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Cardiac fibrosis is a key pathophysiological process that contributes to heart failure.
Cardiac resident fibroblasts, exposed to various stimuli, are able to trans-differentiate
into myofibroblasts and mediate the pro-fibrogenic response in the heart. The present
study aims to investigate the mechanism whereby transcription of chloride channel
accessory 2 (Clca2) is regulated in cardiac fibroblast and its potential implication
in fibroblast-myofibroblast transition (FMyT). We report that Clca2 expression was
down-regulated in activated cardiac fibroblasts (myofibroblasts) compared to quiescent
cardiac fibroblasts in two different animal models of cardiac fibrosis. Clca2 expression
was also down-regulated by TGF-β, a potent inducer of FMyT. TGF-β repressed
Clca2 expression at the transcriptional level likely via the E-box element between
−516 and −224 of the Clca2 promoter. Further analysis revealed that Twist1
bound directly to the E-box element whereas Twist1 depletion abrogated TGF-β
induced Clca2 trans-repression. Twist1-mediated Clca2 repression was accompanied
by erasure of histone H3/H4 acetylation from the Clca2 promoter. Mechanistically
Twist1 interacted with HDAC1 and recruited HDAC1 to the Clca2 promoter to repress
Clca2 transcription. Finally, it was observed that Clca2 over-expression attenuated
whereas Clca2 knockdown enhanced FMyT. In conclusion, our data demonstrate that a
Twist1-HDAC1 complex represses Clca2 transcription in cardiac fibroblasts, which may
contribute to FMyT and cardiac fibrosis.

Keywords: transcriptional regulation, epigenetics, histone deacetylation, histone deacetylase, cardiac fibroblast,
myocardial fibrosis

INTRODUCTION

Cardiac fibrosis is generally considered an adaptive response to adversarial stimuli when the heart
is exposed to various injuries. A specialized cell type termed “myofibroblast,” typically absent from
the normal myocardium under physiological conditions, emerges following injuries and mediates
the fibrogenic response (Tomasek et al., 2002). On the one hand, myofibroblasts are capable of
muscle-like contraction owing to the acquisition of the expression of genes encoding contractile
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proteins (e.g., α-SMA). Contraction by myofibroblasts facilitates
wound healing and prevents the incidence of cardiac rupture
(Talman and Ruskoaho, 2016). On the other hand, myofibroblasts
produce multiple extracellular matrix proteins (e.g., type I
collagen, type III collagen, fibronectin) to promote ventricular
remodeling and maintain myocardial integrity (van den
Borne et al., 2010). After the recession of injurious stimuli,
myofibroblasts are no longer needed and thus must be removed
or resolved to terminate cardiac fibrogenesis. On the contrary,
persistent presence of myofibroblasts in the heart or failure of
resolution often leads to aberrant and averse cardiac remodeling
and increased rigidity of the myocardium dampening heart
function. In fact, cardiac fibrosis is frequently observed and
associated with poor diagnosis in patients with heart failure
(Gonzalez et al., 2018).

The origin of myofibroblasts in the stressed heart was a
subject matter of great controversy and remained elusive prior
to the development and utilization of genetic lineage tracing
technique. It has been proposed that microvascular endothelial
cells (Zeisberg et al., 2007), epicardial epithelial cells (Zhou
et al., 2010), myelocytic fibrocyte (Mollmann et al., 2006), and
perivascular mesenchymal cells (Kramann et al., 2015) may trans-
differentiate into myofibroblasts in vitro and/or in vivo under
different conditions. Landmark studies from the Molkentin
laboratory (Kanisicak et al., 2016) and the Evans laboratory
(Moore-Morris et al., 2014), aided by lineage tracing, have
unequivocally demonstrated that cardiac resident fibroblasts
are the predominant source of mature myofibroblasts and
become the effector cell type of cardiac fibrosis following
cardiac injury via fibroblast-myofibroblast transition (FMyT).
Further analysis has revealed that cardiac myofibroblasts can
be labeled by periostin (encoded by postn), a matricellular
protein that can function as a ligand for integrins to promote
cell migration (Stempien-Otero et al., 2016). One of the most
convincing pieces of evidence that supports the pivotal role of
myofibroblasts in cardiac fibrosis is provided by Kaur et al. (2016)
who demonstrate that elimination of periostin-positive cells
(mature myofibroblasts), by diphtheria toxin mediated killing,
abrogates aberrant fibrogenic response and preserves heart
function after myocardial infarction. Despite these advances,
many transcriptional events taking place during FMyT remain to
be investigated in detail.

Chloride channel accessory 2 (Clca2) belongs to the
family of calcium sensitive chloride conductance proteins or
regulators (Jentsch and Pusch, 2018). Clca2 plays versatile
pathophysiological roles by regulating multiple distinct yet
interconnected cellular processes including proliferation (Walia
et al., 2009), differentiation (Ramena et al., 2016), migration
(Sasaki et al., 2012), and apoptosis (Seltmann et al., 2018).
Early characterization of Clca2 protein structure and expression
pattern indicated that Clca2 might be a regulator of cystic fibrosis
(Gruber et al., 1999). More recently, Walia et al. (2012) have
reported that Clca2 expression can be down-regulated by TGF-
β, one of the most potent inducer of tissue fibrogenesis, in
epithelial cells. In mammalian cells, gene expression is acutely
influenced by the epigenetic machinery. Epigenetics mechanisms
are heritable phenotypic changes that do not involve alterations

in the DNA sequence; these mechanisms play an important role
in a wide spectrum of human diseases (Surguchov et al., 2017).
These observations prompted us to investigate whether and, if so,
how Clca2 expression might be regulated in the process of cardiac
FMyT. We report here that Clca2 is transcriptionally repressed
by a Twist1-HDAC1 epigenetic complex in cardiac fibroblasts
by pro-fibrogenic stimuli. In addition, Clca2 is able to modulate
TGF-β induced FMyT in vitro.

MATERIALS AND METHODS

Animals
All animal protocols were reviewed and approved the intramural
Ethics Committee on Humane Treatment of Laboratory Animals
of Jiangsu Health Vocational College. The mice were maintained
in an SPF environment with 12 h light/dark cycles and libitum
access to food and water. Cardiac fibrosis was induced by
permanent ligation of left-anterior descending (LAD) coronary
artery or transverse aortic constriction (TAC) as previously
described (Yang et al., 2017; Liu et al., 2021b,c).

Cell Culture, Plasmids, Transient
Transfection, and Reporter Assay
Primary cardiac fibroblasts were isolated and maintained in
DMEM supplemented with 10% FBS as previously described
(Gao et al., 2020; Liu et al., 2020; He et al., 2021; Zhao
et al., 2021). Mouse embryonic fibroblasts (MEFs) were isolated
and maintained in DMEM supplemented with 10% FBS as
previously described (Angrisani et al., 2021). Clca2 promoter-
luciferase construct was made by amplifying genomic DNA
spanning the proximal promoter and the first exon of Clca2 gene
(−1100/ + 91) and ligating into a pGL3-basic vector (Promega).
Truncation mutants were made using a QuikChange kit (Thermo
Fisher Scientific, Waltham, MA, United States) and verified
by direct sequencing. Small interfering RNAs were purchased
from Dharmacon. Transient transfection was performed with
Lipofectamine 2000. Cells were harvested 48 h after transfection
and reporter activity was measured using a luciferase reporter
assay system (Promega) as previously described (Kong et al.,
2021a,c; Liu et al., 2021c; Zhang et al., 2021). MS-275 and MC-
1568 were purchased from Selleck. Mouse recombinant TGF-β
was purchased from R&D.

Protein Extraction, Immunoprecipitation
and Western Blot
Whole cell lysates were obtained by re-suspending cell pellets
in RIPA buffer (50 mM Tris pH7.4, 150 mM NaCl, 1%
Triton X-100) with freshly added protease inhibitor (Roche)
as previously described (Chen et al., 2020a,b,c; Wu X.
et al., 2020; Yang et al., 2020b; Zhang et al., 2020; Chen
B. et al., 2021; Dong et al., 2021). Nuclear proteins were
extracted using the NE-PER Kit (Pierce) following manufacturer’s
recommendation. Specific antibodies or pre-immune IgGs were
added to and incubated with cell lysates overnight before being
absorbed by Protein A/G-plus Agarose beads (Santa Cruz).
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Precipitated immune complex was released by boiling with 1X
SDS electrophoresis sample buffer. Western blot analyses were
performed with anti-Clca2 (Proteintech, 19273-1, 1:500), anti-α-
SMA (Sigma, A2547, 1:8000), anti-collagen type I (Proteintech,
14695-1, 1:2000), anti-Twist1 (Proteintech, 25465-1, 1:500), anti-
HDAC1 (Santa Cruz, sc-7872, 1:1000), anti-HDAC2 (Santa
Cruz, sc-7899, 1:1000), anti-HDAC3 (Santa Cruz, sc-11417,
1:1000), anti-HDAC8 (Santa Cruz, sc-11405, 1:1000), anti-FLAG
(Sigma, F1804, 1:5000), and anti-β-actin (Sigma, A2228, 1:4000)
antibodies.

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation (ChIP) assays were performed
essentially as described before (Wang et al., 2020; Liu et al.,
2021a). In brief, chromatin in control and treated cells were cross-
linked with 1% formaldehyde. Cells were incubated in lysis buffer
(150 mM NaCl, 25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS,
0.5% deoxycholate) supplemented with protease inhibitor tablet
and PMSF. DNA was fragmented into ∼200 bp pieces using a
Branson 250 sonicator. Aliquots of lysates containing 200 µg
of protein were used for each immunoprecipitation reaction
with anti-Twist1 (Proteintech, 25465-1), anti-Slug (Cell Signaling
Technology, 9585), anti-Zeb1 (Cell Signaling Technology, 3396),
anti-Snail (Cell Signaling Technology, 3879), anti-anti-acetyl H3
(Millipore, 06-599), anti-acetyl H4 (Millipore, 06-598), anti-
HDAC1 (Santa Cruz, sc-7872), or pre-immune IgG. For re-
ChIP, immune complexes were eluted with the elution buffer
(1% SDS, 100 mM NaCO3), diluted with the re-ChIP buffer
(1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris
pH 8.1), and subject to immunoprecipitation with a second
antibody of interest.

RNA Isolation and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit
(Qiagen). Reverse transcriptase reactions were performed using
a SuperScript First-strand Synthesis System (Invitrogen) as
previously described (Dong et al., 2020; Hong et al., 2020; Wu
T. et al., 2020; Yang et al., 2020a,b, 2021; Zhang et al., 2020;
Kong et al., 2021b). Real-time PCR reactions were performed
on an ABI Prism 7500 system. Ct values of target genes
were normalized to the Ct values of housekeeping control
gene (18s rRNA, 5′-CGCGGTTCTATTTTGTTGGT-3′ and 5′-
TCGTCTTCGAAACTCCGACT-3′ for both human and mouse
genes) using the 11Ct method and expressed as relative mRNA
expression levels compared to the control group which is
arbitrarily set as 1.

5-Ethynyl-2′-Deoxyuridine Incorporation
Assay
5-ethynyl-2′-deoxyuridine (EdU) incorporation assay was
performed in triplicate wells with a commercially available kit
(Thermo Fisher Scientific) per vendor instruction. Briefly, the
EdU solution was diluted with the culture media and added
to the cells for an incubation period of 2 h at 37◦C. After
several washes with 1XPBS, the cells were then fixed with 4%
formaldehyde and stained with Alexa FluorTM 488. The nucleus

was counter-stained with DAPI. The images were visualized
by fluorescence microscopy and analyzed with Image-Pro Plus
(Media Cybernetics). For each group, at least six different fields
were randomly chosen and the positively stained cells were
counted and divided by the number of total cells. The data are
expressed as relative EdU staining compared to the control group
arbitrarily set as 1.

Statistical Analysis
One-way ANOVA with post hoc Scheff’e analyses were performed
by SPSS software (IBM SPSS v18.0, Chicago, IL, United States).
Unless otherwise specified, values of p < 0.05 were considered
statistically significant.

RESULTS

Chloride Channel Accessory 2
Expression Is Down-Regulated in
Activated Cardiac Fibroblasts
When exposed to injurious stimuli, cardiac resident fibroblasts
undergo trans-differentiation and become mature myofibroblasts
to mediate the fibrogenic response. In order to compare Clca2
expression in quiescent cardiac fibroblasts and activated cardiac
fibroblasts, C57B/6 mice were subjected to the LAD procedure
to induce myocardial infarction; previous investigations have
shown that FMyT peaks at 7 day after the surgery (Kanisicak
et al., 2016). It was observed that compared to the sham-
operated mice, expression levels of Acta2 (encoding α-SMA)
and Col1a1 (encoding collagen type I), two typical myofibroblast
markers, were significantly up-regulated in the primary cardiac
fibroblasts isolated from the LAD-operated mice; on the
contrary, Clca2 expression was down-regulated in the activated
cardiac fibroblasts compared to the quiescent cardiac fibroblasts
(Figure 1A). Western blotting confirmed that Clca2 protein
levels were down-regulated as well (Figure 1B). In the second
model of myocardial fibrosis, C57B/6 mice were subjected
to the TAC procedure; FMyT typically peaks at 7 day after
the surgery (Bursac, 2014). QPCR (Figure 1C) and Western
blotting (Figure 1D) showed that Clca2 expression was lower
in the activated cardiac fibroblasts isolated from the TAC mice
than in the quiescent cardiac fibroblasts isolated from the
sham mice, opposite to the changes in Acta2 expression and
Col1a1 expression.

TGF-β is one of most potent inducer of FMyT and myocardial
fibrosis (Davis and Molkentin, 2014). When quiescent
cardiac fibroblasts were treated with TGF-β, it was found
that both Acta2 and Col1a1 were progressively up-regulated
whereas Clca2 expression was concomitantly down-regulated
(Figures 1E,F).

TWIST1 Mediates Chloride Channel
Accessory 2 Trans-Repression in
Cardiac Fibroblasts
We next determined whether down-regulation of Clca2
expression by TGF-β occurred at the transcriptional level.
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FIGURE 1 | Chloride channel accessory 2 (Clca2) expression is down-regulated in activated cardiac fibroblasts. (A,B) C57B/6 mice were subjected to the LAD
procedure to induce myocardial infarction. The mice were sacrificed 7 day after the surgery and primary cardiac fibroblasts were isolated. Clca2 expression was
examined by qPCR and Western. N = 6 mice for each group. (C,D) C57B/6 mice were subjected to the TAC procedure to induce myocardial hypertrophy. The mice
were sacrificed 7 day after the surgery and primary cardiac fibroblasts were isolated. Clca2 expression was examined by qPCR and Western. N = 6 mice for each
group. (E,F) Primary cardiac fibroblasts were isolated from C57B/6 mice and treated with TGF-β (2 ng/ml). Cells were harvested at indicated time points and Clca2
expression was examined by qPCR and Western. Error bars represent SD (*p < 0.05, two-way Student’s t-test). All experiments were repeated three times and one
representative experiment is shown.

A series of Clca2 promoter-luciferase reporter constructs
were transfected into mouse embryonic fibroblasts (MEFs)
followed by TGF-β treatment. As shown in Figure 2A, TGF-β
treatment decreased the activity of the full-length Clca2 promoter
(−1100/+ 91) suggesting that TGF-β could indeed repress Clca2
transcription. However, when deletions introduced to the full-
length Clca2 promoter extended beyond−516, TGF-β treatment
could no longer repress the Clca2 promoter activity. A closer
examination revealed a conserved E-box (CAGGTG) located
between −516 and −224 of the Clca2 promoter; mutation

of the E-box completely abrogated the response to TGF-β
treatment (Figure 2B).

The E-box binding family of zinc finger transcription
repressors include Snail, Slug, Twist1, and Zeb1 (Kalluri and
Weinberg, 2009). ChIP assay was performed to determine which
one of these transcription factors (TFs). As shown in Figure 2C,
Twist1, but not Snail, Slug, or Zeb1, occupied the proximal Clca2
promoter containing the E-box in response to TGF-β treatment;
none of the TFs were detected on the distal Clca2 promoter.
To further validate the role of Twist1 in Clca2 trans-repression,
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FIGURE 2 | TWIST1 mediates Clca2 trans-repression in cardiac fibroblasts. (A) Different Clca2 promoter-luciferase constructs were transfected into mouse
embryonic fibroblasts (MEFs) followed by treatment with TGF-β. Luciferase activities were normalized by protein concentration and GFP fluorescence. (B) Wild type
and mutant Clca2 promoter-luciferase constructs were transfected into MEFs followed by treatment with TGF-β. Luciferase activities were normalized by protein
concentration and GFP fluorescence. (C) Primary cardiac fibroblasts were treated with TGF-β (2 ng/ml) and were harvested at indicated time points. ChIP assays
were performed with indicated antibodies. (D,E) Primary cardiac fibroblasts were transfected with indicated siRNAs followed by treatment with TGF-β (2 ng/ml).
Gene expression was examined by qPCR and Western. Error bars represent SD (*p < 0.05, two-way Student’s t-test). All experiments were repeated three times
and one representative experiment is shown.

endogenous Twist1 was depleted with two independent pairs of
siRNAs. Twist1 knockdown partially restored Clca2 expression in
the presence of TGF-β in cardiac fibroblasts (Figures 2D,E).

TWIST1 Represses Chloride Channel
Accessory 2 Transcription by Promoting
Histone Deacetylation
Transcriptional repression is usually associated with erasure of
histone acetylation surrounding the promoter region (Jenuwein
and Allis, 2001). As shown in Figure 3A, TGF-β treatment
led to disappearance of acetylated histone H3 and acetylated
histone H4 from the proximal, but not the distal, Clca2 promoter;
Twist1 knockdown normalized histone acetylation, suggesting
that histone deacetylases (HDACs) might be involved in Twist1

mediated Clca2 trans-repression. HDACs can be categorized into
three classes: class I and class II HDACs primarily catalyze histone
deacetylation whereas class III HDACs (the sirtuins) primarily
catalyze non-histone lysine deacetylation (Yang and Seto, 2008).
Pre-treatment with a pan-class I HDAC inhibitor (MS-275), but
not a pan-class II HDAC inhibitor (MC-1568), blocked TGF-β
induced Clca2 repression (Figures 3B,C), indicating that class I
HDAC might be involved in Clca2 trans-repression.

Class I HDACs include HDAC1, HDAC2, HDAC3, and
HDAC8. When individual class I HDACs were depleted with
siRNAs, it was discovered that only HDAC1 knockdown
significantly attenuated Clca2 repression by TGF-β treatment
(Figures 3D,E). Consistently, HDAC1 knockdown largely
normalized histone acetylation levels surrounding the Clca2
promoter (Figure 3F).
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FIGURE 3 | TWIST1 represses Clca2 transcription by promoting histone deacetylation. (A) Primary murine cardiac fibroblasts were transfected with indicated
siRNAs by treatment with TGF-β (2 ng/ml). ChIP assays were performed with indicated antibodies. (B,C) Primary murine cardiac fibroblasts were treated with TGF-β
(2 ng/ml) in the presence or absence of different HDAC inhibitors. Clca2 expression was examined by qPCR and Western. (D,E) Primary murine cardiac fibroblasts
were transfected with indicated siRNAs by treatment with TGF-β (2 ng/ml). Clca2 expression was examined by qPCR and Western. (F) Primary cardiac murine
fibroblasts were transfected with indicated siRNAs by treatment with TGF-β (2 ng/ml). ChIP assays were performed with indicated antibodies. Error bars represent
SD (*p < 0.05, two-way Student’s t-test). All experiments were repeated three times and one representative experiment is shown.
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TWIST1 Interacts With and Recruits
HDAC1 to Repress Chloride Channel
Accessory 2 Transcription
We next investigated the possibility that Twist1 recruits
HDAC1 to repress Clca2 transcription. ChIP assay showed
that occupancies of HDAC1 on the Clca2 promoter were
enhanced following TGF-β treatment with a kinetics similar to
Twist1; Twist1 depletion blocked HDAC1 binding to the Clca2
promoter (Figure 4A). Co-immunoprecipitation confirmed that
Twist1 and HDAC1 could interact with each other in cardiac
fibroblasts (Figure 4B). Importantly, Re-ChIP assay showed that
the Twist1-HDAC1 interaction was significantly cemented by
TGF-β treatment on the Clca2 promoter (Figure 4C). In addition,
whereas HDAC1 over-expression dose-dependently repressed
the Clca2 promoter activity in reporter assay the mutant Clca2
promoter without the intact E-box was completely refractory to
HDAC1 over-expression (Figure 4D).

Chloride Channel Accessory 2 Regulates
Activation of Cardiac Fibroblasts
Finally, an attempt was made to place the finding that Clca2
transcription was epigenetically repressed during cardiac
fibroblast activation in a pathophysiological perspective. To

this end, primary murine cardiac fibroblasts were transduced
with adenovirus carrying a Clca2 expression vector (Ad-
FLAG-Clca2) or an empty vector (Ad-EV). Ad-FLAG-Clca2
transduction significantly boosted Clca2 expression in cardiac
fibroblasts (Figures 5A,B). More important, Clca2 over-
expression significantly down-regulated the expression of
myofibroblast marker genes at both mRNA (Figure 5C) and
protein (Figure 5D) levels. In addition, Clca2 over-expression
attenuated proliferation of cardiac fibroblasts as measured by
EdU incorporation (Figure 5E).

Alternatively, Clca2 expression was depleted with two
separate pairs of siRNAs (Figures 5F,G). Clca2 knockdown
further enhanced TGF-β induced expression of myofibroblast
marker genes (Figures 5H,I) and augmented cell proliferation
(Figure 5J). Together, these data suggest that Clca2 might
regulate FMyT in vitro.

DISCUSSION

Recent investigations have provided irrefutable evidence
to support resident fibroblasts as the primary source of
myofibroblasts contributing to cardiac fibrosis (Travers et al.,
2016). Dynamic transcriptomic changes highlight the transition
from quiescent cardiac fibroblasts to mature myofibroblasts

FIGURE 4 | TWIST1 interacts with and recruits HDAC1 to repress Clca2 transcription. (A) Primary cardiac murine fibroblasts were transfected with indicated siRNAs
by treatment with TGF-β (2 ng/ml). ChIP assays were performed with indicated antibodies. (B) Immunoprecipitation was performed with whole cell lysates from
primary murine cardiac fibroblasts. (C) Primary murine cardiac fibroblasts were treated with or without TGF-β (2 ng/ml) for 48 h. Re-ChIP was performed with
indicated antibodies. (D) Wild type and mutant Clca2 promoter-luciferase constructs were transfected into MEFs with increasing doses of HDAC1 followed by
treatment with TGF-β. Luciferase activities were normalized by protein concentration and GFP fluorescence. Error bars represent SD (*p < 0.05, two-way Student’s
t-test). All experiments were repeated three times and one representative experiment is shown.
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FIGURE 5 | Chloride channel accessory 2 (Clca2) regulates activation of cardiac fibroblasts. (A–E) Primary murine cardiac fibroblasts were infected with adenovirus
carrying a Clca2 expression vector (Ad-FLAG-Clca2) or an empty vector (Ad-EV) followed by treatment with TGF-β. Expression levels of Clca2 were examined by
qPCR (A) and Western (B). Pro-fibrogenic genes were examined by qPCR (C) and Western (D). Cell proliferation was examined by EdU incorporation (E). (F–J)
Primary murine cardiac fibroblasts were transfected with indicated siRNAs followed by treatment with TGF-β. Expression levels of Clca2 were examined by qPCR (F)
and Western (G). Pro-fibrogenic genes were examined by qPCR (H) and Western (I). Cell proliferation was examined by EdU incorporation (J). Error bars represent
SD (*p < 0.05, two-way Student’s t-test). All experiments were repeated three times and one representative experiment is shown. (K) A schematic model.
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(Krstevski et al., 2020). We show here that Twist1 is responsible
for Clca2 trans-repression in activated cardiac fibroblasts by
directly binding to the E-box element located on the Clca2
promoter (Figure 5K). Consistent with our observation, Al-
Hattab et al. (2018) have previously reported that Twist1
transcription can be activated by TGF-β in cardiac fibroblasts,
which is mediated by scleraxis. Of note, several studies have
found that Twist1 can be placed among signature markers for
cardiac fibroblasts (Zhou et al., 2010; Liu et al., 2016; Han
et al., 2021). Whether or not Twist1 can directly regulate
cardiac fibrosis remains to be determined. On the one hand,
pharmaceutical inhibition and fibroblast-specific deletion of
Twist1 have been shown to mitigate liver fibrosis (Dong et al.,
2020) and skin fibrosis (Palumbo-Zerr et al., 2017), respectively,
supporting Twist1 as a promoter of tissue fibrosis. On the other
hand, Twist1 residing in the parenchymal cells, the mesenchymal
cells, or infiltrating immune cells is able to rein in tissue injury
and antagonize tissue fibrosis (Tan et al., 2017; Ren et al., 2019,
2021). Therefore, more studies should be conducted to test the
feasibility of targeting Twist1 as a therapeutic strategy against
aberrant cardiac fibrosis.

Our data indicate that Twist1 represses Clca2 transcription
via, at least in part, by recruiting the histone deacetylase HDAC1.
Curiously, our observation is in contrast to a previous study
by Xu et al. (2006) where it was demonstrated that HDAC1,
recruited by the RFX1, directly binds to the collagen type I
promoter (Col1a2) and represses Col1a2 transcription in lung
fibroblasts in response to IFN-γ treatment. It is likely that
HDAC1 may exert differential effects on tissue fibrogenesis
depending on the stimuli and the cell type. Global deletion
of HDAC1 in mice results in early developmental arrest and
embryonic lethality precluding the analysis of cardiac fibrosis in
adult animals (Montgomery et al., 2007). More recently, Renaud
et al. (2015) have shown that administration of a pan-HDAC
inhibitor (HDACi) attenuates cardiac fibrosis in mice subjected
to pressure overload although the mechanism is less clear but
possibly can be attributable to HDAC1-mediated repression
of miR-133a, an anti-fibrotic non-regulatory RNA. Of note,
HDAC1-null MEFs display weakened proliferation compared
to wild type MEFs (Yamaguchi et al., 2010), suggesting that
HDAC1 deficiency may prevent cardiac fibrosis by limiting the
expansion of myofibroblasts in vivo (Yamaguchi et al., 2010).
Future studies employing fibroblast/myofibroblast conditional
transgenic animals should clarify the role of HDAC1 in
cardiac fibrosis.

We present data to show that manipulating Clca2 expression
in cardiac fibroblasts influences FMyT in vitro. The underlying

mechanism, however, awaits further investigation. Previous
studies have shown that a variety of chloride channels may
contribute to myofibroblast maturation via the MAPK-p38
signaling pathway (Shukla et al., 2014) or the PI3K-Akt signaling
pathway (Sun et al., 2016) or the PKC signaling pathway (El
Chemaly et al., 2014). Alternatively, chloride intracellular channel
4 (CLIC4) has been shown to promote TGF-β induced FMyT by
inducing a dominant negative SMAD7 splicing isoform (Shukla
et al., 2016). Despite the fact that several studies have provided
evidence to show that chloride channel inhibitors/blockers can
potentially attenuate the activation of cardiac fibroblasts (El
Chemaly et al., 2014; Tian et al., 2018; Chen P. H. et al., 2021), no
consensus seems to exist regarding the underlying mechanisms.
It is therefore imperative for future investigators to focus on
delineating the mode of action for Clca2 in the process of
FMyT so that the plethora of data, including the ones presented
here, can be exploited in the development of novel therapeutic
solutions to treat adverse cardiac remodeling and heart failure.
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