroblasts and keratinocytes in vivo (Zhu
et al., 2021). Moreover, the addition of fibroblast growth factor
(FGF)-2 and ascorbic acid-2-phosphate can permanently induce
the transition of ASCs into fibroblasts in vitro (Adams et al.,
2012). When compared with primary fibroblasts, fibroblasts
differentiated from ASCs were found to produce higher levels of
healthy ECM markers, including elastin, fibronectin, and type I
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collagen (Gersch et al., 2020). ASC supplementation in an animal
model of cell-assisted lipo-transfer was found to alter inflammatory
processes, promote a favorable microenvironment for angiogenesis,
contribute to a more rapid recovery from hypoxia and ischemia, and
reduce the excessive deposition of collagen (Hong et al., 2018).

4 TWO SITUATIONS OF POOR
REMODELING OF ADIPOSE
EXTRACELLULAR MATRIX AFTER
GRAFTING: INSUFFICIENT AND
EXCESSIVE

Dysfunction of ECM remodeling during fat graftingmay significantly
affect graft retention rates. Insufficient synthesis of ECM will likely
reduce graft retention rates, whereas excessive deposition of the ECM
does not seem to be ideal for new fat regeneration (Cai et al., 2017).
Remarkably loose, disorganized adipose tissue and an increase in
adipocyte size have been observed in ColVI−/−ob/ob mice,
suggesting that deficient synthesis of Col VI may lead to
uncontrolled adipocyte expansion and a disordered structure after
grafting (Divoux and Clement, 2011). Type I collagen played a
positive role in the activation of YAP, promoting the
differentiation of preadipocytes into myofibroblasts, which is
regarded as a key culprit in fibrosis. These findings suggested that
excessive Col I may inhibit adipogenesis via activation of YAP
signaling (Liu X. et al., 2018; Xu et al., 2019; Liu et al., 2020).
Rather, excessive ECM deposition will likely lead to fibrosis,
eventually resulting in oil cyst formation and progressive
calcification, outcomes much worse than a lack of retention (Juhl
et al., 2018; Ørholt et al., 2020). These situations have been reported
frequently and always occur in some parts of the “regenerating zone”
and throughout the “necrotic zone” (Kato et al., 2014). Predictably, oil
cysts and calcifications (central fat necrosis) occur when fat is grafted
in large droplets (>3mm) and when the microenvironment around
the transplanted fat does not properly improve within the first 72 h
(Suga et al., 2010; Yoshimura et al., 2011). Interestingly, single
necrotic adipocytes are surrounded by fat cell-sized oil droplets
and are phagocytized by a single layer of M1 macrophages,
leaving almost no trace. By contrast, large areas of dead
adipocytes surrounded by large oil droplets are, in turn,
surrounded by multiple, stratified macrophages, consisting of an
internal monolayer ofM1macrophages and an external multilayer of
M2 macrophages, which form a crown-like structure (Eto et al.,
2012). Locally persistent inflammation results in high levels of M2
macrophages surrounding oil cysts, inducing monocytes to produce
angiogenic and fibrotic cytokines, including IL-4, IL-10, IL-13, and
TGF-β1 (Wick et al., 2013). Recent studies suggest that M2
macrophages may be key contributors to fibrogenesis and
calcification (Braga et al., 2012; Bility et al., 2016; Hou et al.,
2018). Thus, excessive ECM deposition, including fibrotic oil cysts
and calcifications after fat grafting, may result from the
overexpression of collagen types IV and VI, induced by
upregulated M2 macrophages and fibrotic cytokines (Kim et al.,
2015). The microenvironment of the walls of the oil cysts, such as the
numbers of ASCs/progenitor cells and/or oxygen tension, may be

insufficient for normal adipogenesis, resulting, even a few years later,
in chronic inflammation in cyst walls (Mineda et al., 2014). Long-
term follow-up of patients who have undergone autologous fat
augmentation mammoplasty has shown that the oil cysts formed
after grafting will remain problematic without surgical intervention
(Tassinari et al., 2016; Juhl et al., 2018) (Figure 2).

5 CLINICAL AVOIDANCE OF POOR
EXTRACELLULAR MATRIX REMODELING
AFTER GRAFTING
Effective methods are necessary to improve the early-stage
microenvironment of the graft, maintain the proper ECM
remodeling, and avoid complications caused by incorrect
techniques. Experimental results and previous experience
suggest the feasibility of several methods (Table 1).

5.1 During the early stage after autologous fat grafting, circulating
inflammatory cells, especially macrophages, will preferentially
infiltrate the donor site. In this stage, the level of inflammation will
be lower at the recipient than at the donor site, resulting in delayed
repair of the recipient area, whichmayhinder the reconstruction of the
ECM during the early stage (Wang et al., 2020). Thus, early
supplementation of the recipient area with an adequate number of
macrophages may increase the graft retention rate by improving
angiogenesis and ECM remodeling (Phipps et al., 2015).

5.2 Chronic inflammation mediated by macrophages leads to
dysfunction in ECM remodeling (Keophiphath et al., 2009; Kumar
et al., 2018). Excessive macrophage infiltration can also result in the
excess secretion of type VI collagen and result in fibrosis (Schnoor
et al., 2008; Spencer et al., 2010). The rapid and massive infiltration
and rapid evacuation of macrophages after fat grafting may lead to
better tissue vascularization and facilitate ECM remodeling
(Anghelina et al., 2006; Wang et al., 2020). Therefore, trying to
deplete the macrophages from transferred fat during the late stage
may reduce the excessive deposition of ECM and reduce fibrosis (Cai
et al., 2017).

5.3 Ideal revascularization depends on the graft-to-recipient
interface not exceeding a maximum of 1.6 mm (Khouri and
Khouri, 2017). This interface may be optimized by a 3D
distribution of the graft to reduce the obstacle of inadequate
blood supply for remodeling of the ECM (Eto et al., 2012; Pu,
2012; Abu-Ghname et al., 2019). During fat injection, the cannula
is first driven forward to create a tunnel in the recipient tissues,
followed by fat injection during retraction, filling the tunnels with
fat ribbons (Khouri et al., 2014b). Injection without cannula
movement will lead to a fat blob, exceeding the optimal graft-
to-recipient interface distance (Khouri et al., 2014a). Therefore,
injections should not be performed without cannula movement,
and the injection speed should not exceed 0.1 ml/1 cm of cannula
movement (Khouri and Khouri, 2017).

5.4 Autologous fat grafting supplemented with ASCs promotes
vascular ingrowth at the recipient site and accelerates revascularization
between donor and recipient tissues (Yoshimura et al., 2008;
Yoshimura et al., 2010; Kølle et al., 2013; Hong et al., 2018;
Yoshimura et al., 2020). ASC-assisted lipotransfer provides a better
blood supply for remodeling of the ECM, but large, randomized,
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controlled clinical trials have not yet been performed (Marks et al.,
2017).

5.5 A graded density of fat can be obtained by centrifuging the
products of liposuction using standard Coleman technology
(Allen et al., 2013). Compared with the fat in the upper
liposuction, the fat in the lower liposuction contains more
ECM and ASCs, and higher concentrations of anti-
inflammatory and fat angiogenesis factors (Qiu et al., 2016; De
Francesco et al., 2017). The fat fraction in the lower liposuction,
which is called high-quality fat, is promising for improving
vascularization and ECM remodeling, and is recommended as
a suitable alternative for implantation (Guan et al., 2020).

5.6 External volume expansion (EVE) can enhance tissue
vascularity, induce matrix deposition, and increase the stiffness
of adipose ECM, which recruits circulating mesenchymal stromal
cells (Heit et al., 2012; Lancerotto et al., 2013; Chin et al., 2016). In
addition, EVE can regulate ASC proliferation and differentiation
via shifting ECM synthesis from fibronectin to laminin, thereby
priming the recipient site for autologous fat transfer (Khouri
et al., 2000; Zhang et al., 2020).

5.7 Oil cysts filled with necrotic material result in persistent
inflammation, and calcification continues to develop over time,
with these progressive changes persisting (Mineda et al., 2014;
Shida et al., 2017). Therefore, larger oil sacs should be suctioned
under ultrasound guidance, taking care to ensure that all their
contents are extracted (Shida et al., 2017). If the suction is
incomplete, the lump will persist and the patient will be
dissatisfied. Oil cysts that are not treated effectively during the
early stages will develop into calcified masses surrounded by
extensive calcified capsules (Tassinari et al., 2016). These lesions
can only be treated by complete lumpectomy (Ørholt et al., 2020).

6 CONCLUSION

This review summarized the sources of ECM remodeling after
fat grafting, as well as the mechanisms by which the ECM

interacts with surrounding cells and microenvironments during
the process of fat regeneration. These results provide a greater
understanding of the application of fat repair and regeneration
after grafting. ECM remodeling is regulated by extracellular
molecular synthesis and degradation, accompanied by
physiological reactions such as tissue development and
repair, as well as by pathological processes such as hypoxia
and inflammation (Clause and Barker, 2013). ECM remodeling
also has a profound impact on the migration, proliferation, and
differentiation of surrounding cells. Additional studies are
needed to further assess the composition, function, and
mechanism of regeneration of adipose tissue ECM (Mouw
et al., 2014). These studies may reveal the directional control
of the microenvironment and the cellular conditions beneficial
to ECM remodeling, providing new concepts for improving the
retention rate of adipose tissue after fat transplantation. Greater
efforts are needed to apply these methods clinically.
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TABLE 1 | Clinical avoidance of poor ECM remodeling after grafting.

Method Principle References

Up-regulate the level of inflammation in the recipient
area or supplement the transplanted recipient area with
an adequate number of macrophages in the early stage

Macrophage mediated inflammation enhances the ECM
protein synthesis in the early-stage

Wang et al. (2020); Phipps et al. (2015)

Down-regulate the level of inflammation in the recipient
area or deplete themacrophages in the transferred fat in
the later stage

Depletion of macrophages relieved the fibrosis in the
transferred fat during the late-stage

Keophiphath et al. (2009); Kumar et al. (2018); Schnoor
et al. (2008); Spencer et al. (2010); Anghelina et al.
(2006); Wang et al. (2020); Cai et al. (2017)

Injections should not be performed without cannula
movement, and the injection speed should not exceed
0.1ml/1 cm of cannula movement

Ideal revascularization depends on the graft-to-recipient
interface not exceeding a maximum of 1.6 mm

Khouri and Khouri, (2017); Eto et al. (2012); Pu, (2012);
Abu-Ghname et al. (2019); Khouri et al. (2014b); Khouri
et al. (2014a)

Adipose-derived stem cells ASCs - assisted lipotransfer ASCs - assisted lipotransfer can promote vascular
ingrowth and accelerates revascularization between
donor and recipient tissues

Yoshimura et al. (2008); Yoshimura et al. (2010); Kølle
et al. (2013); Hong et al. (2018); Yoshimura et al. (2020);
Marks et al. (2017)

The fat fraction in the lower liposuction high-quality fat is
recommended as a suitable alternative for implantation

High-quality fat contains more ECM, ASCs, and higher
anti-inflammatory and angiogenesis fat factors

Allen et al. (2013); Qiu et al. (2016); De Francesco et al.
(2017); Guan et al. (2020)

Apply External volume expansion EVE on the recipient
area pre-operation and post-operation

EVE can enhance tissue vascularity, induce matrix
deposition, increase adipose ECM’s stiffness, regulate
ASC proliferation and differentiation via shifting ECM
synthesis from fibronectin to laminin

Heit et al. (2012); Lancerotto et al. (2013); Chin et al.
(2016); Khouri et al. (2000); Zhang et al. (2020)
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