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Gastric cancer is one of the most heterogeneous tumors with multi-level molecular
disturbances. Sustaining proliferative signaling and evading growth suppressors are
two important hallmarks that enable the cancer cells to become tumorigenic and
ultimately malignant, which enable tumor growth. Discovering and understanding the
difference in tumor proliferation cycle phenotypes can be used to better classify tumors,
and provide classification schemes for disease diagnosis and treatment options, which are
more in line with the requirements of today’s precision medicine. We collected 691 eligible
samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
database, combined with transcriptome data, to explore different heterogeneous
proliferation cycle phenotypes, and further study the potential genomic changes that
may lead to these different phenotypes in this study. Interestingly, two subtypes with
different clinical and biological characteristics were identified through cluster analysis of
gastric cancer transcriptome data. The repeatability of the classification was confirmed in
an independent Gene Expression Omnibus validation cohort, and consistent phenotypes
were observed. These two phenotypes showed different clinical outcomes, and tumor
mutation burden. This classification helped us to better classify gastric cancer patients and
provide targeted treatment based on specific transcriptome data.
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INTRODUCTION

From a global perspective, gastric cancer incidence is relatively high, ranking fourth (Sung et al.,
2021). The incidence andmortality of gastric cancer ranks second amongmalignant tumors in China
(Zheng et al., 2019). Surgery combined with radiotherapy and chemotherapy has contributed to the
longer survival of gastric cancer, but at present it is only beneficial to some patients (Wöhrer et al.,
2004; Liu et al., 2019). The long-term prognosis is an urgent clinical problem to be solved.

Maintaining proliferation signals and avoiding growth inhibitory factors are two important signs
that make cancer cells tumorigenic and eventually malignant, thereby enabling tumors growth
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(Hanahan and Weinberg, 2011; Ateshian et al., 2012). Normal
tissues gingerly regulate the generation and release of pro-growth
signals, which indicates cells entry and progression through the
cell growth and division cycle, thus making sure that the steady
state of cell numbers and maintaining normal tissue structure
(Sulić et al., 2005; Lemmon and Schlessinger, 2010; Ateshian
et al., 2012). Cancer cells can acquire the ability to maintain
proliferation signals through a variety of ways: they can produce
growth factor ligands and respond through homologous
receptors expression, leading to autocrine proliferation
stimulation (Perona, 2006; Hynes and MacDonald, 2009;
Lemmon and Schlessinger, 2010; Witsch et al., 2010). In
addition, cancer cells can send signals to stimulate normal
cells in the tumor-associated stroma, which can offer various
growth factors to the cancer cells (Bhowmick et al., 2004; Cheng
et al., 2008). The destruction of the negative feedback mechanism
that inhibits proliferation signals is another mechanism for
cancer development. The deficiencies of these feedback
mechanisms can enhance proliferation signals (Cabrita and
Christofori, 2008; Wertz and Dixit, 2010). In addition to
inducing and maintaining positive growth stimulating signals,
cancer cells must also bypass powerful procedures that negatively
affect cell proliferation (Amit et al., 2007; Cabrita and Christofori,
2008; Hanahan and Weinberg, 2011). Insufficient understanding
of the microenvironment of gastric cancer proliferation cycle may
be the main reason for the disappointing results. The rapid
development of transcriptomics has made it possible to
systematically explore the temporal heterogeneity of genomics
in gastric cancer.

Discovering and understanding the differences in tumor
proliferation cycle phenotypes can better classify tumors,
provide classification schemes for disease diagnosis and
treatment, and better meet the requirements of precision
medicine today. At the same time, it is conducive to find more
sensitive and specific biomarkers, help predict the prognosis of
tumors, and develop more effective anti-tumor drugs. The
purpose of this study is to use open cohorts to identify the
molecular subtypes of gastric cancer, identify the relationship
between each cluster and clinical data, determine the unique
molecular characteristics of each cluster, and establish a
corresponding classifier. In the same time, class gene labels
and classifiers can be obtained in this way to predict the
classification of new samples, achieve the purpose of
identifying cancer subtypes in new samples, establish targeted
treatment plans for individuals, reduce the mortality of cancer
patients, and improve the mortality of patient rate and improve
living standards.

In this study, we collected qualified samples from TCGA and
GEO cohorts, and combined with transcriptome data to explore
different heterogenous proliferation cycle phenotypes, and
further investigated the potential mechanism of each
proliferation phenotype.

Patient Datasets
In this study 691 gastric cancer patients (334 from TCGA-STAD
sequencing data and 357 from GEO chip data) were included.
Transcriptome sequencing data and clinical information were

downloaded from the TCGA database (https://portal.gdc.cancer.
gov/) as a training cohort. The chip data and the corresponding
clinical information were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) as the validation cohort.
These samples had complete transcriptome data, clinical data
and follow-up data and non-zero survival time at the same time in
the TCGA-STAD cohort. Correspondingly, we also selected GEO
Chip data (GSE84433) with a large enough data volume and
relatively complete clinical data and follow-up data as the
validation cohort.

Transcriptome-Based Subtypes
Identification
The R “ConsensusClusterPlus” package was applied to cluster
gene transcriptome data. Two main subtypes were identified by
hierarchical clustering of 5,000 genes with highly variable
expression [top 5,000 of Median Absolute Deviation (MAD)
of gene value]. 80% of the items to resample, 50 resamplings
and the maximum evaluation K of 10 were used for gene
expression clustering. The cumulative distribution function
(CDF) and consensus heat map were applied to evaluate the
best K.

Selection of Gene Signatures
The differentially expressed genes were identified with the
statistically difference of |log2FC| > 0.58496 and false discovery
rate [FDR] <0.05 between subtype A (Sub A) and subtype B (Sub
B) firstly. A univariate cox regression analysis was performed to
determine the genes with prognostic significance. Subsequently,
the method of lasso regression was used to determine the target
genes that have the greatest weight on the prognosis by the R
package “glmnet” (Friedman et al., 2010) (https://www.jstatsoft.
org/v39/i05/). The influence of gene expression on prognosis was
weighed by the enter method-based multivariate cox analysis.
The prognostic risk signature was built by combining the values
of identified gene expression and their corresponding regression
coefficients (β value). The median of risk score was set as a cutoff
value and divided gastric cancer into high and low risk groups.
The differences of overall survival between high and low risk
groups were assessed by the R “survival” package (version 3.2–7,
https://CRAN.R-project.org/package�survival).

Bioinformatics Analysis
Principal component analysis (PCA) was used to detect
expression differences between groups with the R package
“princomp” (Zhou et al., 2018). Function annotation of
difference genes between groups was analyzed by Gene
Ontology (GO) analysis (Huang et al., 2009). Gene set
enrichment analysis (GSEA) was performed to determine
statistically different gene sets (Mootha et al., 2003;
Subramanian, 2005). GO analysis and KEGG analysis conducted
by R clusterProfiler R package (3.14.3 version) (Carlson, 2015). The
R package “pROC” was used to analyze the receiver operating
characteristic (ROC) curve to predict the overall survival (OS).
The catalogs of genes related to each stage of the cell cycle were
obtained from GO (http://geneontology.org/), KEGG (https://
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FIGURE 1 | Two subtypes with different prognosis in gastric cancer were identified by unsupervised cluster analysis. (A) Two subtypes defined by 5,000 genes with
highly variable expression are plotted as a heatmap. Genes with MAD value in the top 5,000. (B) Principal component analysis (PCA) revealed differences between the
two subtypes in TCGA cohort. (C) Kaplan-Meier survival plot for two subtypes in TCGA cohort. (D) The gene sequence of the TCGA training set was applied to the GEO
validation cohort. (E) PCA analysis revealed differences between the two subtypes in GEO validation cohort. (F) Kaplan-Meier survival plot for two subtypes in the
GEO validation cohort.
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FIGURE 2 | Analyses of the biological functions of the two subtypes in the TCGA cohort. (A) The heatmap showed DEG between Sub A and Sub B. (B) GO and
KEGG analyses on upregulated genes in Sub A vs Sub B in TCGA cohort. (C) GSEA analysis of the two subtypes in the TCGA cohort. (D–G) A box plot showed the
difference in the expression of cell cycle checkpoint (D), cell cycle G2/M phase transition (E), negative regulation of nuclear division (F) and regulation of spindle
checkpoint (G) between the two subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.
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www.genome.jp/kegg/) database and references at the same time.
The level of infiltration of different immune cells in the TCGA-
STAD and GEO data was quantified by the “CIBERSORT” R
package (Newman et al., 2015) with LM22 features and 1,000
permutations. ESTIMATE algorithms assessed the immune and
matrix content (immune and stromal scores) of each TCGA-STAD
and GEO sample (Yoshihara et al., 2013). The results were
displayed in the form of heatmaps and histograms.

Statistical Analysis
SPSS 24.0 (IBM, Chicago, Illinois, United States) and R software
(version 3.6.3; http://www.r-project.org/) were used to conduct all
statistical analysis. All visualizations were implemented by R
software. Kaplan-Meier analysis was used to evaluate survival
differences between the groups with log-rank test. Student’s t-test
was used to calculate differences in molecular expression, stromal
score, immune score and ESTIMATE score between the two
subtypes. p < 0.05 was considered as statistically significant.

RESULTS

Gastric Cancer Differentiates Into Two
Molecular Subgroups
In order to stratify patients with gastric cancer, we obtained 334
samples of sequencing data from the TCGA-STAD database,
using unbiased methods and consistent clustering of gene
expression profiles. Through cumulative distribution function
(CDF) curve and consensus matrix evaluation (Supplementary
Figure S1), we hierarchically clustered 5,000 highly variable
expression genes (top 5000 MAD of gene value) and identified
two main subtypes (Figure 1A). Principal component analysis
(PCA) plot found significant differences in the expression profiles
of the two subtypes (Figure 1B). Group members of these two
subtypes were associated with different molecular and survival
characteristics. Compared with Sub A, the clinical outcome of Sub
B patients was significantly worse. In contrast, Sub A had a longer
overall survival than Sub B group (Figure 1C).

357 independent gastric cancer expression profiles were
obtained from the GEO (GSE84433) cohort to evaluate the
reproducibility of subtypes. Applying the similar genes
rankings from the training set (5,000 available genes) to the
validation set can clearly replicate the identified subgroups in the
TCGA cohort (Figure 1D). PCA also confirmed the difference in
gene expression profiles between these two subtypes (Figure 1E).
Similarly, survival analysis showed that Sub B had a shorter
overall survival time than Sub A (Figure 1F).

Differences in Biological Functions of the
Two Subtypes
We also analyzed the functional background of the two gastric
cancer subtypes. Figure 2A showed the results of cluster analysis
by differential gene expression between the two groups. GO and
KEGG analyses with TCGA cohort showed that the up-regulated
genes in Sub A vs Sub B were enriched in cell cycle, cell cycle G2/
M phase transition, cell cycle checkpoint and negative regulation

of chromosome separation (Figure 2B). GSEA further showed
that the up-regulated genes in Sub A vs Sub B were mainly
enriched in cell cycle checkpoints, G2/M checkpoints, mitotic
metaphase and anaphase, and mitotic spindle checkpoint
(Figure 2C). Differential gene expression analysis showed cell
cycle checkpoint (Figure 2D), cell cycle G2/M phase transition
(Figure 2E), negative regulation of nuclear division (Figure 2F)
and regulation of spindle checkpoint (Figure 2G) related genes
were highly expressed in Sub A samples. The same enrichment
trend also appeared in GEO cohort (Figures 3A–G).

GO and KEGG analyses on genes that were upregulated in Sub
B vs Sub A in TCGA cohort showed that extracellular matrix
structural constituent, collagen-containing extracellular matrix
and extracellular matrix organization were enriched
(Supplementary Figure S2A). The same enrichment trend
also appeared in GEO cohort (Supplementary Figure S2B).
Since the differential genes of Sub B vs Sub A were mostly
clustered in extracellular matrix related pathways, we analyzed
the infiltration of stromal cells in Sub A and Sub B. We
implemented the CIBERSORT and ESTIMATE algorithms to
quantify the activity or enrichment level of immune cells in
gastric cancer tissues. The results showed that the stromal cell
infiltration and score, the degree and score of immune cell
infiltration, and the overall extracellular matrix infiltration
score of Sub B subtypes were higher than Sub A in TCGA
and GEO cohorts (Supplementary Figure S3 and S4).

In order to understand the significance of Sub A and Sub B
classification, we put our findings in the context of well-recognized
molecular subtypes of gastric cancer (EBV, MSI, GS, and CIN) (Sohn
et al., 2017) and the results were shown in Supplementary Figure S4.
We made the survival curves of Sub A and Sub B among the four
recognized classification subtypes, and they were not statistically
significant. However, Sub A tended to have a longer survival than
Sub B in the MSI and CIN subtypes (Supplementary Figure S5C,D).
EBV subtype had better prognosis and overall survival (Sohn et al.,
2017) and there were more EBV subtypes in the Sub A sample
(Supplementary Figure S5E). At the same time,Kaplan-Meier
survival analysis was performed on Sub A and Sub B in different
TCGA and GEO clinical characteristics (Supplementary Figure S6,
S7). Sub A samples had a better survival trend than Sub B samples. A
quantitative analysis of different characteristics enriched in Sub A and
Sub B in TCGA and GEO cohorts was also conducted. The results
showed that Sub B samples had a higher proportion of well-
recognized clinical indicators with poor relative prognosis
(Supplementary Figure S8). These illustrated the feasibility of the
classification method to a certain extent.

Analysis of Differences in Cycle Control
Molecules
Since the up-regulated molecular functions in Sub A vs Sub B
were enriched in cell cycle-related pathways, the difference genes
in cyclin expression between the two subtypes were analyzed. Cell
cycle checkpoint, cell cycle G2/M phase transition, negative
regulation of nuclear division and regulation of spindle
checkpoint related gene expression were analyzed between the
two subtypes. Sub A had a higher expression of negative cell cycle
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FIGURE 3 | Analyses of the biological functions of the two subtypes in the GEO cohort. (A) The heatmap showed the DEG between Sub A and Sub B. (B)GO and
KEGG analyses on upregulated genes in Sub A vs Sub B in GEO cohort. (C) GSEA analysis of the two subtypes in the GEO cohort. (D–G) A box plot showed the
difference in the expression of cell cycle checkpoint (D), cell cycle G2/M phase transition (E), negative regulation of nuclear division (F) and regulation of spindle
checkpoint (G) between the two subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.
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control proteins than Sub B in TCGA cohort (Figures 2D–G).
Sub A highly expressed CHEK2, MAD2L1 and SFN genes, which
were two typical cell cycle checkpoint genes, and their high
expression can reduce cell proliferation (Stolz et al., 2011;
Lewinska et al., 2017; Marima et al., 2021) (Figure 2D). Sub A
highly expressed CDKN3 and CHEK1 which were cell cycle
suppressor genes (Lee et al., 2000; Liu et al., 2000) belonging
to the G2 and G2/M phase-related proteins (Figure 2F). Sub A
samples expressed BUB1and PLK1 higher than sub B. BUB1and
PLK1 are typical genes that negative regulate nuclear division
(Fukagawa, 2008; de Cárcer et al., 2018). The same performance
was also verified in GEO data (Figures 3D–G).

The Correlation Between Tumor Burden
Mutation and the Two Subgroups
Next, we analyzed tumor burden mutation (TMB) from the
TCGA cohort to explore the differences in genomic changes

between the two subtypes. Figures 4A,B showed the TMB
situation of Sub A and Sub B. Sub A displayed more deletion
regions, such as TTN, TP53, MUC16, ARID1A, LRP1B,
SYNE1 and FAT4 (Figures 4A,B). As shown in Figure 4C,
the TMB of the Sub A group was significantly higher than that
of Sub B group (p < 0.001). Kaplan-Meier survival analysis
showed that patients with high tumor burden mutation
(H-TMB) had better overall survival than the low tumor
burden mutation (L-TMB, p � 0.003, Figure 4D).
Considering the prognostic value of TMB and clusters, we
next evaluated the synergy effect of these indicators in the
prognostic stratification of TCGA-STAD. Stratified survival
analysis revealed that the TMB status did not affect cluster-
based predictions. Sub A and Sub B showed significant survival
differences in both high and low TMB subgroups (p � 0.006;
Figure 4E). Overall, these results indicated that the
stratification may be an underlying predictor that is
independent of TMB.

FIGURE 4 | The correlation between the TMB and clusters in TCGA cohort. (A) TMB analysis in the Sub A groups. (B) TMB analysis in the Sub B groups. (C)
Difference analyses of TMB between Sub A and Sub B groups. (D) Kaplan-Meier curves for low and high TMB groups of the TCGA cohort. (E) Kaplan-Meier curves for
patients in the TCGA cohorts stratified by both TMB and clusters.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7709947

Hu et al. Gastric Cancer Proliferation Cycle Characteristics

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Identification of Prognostic Characteristics
Related to Gastric Cancer Classification
and Construction of Clinical Prognostic
Risk Model
Screening of Differential Molecules With Survival
Prognostic Value
We used the lasso regression method to screen 236 differential
genes of the Sub A and Sub B with prognostic significance. The
corresponding clinical information was shown in Table 1. The
remaining three molecules in the final model that had a greater
impact on the prognosis were GPC3, GPX3 and PRICKLE1.
Survival analysis showed that high expression of these three
molecules showed worse prognosis in TCGA and GEO
cohorts (Figures 5A,B) which indicated that the three selected
molecules may have the potential to predict prognosis. Therefore,
we combined clinical indicators and the expression of the three
molecules, and applied cox multivariate regression analysis to
determine the weight of the three molecule’s influence on the
prognosis, thereby constructing a prognostic risk prediction
model. We combined the expression value of the identified
genes and the weighting of the regression coefficient (β value)
to construct the prognostic risk characteristics respectively. Risk
score � GPC3*0.142 + GPX3 *0.262 + PRICKLE1*0.366. The
median of risk score was set as a cutoff value and divided gastric
cancer patients into high and low risk groups. Kaplan-Meier
survival analysis illustrated that high-risk group had worse
prognosis for overall survival (p < 0.05, Figures 6C,E) in
TCGA and GEO cohorts. Enter method-based cox
multivariate regression was performed to evaluate the
prognostic influence of the risk signature combined with other
clinic pathological features. The results showed that the risk score

was one of the independent risk factors for overall survival among
gastric cancer patients (p < 0.05, Table 2).

Clinical Correlation Analysis of the Prognostic
Signature for Gastric Cancer
Risk model illustrated that high-risk score was interrelated to
poor prognosis (Figures 5C,E) and histogram showed that Sub B
got a higher risk score (Figures 5D,F) in TCGA and GEO cohort
simultaneously. The risk curve showed that high risk score was
positively correlated with high risk of death (Figure 5G,H). At the
same time, the heat map showed that Sub B had a higher risk
score, and the expression of the three genes GPC3, GPX3 and
PRICKLE1 were higher compared with Sub A in TCGA and GEO
cohorts (Figures 5G,I). The ROC curve showed that the risk
prediction model had higher specificity and sensitivity when
combining with TNM stage in predicting the death of patients
(Figure 5K and M). The higher the patient’s T stage, the higher
the corresponding risk score (Figure 5L) in TCGA cohort and no
significant differences were found in the GEO data (Figure 5N).

Analysis of Key Genes Expression Difference in
Pan-Cancer
GPC3, GPX3 and PRICKLE1 were the candidate sites selected in
the risk prediction model for OS, which indicated that the genes
might have potential roles on the malignant behaviors of gastric
cancer. Therefore, we had performed pan-cancer analysis of these
three genes to provide evidence for future basic research in this
field. As shown in Figure 6A, ONCOMINE database was used to
perform pan-cancer analysis on GPC3, GPX3 and PRICKLE1
expression (Figure 6A). The expression of these three genes in
tumor tissues was higher than that in adjacent tissues in 20
tumors.

DISCUSSION

Here, we had defined two subtypes with different clinical and
biological characteristics through cluster analysis of gastric cancer
transcriptome analysis. The repeatability of the classification was
confirmed in an independent GEO validation cohort, and
consistent phenotypes were observed. Gastric cancer patients
with a better prognosis was characterized by higher expression
of proliferation cycle suppression related genes. This classification
helps us better classify gastric cancer patients and provided
targeted treatment based on specific transcriptome data. Over
the past decades, scientists had conducted in-depth research work
to identify the underlying molecular mechanisms of gastric
cancer, identify its prognostic indicators, and explore potential
treatment strategies. Our results not only provide insight into the
relationship between the proliferation cycle genome subtypes and
postoperative survival rate, but also open up new opportunities
for improving the management of gastric cancer.

According to the transcriptome data in TCGA cohort, gastric
cancer was clustered into Sub A and Sub B by unsupervised cluster
analysis. Principal component analysis can also distinguish Sub A
and Sub B well. Kaplan-Meier survival analysis showed that Sub A
survives longer than Sub B. There were more Sub B cases in TNM 3/

TABLE 1 | Clinical characteristics of patients with gastric cancer in TCGA and
GEO database.

TCGA cohort GEO cohort

Characteristics No. of patients (%) No. of patients (%)

Age
<65 129 (43.0) 229 (64.2)
S65 171 (57.0) 128 (35.8)

Gender
Female 110 (36.6) 115 (32.2)
Male 190 (63.4) 242 (67.8)

Grade
G1&G2 111 (37.0)
G3 189 (63.0)

T
T1&2 77 (25.6) 46 (12.8)
T3&4 223 (74.3) 311 (87.2)

N
N0 89 (29.6) 71 (19.8)
N1&2&3 211 (70.3) 286 (80.1)

M
M0 280 (93.3)
M1 20 (6.4)

TNM
1&2 139 (46.3)
3&4 161 (53.6)
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FIGURE 5 |Cox proportional hazards model was used to identify the prognostic signature. (A and B) Kaplan-Meier curve plot for key prognostic genes of TCGA (A)
and GEO (B) cohorts. (C and E) Kaplan-Meier curve plot for key prognostic genes-based risk model of TCGA (C) and GEO (E) cohorts. (D and F) Risk score of the two
subtypes in TCGA (D) and GEO (F) cohorts. (G and H) Distribution and current status of gastric cancer risk scores in TCGA and GEO cohorts, which indicated that high-
risk score was related to poor prognosis. (I and G) Heatmaps showed that the degree of key prognostic genes expression in different risk score and the two
subtypes in TCGA (I) and GEO (G) cohorts. (K and M) ROC of risk score prediction model on TCGA (K) and GEO (M) cohorts. (L and N) Survival curves of gastric
cancer patients with combinations of risk score and T stage in the TCGA (L) and GEO (N) cohorts.
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4 compared with Sub A cases. Similar conclusions were also verified
in GEO cohort. This showed that the clustered Sub A and Sub B had
personalized transcriptome expression components and showed
different survival times.

Further GO and KEGG analyses showed that the up-regulated
genes of Sub A vs Sub B were mostly concentrated in cell cycle
inhibition pathways. GSEA analysis also proved the above
conclusions on the trend, although a larger sample sizes was
required for verification. These indicated that genes related to the
regulation of cell proliferation level cycle played an important
part in the occurrence and development of gastric cancer. In
addition, GO and KEGG analyses revealed that Sub A had high
proliferation-related proteins involved in cell cycle checkpoint,
cell cycle G2/M phase transition, negative regulation of nuclear
division and regulation of spindle checkpoint. These proteins
benefit the survival of gastric cancer patients. We found that Sub
B cases with poor results showed an opposite proliferative

phenotype in functional annotation. We found that tumor
invasiveness and patient survival are more influenced by
proliferative cycle nature than by other malignant features of
gastric cancer. In the cell cycle-related expression analysis, Sub A
expressed more cell cycle inhibitory proteins. The lower
proliferation ability of Sub A gastric cancer patients may be
important for their survival ability better than Sub B.

In addition, we have identified key different molecules
between Sub A and Sub B subtypes that have a greater impact
on the prognosis through lasso regression method and univariate
and multivariate cox regression analysis. In the end, we screened
out 3 molecules, GPC3, GPX3 and PRICKLE1, and constructed a
risk scoring model for gastric cancer samples. Survival analysis
showed that high expression of these three molecules showed
worse prognosis in TCGA and GEO cohorts simultaneously.

Glypican 3, also known as GPC3, is a cancer fetal
glycoprotein that is attached to cell membranes via
glycophosphatidylinositol anchors. GPC3 can regulate cell
proliferation in embryonic mesoderm tissue, as GPC3 gene
deletion leads to giant/over growth syndrome, simpson-
Golabi-Behmel syndrome (SGBS) (Simpson et al., 1975;
Behmel et al., 1984; Ferlini et al., 1984; Pilia et al., 1996;
Vuillaume et al., 2019). GPC3 is widely expressed in the
placenta, liver, lung, and kidney of embryos. On the
contrary, it is difficult to detect in most adult organs
(Pellegrini et al., 1998). DNA methylation in the GPC3
promoter region may explain this biological downregulation
in adult tissues (Hsu et al., 1997; Huber et al., 1999; Boily et al.,
2004). A number of innovative treatments for GPC3 have
emerged in recent years. The prognostic significance of serum
GPC3 levels and tumor cell GPC3 immunoreactivity in
patients with hepatocellular carcinoma has been elucidated.
Thus, GPC3 has also attracted attention as a useful biomarker
and a new therapeutic target molecule. The main mechanism
of anti-GPC3 antibody (GPC3Ab) anticancer cells is antibody-
dependent cytotoxicity and/or complement dependent
cytotoxicity. Because GPC3Ab is associated with immune
responses, regiments of combined immune checkpoint
inhibitors have also been investigated. In terms of
mechanism, GPC3 may be involved in the regulation of
Wnt, hedgehog, bone morphogenetic protein, FGF and
other signaling pathways, by which it controls the growth
and apoptosis of certain types of cells during development
(Paine-Saunders et al., 2000; Midorikawa et al., 2003; Capurro
et al., 2008; Iglesias et al., 2008).

Glutathione peroxidase 3, also known as GPx3, is a major
extracellular GPx isomer and a major scavenger of reactive
oxygen species (ROS) in plasma. Some researches show high
GPx3 expression predicted poor prognostic survival. Reduced
GPx3 expression inhibited the survival of clonal and
unanchored cells and prostate cancer (Yu et al., 2007). In
addition, GPx3 is necessary to protect cells from exogenous
oxidative damage, as demonstrated by high-dose ascorbic acid
therapy. GPx3 is essential for the survival of ovarian cancer
cells in the ascites tumor environment and protects against
extracellular oxidative stressors, suggesting that GPx3 is an

FIGURE 6 | Differential expression of three signature genes in cancer
and adjacent tissue in 20 tumors at the ONCOMINE database. Student’s t test
was used to compare the differences in mRNA expression. Red represented
overexpression and blue represented low expression. The darker the
color, the more obvious the difference in gene expression.
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important adaptation for metastasis (Lou et al., 2020). In
contrast, GPX3 inhibits tumor progression in some tumors.
High GPx3 expression is a potential marker for the diagnosis
and prognosis and can inhibit the progression in breast cancer,
clear cell ovarian cancer hepatocellular carcinoma, cervical
cancer and melanoma patients (Itamochi et al., 2002; Saga
et al., 2008; Qi et al., 2014; Zhang et al., 2014; Chen et al., 2016;
Lou et al., 2020). The study by Chang et al. provided the first in
vivo molecular genetic evidence that GPx3 does indeed play a
tumor suppressor role in the development of prostate cancer
(Chang et al., 2016). In esophageal squamous cell carcinoma,
GPx3 inhibits tumor migration and invasion through the FAK/
AKT pathway (Zhu et al., 2018). High-grade bladder cancer is
associated with low urinary GPx3 levels. GPx3 inhibits tumor
invasion by inhibiting the JNK-Cjun-MMP2 pathway in liver
cancer (Qi et al., 2016). Many studies have shown that
methylation-mediated GPX3 inhibition may have important
implications for the pathogenesis of cancer. The results of
Chen et al. suggest that GPx3 methylation is associated with
chemotherapy resistance in head and neck cancer and can be
used as a potential prognostic indicator for head and neck
cancer patients receiving cisplatin-based chemotherapy (Chen
et al., 2011). GPx3 is also down-regulated in hepatocellular
carcinoma and esophageal squamous cell carcinoma through
promoter hypermethylation, which may lead to cancer
development and progression (He et al., 2011; Cao et al.,
2015). Silencing of GPx3 through DNA hypermethylation is
associated with lymph node metastasis in gastric cancer and
cervical cancer (Peng et al., 2012; Zhang et al., 2014). However,
the functional research of GPx3 in gastric cancer needs to be
further explored.

Prickle planar cell polarity protein 1, is also known as
PRICKLE1. The results of Daulat et al. suggested that up-
regulation of PRICKLE1 in basal breast cancer, a subtype
characterized by high metastatic potential, is associated with
poor metastases-free survival. PRICKLE1 promotes cancer cell
transmission through interaction with mTORC2 (Daulat et al.,
2016). According to a study, PRICKLE1 expression can be used as

an independent prognostic factor, can be in the column chart
combined with age and TNM staging, to predict the rate of gastric
cancer patients with OS. PRICKLE1 expression is an independent
prognostic factor in patients with gastric cancer (Zhao et al., 2016;
Ding et al., 2020).

Because the conclusions and sample cluster analysis were
based on only public sequencing data, and our own clinical
sample sequencing data will be needed to verify the conclusion
and classification standard in the future. At the same time, the
conclusion of this topic needs to be verified by multiple centers.
Our subjects were mostly white, so it is not known whether these
results are suitable for other groups, such as the yellow race.
Future studies with more varied samples are needed. The key
prognostic molecules screened out were only used for survival
analysis and clinicopathological link analysis in TCGA cohort.
They are need to be tested and verified in our own samples and
gene function also needs to be further studied through basic
experiments in the future.

In this study, cluster analysis based on gastric cancer
proliferation-related genes were performed for the first time.
The major strength of this study was that the clustering results
were verified and analyzed in two independent cohorts. Here, a
high-risk Sub B gastric cancer subtype that displayed a lower
expression of proliferation-related genes was identified. The
biological processes of gastric cancer must be understood to
facilitate the improvement of clinical treatments.

In summary, our data indicate that transcriptome analysis
divides gastric cancer into two different subgroups with
different clinical and biological phenotypes. We believe that
this classification is meaningful for different treatment
strategies and will lead to targeted treatment of patients
with gastric cancer.

CONCLUSION

In conclusion, two subtypes with different clinical and
biological characteristics was identified through cluster

TABLE 2 | Cox regression analysis of risk score in TCGA and GEO cohorts.

TCGA cohort GEO cohort

Univariate cox Multivariate cox Univariate cox Multivariate cox

Characteristics HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value
Age 1.019 (1.002,1.037) 0.031 1.034 (1.015,1.054) 0.000 1.019 (1.005,1.033) 0.009 1.026 (1.011,1.040) 0.000
Gender
Male vs Female 1.439 (0.980,2.113) 0.063 1.597 (1.083,2.356) 0.018 1.266 (0.910,1.762) 0.161 1.248 (0.895,1.739) 0.191

Grade
G3 vs G1&G2 1.362 (0.941,1.972) 0.102 1.190 (0.806,1.755) 0.382

T
T3&4 vs T1&2 1.515 (0.971,2.365) 0.067 1.416 (0.885,2.267) 0.147 3.521 (1.799,6.889) 0.000 3.129 (1.594,6.141) 0.001

N
N1&2&3 vs N0 1.712 (1.112,2.637) 0.015 1.445 (0.927,2.253) 0.104 2.284 (1.459,3.573) 0.000 2.006 (1.275,3.155) 0.003

M
M1 vs M0 1.557 (0.810,2.991) 0.184 1.959 (0.996,3.855) 0.051
Risk score 1.689 (1.324,2.155) 0.000 1.785 (1.369,2.329) 0.000 1.313 (1.029,1.675) 0.028 1.359 (1.053,1.753) 0.018
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analysis of gastric cancer transcriptome data. The repeatability
of the classification was confirmed in an independent GEO
validation set, and consistent phenotypes were observed.
Gastric cancer patients with a better prognosis was
characterized by higher expression of proliferation cycle
suppression related genes. This classification helps us to
better classify gastric cancer patients and provide targeted
treatment based on specific transcriptome data.
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