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Malignant tumors pose a great challenge to human health, which has led to many
studies increasingly elucidating the tumorigenic process. Cancer Stem Cells (CSCs)
have profound impacts on tumorigenesis and development of drug resistance. Recently,
there has been increased interest in the relationship between inflammation and
CSCs but the mechanism underlying this relationship has not been fully elucidated.
Inflammatory cytokines produced during chronic inflammation activate signaling
pathways that regulate the generation of CSCs through epigenetic mechanisms. In this
review, we focus on the effects of inflammation on cancer stem cells, particularly the
role of signaling pathways such as NF-κB pathway, STAT3 pathway and Smad pathway
involved in regulating epigenetic changes. We hope to provide a novel perspective for
improving strategies for tumor treatment.
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INTRODUCTION

Cancer remains one of the most devastating diseases in the world. For decades, the occurrence
and progression of tumors has been attributed to abnormal genetic changes such as mutations
and chromosomal instabilities. However, recent advances in genome sequencing technologies and
epigenetic analysis have led to the discovery that epigenetics play critical roles in the regulation
of biological characteristics of cells and their malignant transformation (Dawson and Kouzarides,
2012). Furthermore, the identification of cancer stem cells (CSCs) and their association with
chemoresistance and tumor relapse has also been a key discovery in the study of cancer (Visvader,
2011). Epigenetic mechanisms have been shown to play a significant role in the development of
CSCs. On the other hand, inflammation has also been associated with tumorigenesis. Inflammation
is a beneficial response of the immune system to tissue damage and pathogens. However, prolonged
immune response leads to chronic inflammation that can promote malignant transformation
of cells (Elinav et al., 2013). Several studies have demonstrated that chronic inflammation is
involved in tumor development and progression. This has led to the emergence of a new
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field of cancer research involving the regulation of CSCs
by chronic inflammation. Chronic inflammation can regulate
the proliferation, metabolism, and differentiation of tumor
cells as well as the self-renewal ability of CSCs by inducing
secretion of inflammatory factors, oxidative stress and hypoxia.
Therefore, it is crucial to understand the interaction between
inflammatory factors and CSCs. Recently, epigenetic mechanisms
have been shown to regulate inflammation and the generation of
CSCs in cancer, and several molecular mechanisms underlying
these processes have been elucidated. Importantly, epigenetic
mechanisms have been associated with the variability observed
in therapeutic responses. Therefore, an in-depth analysis of
the relationship among CSCs, epigenetics and inflammation is
not only critical in the understanding of tumor characteristics,
but it is also key in the development of therapeutic strategies
against tumors. In this review, we focus on the characteristics
of CSCs, epigenetic clues, and the effects of epigenetic signaling
pathways, particularly the effects of inflammation related
factors on tumorigenesis, progression, and therapeutic response.
We also discuss recent advances in targeting CSCs using
epigenetic therapies.

CANCER STEM CELLS

Cancer stem cells are small subsets of cells with capacity for self-
renewal and the ability to differentiate into the different cell types
that constitute a tumor (Reya et al., 2001). Therefore, these cells
have the same stem cell-like properties as normal tissue stem cells.
CSCs also exhibit capacity for spheroid formation, migration,
invasion, and development of drug resistance, thus contributing
to tumor cell proliferation. It should be noted that a general
differentiation capacity is not an obligatory feature of CSCs. The
ability of CSCs to differentiate and repopulate cell types found in
the original tumor is of greater significance.

In 1937, Furth and Kahn successfully engrafted single mouse
leukemia cells that developed into leukemia (Furth et al., 1937),
demonstrating for the first time the existence of cancer cells
with stem cell-like properties. These cancer cells are now termed
cancer stem cells or tumor-initiating cells. In the early 1990s,
human leukemic stem cells were identified and transplanted
by Dr. John Dick (Furth et al., 1937; Lapidot et al., 1994).
Similarly, recent studies have shown that CSCs also play a
critical role in the development of several solid tumors, including
prostate, brain, colon, pancreatic, and breast cancers (Chen
et al., 2012; Meacham and Morrison, 2013). This has led to the
emergence of a field of research in cancer stem cells which has
increased the understanding of cancer and renewed the hope of
cancer eradication. CSCs arise due to mutations in normal stem
cells, cancer cells that have undergone epithelial-mesenchymal
transition (EMT), or dedifferentiated somatic cells. However, the
molecular mechanisms underlying the development of CSCs have
not yet been well elucidated. Recent reports have revealed the
role of microRNAs (miRNAs) in regulating CSCs (Liu et al.,
2011; Asadzadeh et al., 2019; Khan et al., 2019). In addition,
several cell surface markers, including CD24, CD44, CD133
and aldehyde dehydrogenase 1 (ALDH1), have been identified,

classified and used to isolate CSCs (Yu et al., 2012). Evidence
shows that these markers, especially those on the surface of CSCs,
are cancer specific (Hao et al., 2014). Moreover, cancer stem cells
are one of the major causes of tumor heterogeneity and acquired
drug resistance.

Overall, CSCs have the potential for self-renewal and
heterogeneous differentiation, leading to tumor formation
(Krishnamurthy and Nor, 2012). CSCs can also arise when
epigenetic reprogramming induces dedifferentiation of normal
cells resulting in the cells acquiring stem cell-like properties.
A major difference between normal stem cells and cancer stem
cells is their ability to modulate stemness pathways. In normal
stem cells, stemness pathways including TGF-β, Wnt/β-Catenin,
notch, and Janus kinase/signal transducer and activator of
transcription, among others, are tightly controlled by complete
genetics or epigenetics. In contrast, the regulation of these
pathways in CSCs is not tightly controlled, and their deregulation
as well as inappropriate interactions among the pathways may
contribute to the propagation and pathogenicity of CSCs. In
addition, cells in the tumor microenvironment, such as cancer-
associated fibroblasts, can trigger growth and differentiation of
CSCs by secreting growth factors or activating signaling pathways
through cell-cell interactions (Lopez-Lazaro, 2015; Batlle and
Clevers, 2017; Asadzadeh et al., 2019).

INFLAMMATORY MICROENVIRONMENT
AND CANCER STEM CELLS

Inflammation is a self-limiting physiological response that
mediates the repair of damaged tissues. However, chronic
inflammation has been associated with several human diseases,
including cancer (Hu et al., 2017). The microenvironment of
normal stem cells as well as cancer stem cells is critical for
their maintenance and function. Inflammatory factors present
in the tumor microenvironment control tumor initiation,
progression, and the nature of CSCs (Plaks et al., 2015; Figure 1).
Inflammation promotes the acquisition and maintenance of
the cancer stem cell phenotype by stimulating EMT (Rhim
et al., 2012). The secretion of inflammatory cytokines creates
an inflammatory microenvironment which also leads to the
generation of CSCs (Scheel and Weinberg, 2012; Nieto, 2013;
Nieto et al., 2016). Current studies show that the maintenance
of the cancer stem cell phenotype and function is more complex
than previously thought. Therefore, it is important to elucidate
the signaling pathways that regulate cancer stem cell phenotype
and function. During their growth, tumors recruit various
types of immune cells into the tumor microenvironment. These
immune cells change their phenotype and function within
the tumor cells to promote tumor growth and metastasis.
Additionally, these infiltrating immune cells cause inflammation
in the tumor tissue by inducing the secretion of growth factors,
cytokines, chemokines, proteases, and extracellular matrix
modifying enzymes (Bierie and Moses, 2010). For instance,
transforming growth factor-β induces the EMT phenotype in
breast cancer which confers stem cell-like properties to normal
and transformed mammary epithelial cells (Hollier et al., 2009).
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These inflammatory cells, together with the active factors they
secrete, shape the microenvironment on which CSCs depend on
for their generation and their ability to stimulate and protect
cancer stem cells to maintain their self-renewal ability.

Tumor-associated macrophages (TAMs) play a crucial role in
the development of cancer (Biswas et al., 2013). TAMs are the
main types of infiltrating immune cells in breast cancer as well as
malignant glioma tissues, accounting for approximately 5 to 50%
of all cells in the tumor tissues. These TAMs secrete a number
of factors, including interleukin-1 (IL-1) and tumor necrosis
factor-α (TNF-α), which have been shown to promote tumor
invasion and metastasis (Biswas et al., 2013). TAMs also secrete
other cytokines such as IL-6, IL-8, and CSF2, which maintain
the stemness of tumors through paracrine mechanisms (Lu et al.,
2014). In addition to various factors secreted by immune cells and
stromal cells in the tumor microenvironment to regulate cancer
stem cells, cytokines secreted by tumor cells can also act on cancer
stem cells in an autocrine manner. Recently, Iliopoulos et al.
(2011) reported that the pro-inflammatory cytokine, IL-6, can
transform non-cancer stem cells into cancer stem cells. Colorectal
cancer cells exposed to IL-6 suppressed EMT transcription
factor expression, as well as the invasion, and metastasis of the
cancer cells by repressing IL-6 through expression of miR-34a
(Rokavec et al., 2014). In transformed breast cells, IL-6 reduces
the expression levels of let-7 by activating Lin28 transcription
via the NF-κB pathway, leading to the development of breast
cancer and enhanced CSC characteristics (Iliopoulos et al., 2009;
Shyh-Chang and Daley, 2013). IL-6 also promotes the expression
of miR-203 in stem cells by downregulating the EMT activator
ZEB1 thus linking EMT activation to stemness maintenance
(Wellner et al., 2009). In addition, HER2 + breast cancer cells
that develop resistance to trastuzumab treatment are enriched
with CSCs, exhibit EMT features and express high levels of IL-
6. Blockade of the IL-6 receptor reduced the tumor proliferative
capacity of these cells, further indicating that IL-6 regulates CSCs
through an autocrine loop (Korkaya et al., 2012). Long et al.
(2012) reported that ovarian cancer stem cells promote tumor
metastasis by expressing high levels of CCL5, activating the NF-
κB signaling pathway in an autocrine manner and up-regulating
the expression of MMP-9. Ginestier et al. (2010) reported that
breast cancer stem cells highly expressed CXCR1 receptor, and
that IL-8 (a ligand of CXCR1) was able to enhance the proportion
of CSCs and maintain the stemness of CSCs. The communication
between tumor cells and the tumor environment is bidirectional.
The factors secreted by cancer stem cells attract necessary cells
to their environment, and these cells secrete factors that are
beneficial to cancer stem cells, thereby coexisting harmoniously.

EFFECTS OF INFLAMMATORY FACTORS
ON EPIGENETIC OF CANCER STEM
CELLS

Epigenetic regulation of the genome is one of the main
mechanisms of altering the genetic code to control the
hierarchy of cell development. Epigenetic mechanisms refer to
changes in gene expression that are not caused by changes in

DNA sequence but by changes in DNA methylation, histone
modifications, chromatin remodeling, and non-coding RNA,
such as microRNAs (miRNAs). These epigenetic mechanisms
control the genetic landscape and dictate cell fate (Hu et al.,
2017). Such changes in the genome are very important during
normal mammalian development and differentiation of ESCs
(Reik, 2007), and any alteration in epigenetic signaling can
affect the accumulation of cells with stemness and self-renewing
capacity, to produce CSCs. DNA hypermethylation of cytosines
in CpG dinucleotides in various cancers has been associated
with silencing of tumor suppressors and genes regulating
differentiation (Esteller, 2007). A decrease in the expression of
these two types of genes may contribute to the development
of CSCs in the tumor cell populations (Jones and Baylin, 2007;
Ohm et al., 2007). DNA methylation silences transcription by
recruiting methyl-CpG binding domain proteins that are able
to induce histone modifying enzymes to promote repressive
histone modifications (Wade et al., 1999; Baylin et al., 2011;
Easwaran et al., 2014), or to a lesser extent, facilitate expression
by preventing access to transcription factors (Bell and Felsenfeld,
2000; Hark et al., 2000). DNA methylation is regulated by three
DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b)
(Bird, 2002). Actually, it has been reported that DNA methylation
plays an important role in maintaining the characteristics of
CSCs in leukemia, lung, and colon stem cells (Broske et al.,
2009; Morita et al., 2013; Liu C.C. et al., 2015). Moreover,
inflammation can promote tumorigenesis by inducing epigenetic
alterations in cells. In most cases, epigenetic inheritance cannot
be explained by a single alteration, but by the interaction of
different epigenetic mechanisms. Many inflammatory factors
regulate the DNA methylation patterns that induce cancer
initiation and progression in cancers such as gastric cancer,
ovarian cancer, and liver cancer. IL-1β is a proinflammatory
cytokine that enhances the activity of DNMT through the
production of nitric oxide in gastric cancer, leading to CpG
methylation-mediated gene silencing (Hmadcha et al., 1999).
Additionally, TGF-β can induce the expression and activity of
DNMTs, leading to integral changes in DNA methylation during
the EMT of ovarian cancer (Cardenas et al., 2014) and the
acquisition of stemness by cancer cells. In breast cancer, TGF-
β induces endothelial cell transformation by recruiting DNMT
and histone methyltransferases (EHMT2 and SUV39H1) to the
CDH1 gene promoter, which leads to the development of CSCs
(Dong et al., 2012, 2013; David and Massague, 2018). Epigenetic
processes also control the IL-6-mediated induction of cancer cell
stemness (Drost and Agami, 2009; Iliopoulos et al., 2009, 2010a).
It has been shown that p53 recruits DNMT1 to the promoter of
its target genes (Esteve et al., 2005). The deletion of p53 leads
to the demethylation of the IL-6 promoter thus activating IL-
6 signaling. Subsequently, IL-6 signaling upregulates DNMT1
which methylates the promoter of the p53 gene (Hodge et al.,
2005, 2007; Liu C.C. et al., 2015), thus initiating an IL-6
autocrine loop (D’Anello et al., 2010). Therefore, the activation
of this IL-6 autocrine loop drives cancer cells toward a stem-like
phenotype through epigenetic reprogramming (D’Anello et al.,
2010; Liu C.C. et al., 2015). IL-6 also facilitates hypermethylation
of the promoter of the miR142-3p gene, thereby inhibiting
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FIGURE 1 | The molecular and cellular basis of interaction between cancer stem cells (CSCs) and tumor microenvironment. The CSCs interact with mesenchymal
stem cells (MSCs), tumor-associated macrophages (TAMs), fibroblasts, and cancer cells, which produce a large number of growth factors and cytokines, such as
IL-6, IL-8, TGF-β, and TNF-α. Those factors play an important role in inducing self-renewal, plasticity, dormancy, metastasis, and tumorigenesis of CSCs.

the expression of miR-142-3p. These effects promote cell
stemness and invasiveness in glioblastoma (Chiou et al., 2013).
Thus, cytokine signaling promotes CSCs through epigenetic
mechanisms. More importantly, inflammatory cytokines such
as TGF-β, TNF-α, IL-1, and IL-6 activate signal transduction
pathways such as Smads, NF-κB and STAT3 pathways by
recruiting epigenetic regulators. These inflammatory pathways
are interconnected and produce molecular regulatory circuits and
networks to control the generation and maintenance of CSCs.

NUCLEAR FACTOR-κB PATHWAY

Nuclear factor-κB (NF-κB) is an inducible transcription factor
that regulates the transcription of its target genes (Zhang
et al., 2017), and plays key roles in inflammatory responses
and cancer development (Hoesel and Schmid, 2013). The NF-
κB family of transcription factors regulate inflammation, self-
renewal or maintenance and metastasis of immune cells and
CSCs. Furthermore, the NF-κB pathway is also involved in
cell survival, proliferation, and differentiation (Hayden and

Ghosh, 2008), and is considered to play key roles in the
many steps involved in cancer initiation and progression.
Moreover, cytokines, growth factors, angiogenic factors, and
proteases produced during tumor development and progression
can activate the NF-κB signaling pathway (Figure 2). The
NF-κB family consists of five members: NF-κB1, NF-κB2,
c-Rel, RelB, and p65. The members of this family have a
conserved N-terminal Rel homologous domain that is involved
in nuclear localization, DNA binding, homodimerization, and
heterodimerization. The p50-p65 dimer is the primary functional
form of NF-κB (May and Ghosh, 1997; Hayden and Ghosh,
2008; Hoesel and Schmid, 2013), which is mainly regulated
through subcellular localization. The activation of the NF-κB
pathway involves the translocation of the transcription factor
complex from the cytoplasm to the nucleus (Novack, 2011).
The activity of the transcription factor multiplex is regulated
through either canonical NF-κB signaling or the non-canonical
NF-κB signaling. The canonical NF-κB signaling pathway is
activated by ligands (such as bacterial components, IL-1β, TNF-
α, and lipopolysaccharide) binding to their respective receptors
(such as toll-like receptors, IL-1 receptors, TNF receptors, and
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antigen receptors) (Perkins and Gilmore, 2006). Activation of
these receptors leads to the phosphorylation and activation of
IκB kinase (IKK), which subsequently initiates phosphorylation
of IκB proteins. The receptors involved in the activation of
the non-canonical pathway include receptor activator for NF-
κB, B cell activating factor, CD40, and lymphotoxin β receptors
(Sun, 2011). This pathway activates NF-κB through the inducible
kinase (NIK), which predominantly phosphorylates and activates
IKK1. IKK1 then induces the phosphorylation of p100 to generate
p52 (Xiao et al., 2001).

In esophageal cancer, the up-regulation of PLCE1 oncoprotein
through epigenetic mechanisms drives esophageal cancer
angiogenesis and proliferation by activating the NF-κB
signaling pathway. Hypomethylation-induced PLCE1 in
esophageal squamous cell carcinoma (ESCC) cohorts can
bind and phosphorylate p65 and IκBα proteins. Subsequently,
phosphorylated IκBα promotes nuclear translocation of
p50/p65 and p65, where they act as transcription factors for
vascular endothelial growth factor-C and bcl-2, driving tumor
angiogenesis and inhibits apoptosis in vitro (Chen et al., 2019).
Likewise, Sox9 is demethylated in pancreatic cancer stem cells
and is involved in the invasion process. Several studies have
identified a potential NF-κB binding site on the Sox9 promoter,
and demonstrated that the p65 subunit of NF-κB positively
regulates Sox9 expression by directly binding to its promoter
(Sun et al., 2013). Inhibition of DNA of methyltransferase activity
causes demethylation of the Sox9 promoter, which leads to the
enrichment of p65 on the Sox9 promoter and up-regulation of
Sox9 expression. These results indicate that regulation of Sox9 by
NF-κB is dependent on its methylation status, and demethylation
may enhance NF-κB binding to the Sox9 promoter (Sun et al.,
2013). In skin cancer, Ras/NF-κB-induced epigenetic silencing of
Let-7c, an upstream regulator of NF-κB, causes HaCaT cells to
acquire cancer stem cell-like properties and undergo neoplastic
transformation (Jiang R. et al., 2014). In addition, MiRNAs have
recently been reported to regulate the NF-κB signaling pathway.
For instance, MiR-210-3p maintains sustained activation of NF-
κB signaling by targeting TNIP1 and SOCS1, negative regulators
of NF-κB signaling, leading to EMT, invasion, migration, and
bone metastasis of prostate cancer cell (Ren et al., 2017b).
MiR-372/373 enhances the stemness features of colorectal cancer
by acting on various signaling mechanisms associated with stem
cell differentiation. It can inhibit the NF-κB, MAPK/Erk, and
VDR signaling pathways that are essential for differentiation
(Khan et al., 2019). Downregulation of miR-136 stimulates
CSCs by activating various proteins including NF-κB, survivin,
BCL2, CyclinD1, and BCL2. On the other hand, upregulation of
miR-155 activates NF-κB (Khan et al., 2019).

STAT3 PATHWAY

The JAK/STAT3 signaling pathway plays crucial roles in various
types of cancer. Activation of this pathway enhances EMT leading
to increased tumorigenic and metastatic capacity, development,
transition of CSCs, and chemoresistance of cancer. The STAT
family has seven members (STAT1, 2, 3, 4, 5α, 5β, and 6).
Each STAT protein has highly conserved amino terminal, SH2,

coiled-coil, DNA binding, and transactivation domains (Darnell,
1997). The SH2 domain is indispensable for the interaction
between STAT proteins and STAT cytokine receptors. This is
because the cytokine receptors recognize and bind to tyrosine
residues on the SH2 domain. The SH2 domain is also essential
in the formation of stable homodimers or heterodimers with
other STAT proteins (Heim et al., 1995; Hemmann et al.,
1996). Cytokines induce dimerization of STAT3 via acetylation
of Lys685 in the SH2 domain of STAT3, which is mediated
by histone acetyltransferase p300 (Yuan et al., 2005). Other
transcription factors interact with the Asp170 residue in the
coiled-coil domain of STAT3 (Zhang et al., 1999), and their
receptor binding, DNA binding, nuclear translocation and
dimerization all require IL-6-induced tyrosine phosphorylation
of STAT3 (Zhang et al., 2000). In addition, the N-terminal
domain of STAT3 has various functions including stabilization
of STAT3 tetramers, nuclear translocation, cooperative DNA
binding, and protein-protein interactions (Hu et al., 2015).

STAT3 also induces the transcription of genes involved in
the inflammatory response. Sakamoto et al. (2016) found that
Janus kinase 1 (Jak1) played a significant part in inflammatory
cytokine signaling and remodeling of the mammary gland.
STATs are also involved in the regulation of apoptosis,
differentiation, and stem cell maintenance. STAT3 and STAT5
have been shown to play different roles in breast cancer.
Walker et al. (2014) reported that STAT5 regulates STAT3 and
they both play a role in breast cancer progression. Intestinal
inflammation also promotes tumorigenesis by enhancing tumor
cell survival and proliferation. Members of the IL6, IL10/IL22,
and IL17/IL23 cytokine families have been implicated in this
process. They all bind to their receptors, leading to persistent,
non-transient activation of STAT3, which not only promotes
the growth of malignant cells but also inhibits the anti-tumor
effects of both innate and acquired immune cells. This allows
inflammation-associated and sporadic gastrointestinal tumors
to grow (Ernst et al., 2014). STAT3 also controls the fate of
prostate cancer cells, the interaction of tumor cells with the
microenvironment, and maintains the number of CSCs (Kroon
et al., 2013). JAK2/STAT3 signaling also plays an important
role in promoting colorectal stem cell persistence and radio-
resistance by inhibiting apoptosis and enhancing clonogenic
potential (Park et al., 2019). Upregulation of IL-6 in colorectal
cancer-derived mesenchymal stem cells (CC-MSCs) leads to
enhanced metastasis and survival of colorectal cancer patients by
activating PI3K/Akt via the IL-6/JAK2/STAT3 signaling pathway
(Ma et al., 2019).

STATs not only act as transcriptional inducers, but they
also induce epithelial mesenchymal transition and generate
an oncogenic microenvironment (Li et al., 2011). Dr. Lee
reported that non-canonical signaling by histone-lysine
N-methyltransferase EZH2 in regulating STAT3 methylation
is required for glioblastoma stem cell maintenance (Kim et al.,
2013). IL-6 through STAT mediated induction of cancer cell
stemness is also controlled by epigenetic processes (Drost and
Agami, 2009; Iliopoulos et al., 2009, 2010a,b; Zahnow and Baylin,
2010; Rokavec et al., 2016). The tumor suppressor gene p53
recruits the DNMT1 methylase to the promoters of its target
genes (Esteve et al., 2005). The loss of p53 expression is associated
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FIGURE 2 | The progress of two main NF-κB signaling pathways. In a canonical way, the main physiological function of NF-κB is the p50–p65 dimer. The active
p50–p65 dimer is further facilitated by post-translational modification and accumulates in the nucleus to regulate the expression of target genes in combination with
other transcription factors. In non-canonical way, IKKα homodimers transform RelB–p100 dimer into RelB–p52 dimer driven by signaling factors, which activate
non-canonical NF-κB target genes to express consequently.

with the demethylation of the IL-6 promoter, which initiates
an IL-6 autocrine loop (D’Anello et al., 2010). IL-6 signaling
upregulates DNMT1 which in turn methylates the promoter of
the p53 gene (Hodge et al., 2005, 2007; Liu C.C. et al., 2015). It
also leads to the activation and acetylation at Lys685 of STAT3
in tumor cells, which is critical for the inactivation of tumor
suppressor genes through the methylation of their promoters
(Lee et al., 2012). Thus, the generation of this autocrine IL-6
loop induces epigenetic reprogramming that drives cancer cells
to acquire a stem cell-like phenotype (D’Anello et al., 2010;
Liu C.C. et al., 2015). Additionally, miRNAs can stimulate or
inhibit the function of CSCs. IL-6/STAT3 mediated miR-200c
transformation and inhibited EMT process in breast (Rokavec
et al., 2012) and lung (Zhao et al., 2013) epithelial cancer
cells. More importantly, the up regulation of miR-196b-5p
and miR-500a-3p as well as the down-regulation of miR-218
activates STAT3 molecule. MiR-196b-5p plays a central role
in maintaining CSCs characteristics associated with resistance
to cancer therapy by targeting STAT3 signaling pathway in
colorectal cancer stem cells (Ren et al., 2017a). Downregulation
of miR-218 in lung cancer cells can induce constitutive activation
of STAT3, which is closely associated with tumorigenesis. In
ALDH positive lung CSCs, aberrant expression of miR-218
upregulated IL-6/JAK-STAT3 signaling and stemness features
of tumors (Yang et al., 2017). Similarly, miRNAs have been
associated with aberrant activation of the STAT pathway in
breast and colorectal cancers (Ren et al., 2017a; Vahidian et al.,
2019).

SMAD PATHWAY

Smad transcription factor mediates signal transduction by
the TGF-β cytokine superfamily to control a variety of cell
responses, including development, stem cell maturation and
carcinogenesis (Massague, 2012). It also plays a variety of
roles in embryonic development, adult tissue regeneration and
homeostasis, such as cell proliferation, differentiation, apoptosis
and dynamic balance. There are at least nine Smad proteins
that are divided into three subfamilies based on their structure
and function: receptor activated or pathway restricted Smads
(R-Smads), common Smads (Co-Smads), and inhibitory Smads
(I-Smads) (Moustakas et al., 2001; Brown et al., 2017). Smad
proteins regulate the transcription of their target genes by
binding to specific DNA sequences in the promoter regions
and recruiting either co-activators or co-repressors (Massague
et al., 2005). Smad3 is the major effector of TGF-β-mediated
endothelial cell transformation or differentiation. Ligand binding
to the TGF-β receptor complex on the cell surface induces
phosphorylation of the C-terminal of type I receptor and
activates Smad2 and Smad3. These two the then form an
isomer complex with Smad4, translocate into the nucleus, and
interact with bound transcription factors to activate or inhibit
TGF-β/Smad target genes (Singh et al., 2019). Co-Smads such
as Smad4 mediate TGF-β signal transduction processes, while
I-Smads, such as Smad6 and Smad7, regulate signaling by
the TGF-β family by binding to activated type I receptors
(Massague et al., 2005).
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TGF-β1/Smad pathway is closely associated with tissue fibrosis
(Xu et al., 2016; Hu et al., 2018; Ma and Meng, 2019). Several
studies have reported that TGF/Smad signaling is activated
in human cancers. The pathway also plays an important role
in the proliferation of CSCs. In breast cancer and cutaneous
squamous cell carcinoma, TGF-β has been shown to initiate
tumor formation and promote the generation of CSCs (Pang
et al., 2018; Najafi et al., 2019; Singh et al., 2019). Moreover,
recent studies have reported that TGF-β1 is associated with
the malignant behavior of tumors (Pang et al., 2018; Najafi
et al., 2019). For example, high expression of TGF-β1 regulates
EMT-related genes through Smad signaling, thereby promoting
the progression of colorectal cancer. Recent research studies
have suggested that epigenetic mechanisms play a critical role
in the TGF-β1/Smad pathway. Tang et al. (2015) found that
profilin-2 (Pfn2) enhances Smad2 and Smad3 expression through
epigenetic mechanisms in lung cancer. Profilin-2 inhibits the
recruitment of histone deacetylase (HDAC) to the Smad2 and
Smad3 promoters by preventing the nuclear translocation of
HDAC1 at the C-terminus of these proteins. This leads to
the transcriptional activation of Smad2 and Smad3, which
increases their expression levels and promotes lung cancer
growth and metastasis (Tang et al., 2015). TGF-β induces
epigenetic regulation of the hepatoma stem cell marker CD133
through the Smad pathway. TGF-β1 also regulates the expression
of CD133 by inhibiting the expression of DNMT1 and DNMT3b,
which in turn leads to the demethylation of the CD133 promoter.
HCC cells containing CD133 with demethylated promoters are
characterized by chemoresistance, self-renewal, and multilineage
differentiation (You et al., 2010). Similarly, HDAC dependent
epigenetic modifications regulate the TGF-β/Smad pathway in
glioblastoma (GBM), which plays an important role in GBM
tumorigenesis, resistance to common therapies and poor clinical
outcomes (Sferra et al., 2017). In addition to alterations in DNA
and histones, miRNAs have also been found to act as epigenetic
modulators of the TGF-β/Smad signaling pathway. In CD44 (+)
GCSCs, miR-106b regulates TGF-β/Smad signaling to enhance
stemness characteristics of GCSCs, including EMT, self-renewal
and invasion (Yu et al., 2014). MiR-4666-3p and miR-329 inhibit
the stemness of colorectal cancer cells by targeting TGF-β/Smad
pathway (Ye et al., 2019). MiR-148a can repress TGF-β/Smad2
signaling pathway in liver cancer stem cells (Jiang F. et al., 2014).
Moreover, Smad7 is a newly identified target gene of miR-106b,
which acts as an inhibitor of TGF-β/Smad signaling pathway,
and suppresses gastric cancer stem cell spheroid formation
(Yu et al., 2014).

CANCER STEM CELLS TARGETING
THERAPEUTIC USING EPIGENETIC
MODIFYING DRUGS

The ability of CSCs to resist therapy is widespread and in
the main cause of multidrug resistance in tumors. This ability
stems from the increased expression of detoxifying enzymes,
and improved activation of survival signaling pathways, DNA
repair mechanisms, and drug efflux pumps in CSCs (Dawood

et al., 2014; Dzobo et al., 2016). Recently, CSCs have also
been shown to undergo epigenetic reprogramming, which makes
it difficult to eradicate them in cancer (Dymock, 2016). The
involvement of epigenetic mechanisms in CSC formation and
maintenance makes epigenetics a potential therapeutic target
for CSCs. Therefore, small molecule compound inhibitors
with the ability of inducing the differentiation of CSCs are
the most promising agents against such tumor cells. Many
inhibitors of epigenetic regulatory enzymes such as histone
deacetylases (HDACs), histone acetyltransferases (HATS) and
DNA methyltransferases (DNMTs), have been extensively studied
and are currently in clinical trials for the treatment of several
cancers. Furthermore, deregulation of chromatin remodeling
has been implicated in tumor initiation and progression, which
makes chromatin remodeling proteins effective targets for small
molecule inhibitors. Indeed, a large number of these therapeutic
strategies intend to induce the differentiation of CSCs and to
improve the sensitivity of these cells to chemotherapy, with the
ultimate goal of decreasing tumor recurrence and increasing
patient survival. Inhibitors of DNA methylation were the first
epigenetic drugs tested for cancer treatment (Sharma et al., 2010).
The most widely studied DNMT inhibitors include azacitidine
and decitabine, which are analogs of cytosine. These molecules
are incorporated into DNA and covalently bind to DNA
methyltransferases thus inhibiting their functions (Juttermann
et al., 1994; Stresemann and Lyko, 2008), and leading to their
degradation (Ghoshal et al., 2005). Liu C.C. et al. (2015)
showed that inhibition of DNMT1 reduced the proliferation and
tumorigenic capacity of lung cancer stem cells. The acetylation of
histone tails is mediated by HATS and HDACs. Voinostat and
romidessin are HDAC inhibitors that have been approved for
the treatment of cutaneous T-cell lymphoma (Olsen et al., 2007;
Piekarz et al., 2009). Travaglini et al. (2009) found that the HDAC
inhibitor, valproic acid, was able to epigenetically reprogram
breast cancer cells to a more “physiological” phenotype, thereby
increasing sensitivity to other forms of breast cancer therapy. In
the same way, there has recently been increased interest in the
research on the epigenetic regulation of CSCs by histone lysine
methyltransferase (HKMT) inhibitors and histone demethylase
(HDM) inhibitors (Schenk et al., 2012; Liu K. et al., 2015;
McGrath and Trojer, 2015). Further, since signaling pathways
play crucial roles in promoting the propagation of CSCs,
maintaining the CSC phenotype, and embryonic development
(Matsui, 2016; Krishnamurthy and Kurzrock, 2018; Pan et al.,
2018), therapeutic targets against these pathways have been
developed. These signaling pathways include NF-κB, JAK-STAT
and TGF/Smad. Specifically, targeting epigenetic changes in
signaling pathways has emerged as a new research direction in
tumor therapy. For example, tocilizumab inhibits IL-6/STAT3
signaling and suppresses cancer/inflammation epigenetic IL-
6/STAT3/NF-κB positive feedback loop, which has tremendous
therapeutic value for patients with refractory triple negative
breast cancer (TNBC) (Alraouji et al., 2020). Additionally in
pancreatic cancer stem cells, activation of the NF-κB pathway
relies on methylation of the downstream regulatory gene Sox9,
and DNMT inhibitors could perhaps be a new therapeutic
strategy for pancreatic cancer treatment (Sun et al., 2013).
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CONCLUSION

Epigenetic mechanisms play a significant role in the development
of cancer stem cells. Likewise, chronic inflammation is
closely associated with the initiation and progression of
CSCs. These interactive processes influence and promote each
other, thereby modulating the self-renewal capacity, drug-
resistant properties, and metastatic potential of CSCs. We have
discussed several crucial aspects and examples of signaling
pathways associated with inflammation and epigenetics which
drive or promote tumorigenesis and metastasis, particularly
in CSCs. Some therapeutic directions and drugs targeting
epigenetic mechanisms are also exemplified in this article.
The regulation of epigenetic mechanisms by inflammation

plays a key role in CSCs generation. Therefore, a systematic
understanding of the signaling pathways associated with
epigenetic regulatory mechanisms in the tumor inflammatory
microenvironment can give more insights into the process
of tumorigenesis. This will help identify novel strategies
for tumor therapy.
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