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Neuroblastoma (NB) is the most common solid tumor apart from central nervous system
malignancies in children aged 0-14 years, and the outcomes of high-risk patients are
dismal. High mobility group box 3 (HMGBS3) plays an oncogenic role in many cancers;
however, its biological role in NB is still unclear. Using data mining, we found that HMGB3
expression was markedly elevated in NB patients with unfavorable prognoses. When
HMGB3 expression in NB cell lines was inhibited, cell proliferation, migration, and invasion
were suppressed, and HMGB3 knockdown inhibited NB tumor development in mice.
RT-PCR was employed to detect mRNA expression of nine coexpressed genes in
response to HMGB3 knockdown, and TPX2 was identified. Furthermore,
overexpression of TPX2 reversed the cell proliferation effect of HMGB3 silencing.
Multivariate Cox regression analysis indicated that HMGB3 and TPX2 might be
independent prognostic factors for overall survival and event-free survival, which
showed the highest significance (p < 0.001). According to the nomogram predictor
constructed, the integration of gene expression and clinicopathological features
exhibited better prognostic prediction power. Furthermore, the random forest algorithm
and receiver operating characteristic curves also showed that HMGB3 and TPX2 played
important roles in discriminating the vital status (alive/dead) of patients in the NB datasets.
Our informatics analysis and biological experiments suggested that HMGB3 is correlated
with the unfavorable clinical outcomes of NB, and plays an important role in promoting cell
growth, proliferation, and invasion in NB, potentially representing a new therapeutic target
for tumor progression.

Keywords: neuroblastoma, HMGB3, proliferation, cell cycle, TPX2

INTRODUCTION

Neuroblastoma (NB) is the third most common cancer in children under the age of 15 years, and
originates from neural crest-derived sympathetic adrenal precursors, accounting for
approximately 7% of pediatric malignancies; however, it is responsible for nearly 15% of
childhood cancer mortality (Ward et al, 2014; Mullassery and Losty, 2016; Zafar et al.,
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2021). Over the past 30years, multimodality treatment
strategies have been developed all over the world;
nonetheless, the outcomes of high-risk patients remain
dismal (less than 50%), and one-half of high-risk NB
patients are confronted with refractory disease, progression,
and even death (Pinto et al., 2015; Bosse and Maris, 2016;
Ahmed et al., 2017).

A study enrolling 240 cases reported a low mutation frequency
in NB, less than 20% in total (Pugh et al., 2013). Such relatively
uncommon somatic mutations in NB have made it challenging
for existing treatment strategies to target frequently mutated
oncogenic driver genes. On the other hand, the application of
diverse oncogene-targeting drugs, such as CDK4/6 inhibitors
(Rihani et al., 2015; Geoerger et al.,, 2017), AURKA inhibitors
(DuBois et al., 2016), and ALK inhibitors (Whittle et al., 2017),
has brought some hope to high-risk/refractory/relapsed patients.
Nonetheless, it is still far from sufficient, and novel therapeutic
targets are urgently needed.

High mobility group box 3 (HMGB3) belongs to the high
mobility group protein subfamily, which also includes
HMGBI1, HMGB2, and HMGB4 (Reeves, 2015). HMG box
family members play important roles in cancer by binding to
DNA structure and multiple other patterns (Niu et al., 2020).
In particular, HMGBI plays paradoxical roles in promoting
cancer cell proliferation and inhibiting malignant cell survival
(Kang et al., 2013). HMGB1 exerts dual functions in and out of
cancer cells via multiple signaling pathways, such as immunity,
autophagy, and inflammation. Moreover, HMGBI1 is an
important paralog of HMGB3. Over the past decade, the
carcinogenic effects of HMGB3 have been reported in a
variety of tumors, including colorectal cancer (CRC) (Zhang
et al., 2017), breast cancer (BC) (Gu et al.,, 2019), cervical
cancer (Li Z. et al., 2020; Zhuang et al., 2020), and non-small
cell lung cancer (NSCLC) (Li Y. et al.,, 2020). Additionally,
HMGB3 depletion is suggested to reduce the cisplatin
resistance of ovarian cancer cells (Mukherjee et al., 2019).
However, the expression and function of HMGB3 in NB
remain unknown.

MATERIALS AND METHODS

Bioinformatics Analysis

To analyze the mRNA expression of HMGB3 in NB, the
GSE49710, GSE16476, and GSE120572 datasets were
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), whereas survival
information and TARGET-249 data were downloaded from the
R2 database (https://r2.amc.nl).

Cell Culture

The NB cell lines SK-N-SH, SH-SY5Y, and SK-N-BE 2) were
cultured in MEM supplemented with 10% fetal bovine serum
(FBS) and 1:100 penicillin-streptomycin solution. SK-N-AS
cells were cultured in DMEM containing 10% FBS. All cell
lines were purchased from Procell Life Science & Technology
Co., Ltd. (Wuhan, China), and were verified by short tandem
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repeat profiling. The 3D culture was conducted in shRNA and
sh-NC cells. In brief, 1 x 105 cells/ml were cultured in MEM/
DMEM supplemented with 10% FBS, and 20 ul of cell culture
was added onto the lid (inside) of 60 x 15mm cell culture
dishes. Thereafter, the lid was flipped, and the cells were
cultured for 5days. Afterward, the lid was flipped again,
and images were captured.

RNA Extraction and Real-Time Reverse

Transcription PCR

After lentivirus transfection of sh-HMGB3 or sh-NC SK-N-SH
and SK-N-AS cells for 48h, total RNA was extracted from
NB cells using the TRAN Easy Pure RNA kit. Then, cDNA
was obtained using the cDNA Synthesis SuperMix kit, and the
gene expression of HMGB3 and TPX2 in NB cells was examined
by qRT-PCR performed using the SYBR Green mix kit. f-actin
mRNA (ACTB) was used as the endogenous reference. All
primers used in this study were purchased from Sangon
Biotech Co., Ltd. (Shanghai, China). The primer sequences are
listed in Table 1. The mRNA expression of all genes was
calculated using the 2728 method (Livak and Schmittgen, 2001).

Lentivirus Transfection

To achieve HMGBS3 silencing, three candidate shRNAs and sh-
NC were designed by GenePharma (Shanghai, China). Cells were
transfected with recombinant lentiviral transduction particles
with green fluorescent protein (GFP). Afterward, lentiviral
fluid was added to the cells cultured in MEM and incubated
for 6 h, and the medium was replaced with fresh MEM containing
10% FBS. The transfection efficiency was evaluated under a
fluorescence microscope after 48 h. The sh-HMGB3 sequences
are listed in Table 2.

Immunoblot Analysis

NB cells were transfected with sh-HMGB3/sh-NC or TPX2-OE
lentivirus for 72 h, and then total protein was extracted from cell
lysates using RIPA solution, mixed with 5x protein loading
buffer, incubated at 100°C for 10 min, and then separated by
10-12% SDS-PAGE. After electrophoresis, the proteins were
transferred onto nitrocellulose membranes; then, the
membranes were blocked with PBS containing 5% bovine
serum albumin (BSA) for 1h at room temperature. Thereafter,
the membranes were incubated with indicated primary antibodies
(HMGB3 and TPX2, 1:2000; Boster, United States) for 2 h at
room temperature, washed with PBST (0.5% Tween-20) three
times and stored at 4°C overnight. Subsequently, the membranes
were further incubated with alkaline phosphatase-conjugated
goat-anti-rabbit antibodies for 1h at room temperature,
washed three times, and detected using the BCIP/NBT alkaline
phosphatase color development kit. The protein band densities
were quantified using Image] 1.8.0 software (National Institutes
of Health).

CCKS8 Assay

To demonstrate cell growth, we conducted a cell counting-kit 8
(CCK-8) assay to detect viable cells. Briefly, sh-HMGB3 and sh-
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TABLE 1 | Primer sequences used for gPCR.
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Gene Forward Reverse

HMGB3 CCAAGAAGTGCTCTGAGAGGTG CTTCTTGCCTCCCTTAGCTGGT
TPX2 TTCAAGGCTCGTCCAAACACCG GCTCTCTTCTCAGTAGCCAGCT
CCNB2 CAACCAGAGCAGCACAAGTAGC GGAGCCAACTTTTCCATCTGTAC
CDCA2 GAGGCAGGAAAAGAGTCCGAGA CTCCGACGTTTGGAGGACAACA
MCM10 TCAAGGAACTGATGGACCTGCC CTCCAACATCCGCTGCTTCTGT
BUB1B GTGGAAGAGACTGCACAACAGC TCAGACGCTTGCTGATGGCTCT
NCAPH CCTCAATGTCTCCGAAGCAGATC TGTAGTCCTGGCAGTGGAGAGT
CENPE GGAGAAAGATGACCTACAGAGGC AGTTCCTCTTCAGTTTCCAGGTG
RNASEH2A GCCGTGAAGAAATGGCAGTTCG GTGCTCCTTCAACCACGCTTTTG
GINS2 AGCCAAACTCCGAGTGTCTGCT CTTGTGTGAGGAAAGTCCCGCT
ACTB CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT

TABLE 2 | Sequence of sh-HMGB3.

Sequence 5'-3’

ShRNAT1 5'-GGGCAAGATGTCCGCTTATGC-3'
shRNA2 5'-GGAAGACGATGTCCGGGAAAG-3'
shRNA3 5'-GGAAAGTTTGATGGTGCAAAG-3'
shRNA-NC Empty vector

NC cells were resuspended in MEM/DMEM containing 10% FBS
to a final concentration of 1 Xx 104 cells/ml. Later, 100 pul
suspension was added into 96-well plate, and then 10 ul CCK-
8 reagent was also added and incubated for 2 h in an incubator at
37°C and 5% CO,. Finally, the absorbance was measured at
450 nm for 8 consecutive days.

Colony Formation Assay

A total of 1000 sh-HMGB3/sh-NC cells/well were seeded into 6-
well plates and incubated for 10 days in an incubator at 37°C and
5% CO,. Thereafter, the clones were fixed in paraformaldehyde
for 30 min, stained with crystal violet solution (Beyotime, China)
for 20 min, and washed with water three times. Finally, the clones
were imaged and counted. Clone formation rate (%) = (number of
clones/number of seeded cells) x 100%.

Wound Healing Assay

To examine cell migration, a wound healing assay was
performed. In brief, SK-N-SH, and SK-N-AS cells were
seeded in MEM/DMEM at a density of 2 x 105 cells/well
into the 12-well plates, and HMGB3 expression was silenced
as described before. After overnight culture, a 200-pl tip was
used to make a scratch in the cell monolayer, and wound
closure was observed for 8 h. For each well, two images in the
same area were taken and analyzed by Image] software.
Wound healing rate (%) = [(Area at Oh)-(Area at 8h)]/
(Area at 0 h) x 100%.

Transwell Assay

Precooled serum-free DMEM/MEM was used to dilute the
Matrigel matrix (Corning, United States) to a concentration of
400 pg/ml; thereafter, 100 pl of the diluted solution was coated
onto the upper Transwell culture chamber and incubated

overnight at 37°C and 5% CO,. Subsequently, the cells were
resuspended in serum-free DMEM/MEM to a concentration of
2 x 105 cells/ml, and 100 pl cell suspension was added to the
upper chamber coated with Matrigel, while 600 ul of MEM/
DMEM supplemented with 20% FBS was added to the lower
chamber. After 40 h, cells on the upper chamber surface were
removed and fixed with 4% paraformaldehyde for 30 min. Later,
the chamber was stained with 1% crystal violet for 20 min, and
images were taken from five fields of view using an inverted
microscope. The number of cells crossing the bottom chamber
was quantified.

Tumor Xenograft Assay

Animal experiments were approved by the Laboratory Animal
Ethics Committee of the First Hospital of Jilin University, and
the animals were cared for in agreement with institutional
ethics guidelines. Ten BALB/c nude female mice (6 weeks old)
were anesthetized and subcutaneously injected with 2 x
106 sh-NC or sh-HMGB3 SK-N-SH cells into the right
flank. When the tumor diameters of the mice reached
15 mm, all mice were sacrificed. The weight and volume of
the tumor were weighed and calculated, and tumor volume =
(width)*xlength/2.

Immunocytochemistry

NB cells were seeded into 12-well plates and incubated in an
incubator at 37°C and 5% CO, overnight. Thereafter, the cells
were fixed in 4% paraformaldehyde for 5 min, and 0.5% Triton-
X-100 was added to increase the cellular membrane permeability.
Next, the cells were blocked with 5% BSA for 30 min, incubated
with Ki-67 antibody (1:1,000) at 37°Cfor 1h, incubated with
HRP-conjugated goat anti-rabbit IgG polymer for 30 min, and
stained with DAB and hematoxylin. After washing, images were
acquired under an inverted microscope, and the positive cell rate
was calculated.

Correlation Analysis of HMGB3 and the

Coexpressed Genes

We calculated the Pearson correlation coefficient (PCC) of
HMGB3 and other genes in four NB datasets, GSE49710,
GSE16476, GSE120572, and TARGET-249. Then, we selected
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FIGURE 1| HMGBS is abnormal highly expressed in human neuroblastoma with unfavorable prognoses in GSE49710. (A) HMGB3 over-expressed in unfavorable
prognostic groups of NB patients. (B) High expression of HMGBS correlated to inferior overall survival. (C) Expression of HMIGB3 in four NB cell lines. *p < 0.05, *p <
0.01, and **p < 0.001.

the genes with PCC >0.7, which were considered coexpressed
genes, for further experiments.

Methods for Estimating the Importance of

HMGB3 and TPX2 in NB Prognosis

The random forest algorithm (Carolin Strobl et al., 2007) is an
important and excellent feature selection approach among
machine learning algorithms, that can rank the importance of
diverse features. In this study, the random forest algorithm was
utilized to estimate the importance of HMGB3, TPX2, and other
clinicopathological characteristics for the vital status of NB
patients. Meanwhile, mean decrease accuracy (MDA) and

mean decrease Gini (MDG) were employed as parameters to
estimate the importance. In addition, the receiver operating
characteristic (ROC) curve was plotted to test the
discriminating abilities of the two genes and other risk factors
in vital status, and the area under the curve (AUC) values were
used for comparison.

Statistical Analysis

Statistical analysis was conducted using Graphpad Prism 8.0 and
R 3.6.2 software. Univariate and multivariate Cox regression
analyses were performed using the R package “survival,” and
Harrell’s concordance index (C-index) was acquired to assess the
model performance. Measurement data are expressed as the
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TABLE 3 | The relationship between HMGBs expression and clinicopathological features in NB patients.

Features HMGB1 HMGB2 HMGB3
High Low P High Low p High Low P
value value value
Gender
Male 129 155 0.015 133 151 0.979 148 136 0.398
Female 119 90 99 110 100 109
Age
>18m 90 101 0.302 115 76 0.001 123 68 1.04E-06
<18m 158 144 135 167 125 177
MYCN
Amplified 59 33 0.005 79 13 1.79E-13 85 7 <2.2E-16
Non-Amp 189 212 171 230 163 238
High risk
Yes 98 77 0.075 139 36 <2.2E-16 142 33 <2.2E-16
No 150 168 111 207 106 212
Stage
3,4 132 111 0.095 163 80 1.48E-12 162 81 1.51E-12
1,2, 4s 116 134 87 163 86 164
Progression
Yes 106 74 0.005 124 56 1.65E-09 125 55 2.12E-10
No 142 171 126 187 123 190
Death
Yes 66 38 0.004 83 21 4.98E-11 87 17 4.45E-14
No 182 207 167 222 161 228

mean = standard deviation (SD). Differences between two groups
were compared by Student’s t-test. The relative gene expression
level was log, transformed. Differences in gene expression
between two groups were compared using the Mann—Whitney
U test. The relationship of gene expression with
clinicopathological ~ features was analyzed wusing the
nonparametric X* test. Survival analysis was conducted using
the log-rank test and visualized by the Kaplan—Meier plot.
ggforest plots were generated wusing the R package
“survminer”. The nomogram plot was generated using the R
package “rms”. To test the predictive performance of diverse
features, the AUC values of the ROC curve were calculated and
plotted using the R package “pROC”. Moreover, the random
forest algorithm was conducted using the R package
“randomForest”. All statistical tests were two-sided and a
difference of p < 0.05 was considered statistically significant.
All experiments were independently conducted in triplicate.

RESULTS

HMGB3 Exhibits Abnormally High
Expression in NB Patients With Unfavorable

Prognoses

HMGB family members (HMGB1, HMGB2, and HMGB3) were
highly expressed in NB patients with unfavorable prognosis in
GSE49710, and the difference in HMGB3 expression was the
most significant (Figure 1A). High expression of HMGB3 was
correlated with inferior overall survival (OS) and event-free
survival (EFS) (Figure 1B). Furthermore, we analyzed the
correlations between HMGB expression and
clinicopathological ~features among 493 NB patients.

HMGB2/3 levels were correlated with the following features:
age>18 months, MYCN amplification, high risk, advanced
stage, progression, and death (p < 0.0001, Table 3).
Moreover, the relationship between HMGB3 expression and
clinicopathological features in three other NB datasets
(GSE16476, TARGET-249, and GSE120572) was analyzed,
and similar results were obtained (Supplementary Tables
S1-S3). Based on the above results, we further examined
HMGBS3 expression levels in the four NB cell lines SK-N-SH,
SK-N-AS, SH-SY5Y, and SK-N-BE 2) by western blotting (WB)
(Figure 1C). The results suggested that expression of HMGB3 in
all 4 cell lines was similarly high. SK-N-SH and SK-N-AS cell
lines were chosen for further analysis.

Silencing HMGBS3 Inhibits Cell Proliferation,

Migration, and Invasion in Vitro and in Vivo
To determine the biological function of HMGB3 in NB cells,
lentivirus with sh-HMGB3 or empty vector sh-NC was
transfected into SK-N-SH and SK-N-AS cells. As suggested by
WB analysis, the HMGB3 protein level was markedly reduced in
sh-HMGB3 cells compared to sh-NC cells (p < 0.01, Figure 2A).
In addition, a CCK-8 assay was conducted to determine the
biological effect of HMGB3 on cell proliferation. The results
showed that knockdown of HMGB3 remarkably inhibited the
growth of NB cells in vitro (SK-N-SH, p < 0.05; SK-N-AS, p <
0.05, Figure 2B).

Similarly, colony formation ability was suppressed in the
HMGB3-depleting groups compared to the control group (SK-
N-SH, p < 0.01; SK-N-AS, p < 0.01, Figure 2C). According to the
results of the 3D cell culture assay, cell growth was suppressed in
the HMGB3-depleted groups compared to the control group
(Figure 2D). Wound healing assays indicated that cell migration
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FIGURE 2 | Knockdown of HMGBS inhibited cell proliferation and migration in NB cells in vitro. (A) Protein expression of HMGBS after lentivirus transfection (sh-NC,
sh-RNA1, sh-RNA2, and sh-RNA3). (B-E) CCK8, Colony formation, 3D cell culture, and wound healing assay for SK-N-SH and SK-N-AS cells with/without HMGB3
knockdown. *p < 0.05, **p < 0.01, and ***p < 0.001.

was inhibited in the HMGB3-silenced groups compared to the
control group (SK-N-SH, p < 0.01; SK-N-AS, p < 0.05,
Figure 2E).

Furthermore, the Transwell assay demonstrated that
silencing HMGB3 decreased the invasion of NB cells (SK-
N-SH, p < 0.001, SK-N-AS, p < 0.001, Figure 3A). In addition,
according to the immunocytochemical analysis, Ki-67 nuclear
expression was downregulated in the HMGB3-depleted
NB cell lines SK-N-SH (n = 6, p < 0.01) and SK-N-AS (n =
6, p < 0.001) compared to the control groups (Figure 3B),
indicating that NB proliferation was suppressed upon
HMGB3 knockdown. Taken together, these data indicated
that HMGB3 plays a critical role in neuroblastoma
tumorigenesis.

To further evaluate the function of HMGB3 in vivo, we
determined whether silencing HMGB3 could inhibit tumor
xenograft growth in nude mice. We found that knockdown of
HMGB3 did indeed inhibit tumor growth, leading to significantly
reduced tumor volume and weight (Figures 3C,D, p < 0.01).
Thus, our data suggested that silencing HMGB3 inhibits tumor
growth in vivo.

HMGB3 Coexpression Genes are Primarily

Enriched in Cell Cycle-Related Pathways

In the four NB datasets GSE49710, GSE16476, GSE120572,
and TARGET-NBL, genes significantly coexpressed (Pearson
correlation coefficient, PCC >0.7) with HMGB3 were selected,
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without HMGB3 knockdown. (B) Immunocytochemistry analysis of KI-67 protein was performed in SK-N-SH and SK-N-AS cells. (C) Paired xenograft tumors and their
relative injected subcutaneously with sh-NC or sh-HMGB3 SK-N-SH cells. (D) Tumor weight. Scale bars, 50 pm *p < 0.05, *p < 0.01, and **p < 0.001.

SK-N-SH
HMGB3-sh3

Sh-NC

SK-N-AS

sh-NC HMGB3-sh3 sh-NC HMGB3-sh3

among which, nine genes were screened (Figure 4A). According to
the functional enrichment analysis of Gene Ontology (GO;
biological process, BP), these nine genes were primarily
enriched in cell cycle-related pathways, such as regulation of
cell cycle, cell cycle process, mitotic cell cycle process, and sister
chromatid segregation (Figure 4B). As revealed by univariate Cox
regression analysis, these nine genes were risk factors for OS and
EFS in NB (Supplementary Figure S2; Supplementary Table S4).
Notably, seven of the nine genes were markedly downregulated in
SK-N-SH cells upon HMGB3 knockdown, with TPX2 being the
most significant (p < 0.001, Figure 4C).

On the other hand, the PCCs of TPX2 and HMGB3 were
0.761, 0.726, 0.764, and 0.74 in the above four datasets,
respectively (all p values <0.001, Figure 4D). Furthermore, the
TPX2 protein expression was correspondingly markedly
downregulated in NB cells (SK-N-SH, p < 0.01; SK-N-AS, p <
0.01) upon HMGB3 knockdown (Figure 4E). Specifically, TPX2

expression decreased in a time-dependent manner after HMGB3
knockdown in NB cell lines, which began to decrease at 48 h and
was more significant at 72 h (Figure 4F).

TPX2 Overexpression Reverses the
Inhibition of SK-N-SH Cell Proliferation

Caused by HMGB3 Knockdown

To investigate the role of TPX2 protein in the HMGB3-mediated
promotion of cell proliferation, TPX2 was overexpressed in
HMGB3-silenced SK-N-SH cells (Figure 5A). The colony
formation ability was reversed in the TPX2-overexpressing
groups compared to the control group (p < 0.001, Figure 5B).
At the same time, the results of the Transwell assay showed that
the invasion ability of SK-N-SH cells recovered upon the
overexpression of TPX2 (p < 0.001, Figure 5C). The number
of Ki-67-positive cells also markedly increased in the TPX2
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FIGURE 4 | HMGB3 could inhibit cell survival via TPX2 in NB cells. (A) Nine genes significantly co-expressed with HMGBS in four datasets of NB. (B) Functional
enrichment analysis of nine genes. (C) The mRNA expression of nine genes was detected by gRT-PCR in SK-N-SH cells after HMGB3 knockdown. (D) Pearson
correlation of HMGB3 and TPX2 in four NB datasets. (E) Protein expression of TPX2 and HMGB3 was detected by western blotting after HMGBS3 knockdown. (F) TPX2
reduction was time-dependent with HMGB3 knockdown in SK-N-SH and SK-N-AS cells. *p < 0.05, **p < 0.01, and **p < 0.001.

overexpression group compared to the control group (p < 0.05,
Figure 5D).

HMGB3 and TPX2 expression in three datasets GSE49710 (n =
493), GSE16476 (n = 88), and TARGET-NBL (n = 247). All
patients were classified into four groups based on the median
expression level, including HMGB3 high and TPX2 high
(HHTH), HMGBS3 high, and TPX2 low (HHTL), HMGB3 low
and TPX2 high (HLTH), and HMGB3 low and TPX2 low
(HLTL). The results showed that patients in the HHTH group

Validation of Prognosis Prediction
Performance of HMGB3 and TPX2 in Other
Independent NB Datasets

To confirm the prognostic prediction performance of HMGB3
and TPX2, we analyzed the survival of patients with high/low

exhibited the worst OS, EFS, and PFS, while the HLTL group
displayed the most favorable survival (Figure 6), demonstrating
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that the effects of HMGB3 and TPX2 on survival were

superimposed.
Thereafter, factors including sex,

age

group (age
<18 months vs. age> 18 months), MYCN status, high risk,

INSS_h1 (INSS stage 1, 2, 4s vs. stage 3, 4), and HMGB3/

TPX2 were incorporated for multivariate Cox regression

analysis. As a result, HMGB3 and TPX2 might serve as
independent prognostic factors for OS and EFS (Figure 7A,
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Supplementary Figure S1), and had the most significant
p-values compared to other clinicopathological features.
Additionally, a nomogram predictor was constructed based
on the expression levels of the two genes and other prognostic
features of NB (Figure 7B). The integration of gene expression
and clinicopathological features exhibited better predictive
power for prognosis.

To estimate the importance of HMGB3 and TPX2 in
determining the vital status of NB patients, we employed the
machine learning algorithm-random forest. Typically, MDA, and
MDG are the parameters used to evaluate the importance (Wang
et al,, 2016). According to the ranking of importance by the
random forest algorithm, TPX2 and HMGB3 occupied more
important positions than the other features (Figure 7C). At the
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same time, we used ROC curve analysis to assess the prediction
abilities of the two genes and other risk factors. The results
showed that when predicting the vital status of patients, the
AUC values ranging from highest to lowest were high risk,
HMGB3 expression, INSS_hl, age, TPX2 expression, and
MYCN status (Figure 7D). Both HMGB3 and TPX2
expression displayed good predictive performance, with AUC
values of 0.797 and 0.761, respectively.

DISCUSSION

NB is a highly heterogeneous tumor, and the long-term survival
for high-risk patients remains poor and is still below 50% despite
aggressive multimodal treatment (Pugh et al., 2013; Wienke et al.,
2021). Treatment for high-risk or refractory/relapsed NB has
shifted to a combination of classical treatment (chemotherapy,
surgical treatment, radiotherapy, and stem cell transplantation)
with targeted drug therapy or immunotherapy (Matthay, 2018).
However, identifying new targets remains challenging.

The HMGB family plays an important role in many cancers.
In this article, we analyzed the expression of HMGBI,
HMGB2, and HMGB3 in different prognostic groups of NB
patients. Our results suggested that HMGB3 exhibited the
most significant difference and was highly expressed in
patients with unfavorable prognoses. Dysregulation of the
WNT signaling pathways in carcinogenesis is observed in
multiple solid and liquid tumors (Zhan et al., 2017). Studies
have indicated that HMGB3 promotes cancer cell proliferation
by activating the WNT/B-catenin pathway (Zhang et al., 2017;
Xie et al., 2019; Li Y. et al., 2020; Zhuang et al., 2020). Gu et al.
(2019) discovered that HMGB3 silencing inhibited BC growth
by interacting with HIF-1a. In addition, HMGB3 is correlated
with treatment resistance. Li Z et al. (2020b) demonstrated that
HMGB3 enhanced radioresistance by binding to the promoter
region of hTERT in cervical cancer and suggested that
targeting the HMGB3/hTERT axis might help cervical
cancer patients who suffer from radioresistance. In ovarian
cancer, Mukherjee et al. (2019) suggested that HMGB3
depletion might sensitize chemoresistant cancer cells to
cisplatin through the ATR/CHKI1/p-CHK1 DNA damage
signaling pathway.

Based on the data mining results, we found that HMGB3
expression was increased in NB patients with unfavorable
prognosis, and its high expression predicted inferior
survival. According to data analysis and evidence from the
literature, we speculated that HMGB3 plays an oncogenic role
in NB progression. We further confirmed our assumption
using a loss-of-function test. Specifically, we silenced
HMGB3 expression in NB cell lines and detected the
survival of NB cells. The results revealed that cell
proliferation, migration, and invasion were inhibited. In
vivo, HMGB3 knockdown inhibited NB tumor development
in mice. Simultaneously, Ki-67 expression decreased upon
HMGB3 knockdown. These results suggested that HMGB3
is essential for cell survival and biological function in NB
progression.

HMGB3 Promotes Neuroblastoma Progression

By coexpression analysis, nine genes coexpressed with
HMGB3 were selected, and their high expression levels
predicted inferior survival. Moreover, functional enrichment
analysis (Consortium, 2016) demonstrated that these genes
were primarily enriched in cell cycle-related pathways. The
above results demonstrated that the cell cycle played an
important role in the survival of NB cells and the prognosis of
NB patients.

Subsequently, we detected the mRNA expression levels of
these nine genes in sh-HMGB3 cells, among which, seven
were markedly downregulated after HMGB depletion,
including CCNB2, CDCA2, MND1, BUB1B, TPX2, CENPE,
and GINS2. CCNB2 is highly expressed in lung
adenocarcinoma (LUAD) (Wang et al, 2020) and
hepatocellular carcinoma (HCC) (Li et al, 2019), and is
correlated with poor prognosis. CDCA2 promotes cancer cell
proliferation in melanoma (W.-H. JIN et al., 2020) and colorectal
cancer (CRC) (Feng et al, 2019). MNDI regulates cell cycle
progression by forming a feedback loop with KLF6 and E2F1 in
LUAD both in vitro and in vivo (Zhang et al., 2021). Furthermore,
the high expression of BUBIB is associated with adverse
clinicopathological characteristics of HCC, which plays an
oncogenic role by upregulating the mTORCI1 signaling
pathway (Qiu et al, 2020). CENPE is highly expressed in
LUAD specimens and promotes cancer cell proliferation
regulated by FOXM1 (Shan et al, 2019). CINS2 promotes
epithelial-mesenchymal-transition (EMT) in pancreatic cancer
by activating the ERK/MAPK signaling pathway (Huang et al,,
2020). GINS2 silencing inhibits (Sun et al, 2021) cell
proliferation, growth, and cell cycle arrest at the G2/M phase
in vitro and in vivo by suppressing the STAT signaling pathway
(Huang et al., 2020). Several studies have demonstrated that
TPX2 is correlated with the response to DNA damage
(Neumayer et al, 2014; Neumayer and Nguyen, 2014).
Ognibene M. (Ognibene et al, 2019). found that increased
expression of the TPX2 oncoprotein repaired DNA damage in
NB, which predicted poor prognosis of NB patients.

Seven of the genes coexpressed and changed with HMGB3
exhibit carcinogenic effects in various tumors. Of the seven genes,
TPX2 expression displayed the most significant decrease. At the
protein level, TPX2 expression was also reduced after HMGB3
knockdown in a time-dependent manner. The correlations of
TPX2 with the clinicopathological features of NB were consistent
in our study. We then constructed a gain-of-function model, and
the results showed that overexpression of TPX2 partially relieved
the inhibitory effect of HMGB3 silencing.

HMG family proteins can regulate transcription and modify
chromatin structure by binding DNA in a structure-dependent
manner, so they are figuratively known as “architectural
transcription factors”. HMGB1 possesses the A and B box
domains, which can bind to noncanonical DNA structures and
damaged DNA to affect DNA damage and repair and play
intracellular roles (Lange and Vasquez, 2009). HMGBL1 is an
important paralog of HMGB3, hence, they have similar structures
and functions. Taken together, we speculated that HMGB3 might
act as a transcriptional regulatory switch to regulate the
expression of a series of genes by binding to target DNA in
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the nucleus, and this conjecture was preliminarily confirmed
with TPX2.

According to an ancient Chinese saying, “Destroy the leader
and the gang will collapse”. Our results suggested that inhibiting
HMGB3 inhibits several related oncogenes, and HMGB3 might
represent an ideal therapeutic target for NB. Our future studies
will explore the binding sites of targeted DNAs to further
understand the role of HMGB3 in regulating multiple genes in
NB in the future.

In conclusion, based on data mining and biological
experiments, our studies identify that HMGB3 plays an
oncogenic role by regulating TPX2 in NB. The effects of
HMGB3 on NB not only provide new insight into the
survival mechanism of cancer cells but also reveal a
potential implication of HMGB3 in prognosis and a novel
therapeutic strategy for NB.
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