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Coordinated AP-1 and clathrin coat assembly mediate secretory sorting on the trans-Golgi
network (TGN) during conventional secretion. Here we found that SMAP-1/SMAPs
deficiency caused the apical protein ERM-1 to accumulate on the basolateral side of
the TGN. In contrast, the basolateral protein SLCF-1 appeared abnormally on the apical
membrane. SMAP-1 colocalizedwith AP-1 on the TGN. The integrity of AP-1 is required for
the subcellular presence of SMAP-1. Moreover, we found that the loss of SMAP-1 reduced
clathrin-positive structures in the cytosol, suggesting that SMAP-1 has a regulatory role in
clathrin assembly on the TGN. Functional experiments showed that overexpressing
clathrin effectively alleviated exocytic defects due to the lack of SMAP-1, corroborating
the role of SMAP-1 in promoting the assembly of clathrin on the TGN. Together, our results
suggested that the AP-1 complex regulates the TGN localization of SMAP-1, promoting
clathrin assembly to ensure polarized conventional secretion in C. elegans intestinal
epithelia.
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INTRODUCTION

In the conventional secretion pathway, cargo proteins traverse ER-Golgi and reach the plasma
membrane via transport vesicles (Mellman and Warren, 2000; Rabouille, 2017; Dimou and Nickel,
2018). There are apical and basolateral membrane domains in epithelial cells, which leads to
additional complexity of cargo sorting (Yeaman et al., 1999; Ang et al., 2003; Sato et al., 2007; Nakajo
et al., 2016). Accumulating evidence indicated that the trans-Golgi network (TGN) functions as a
sorting organelle during secretion in epithelial cells (Mellman and Warren, 2000; Gravotta et al.,
2007; Thuenauer et al., 2014). Apical and basolateral proteins must be separated in TGN before their
inclusion into separate routes. To ensure polarized secretion, delicate sorting machinery is employed
to package the cargo proteins into specific vesicles and then deliver them to various downstream
destinations. TGN missorting can lead to inappropriate targeting of cargo proteins and cell polarity
defects (Guo et al., 2014).

Cargo adaptors and clathrin are required for the proper TGN sorting. Once recruited onto
TGN, cargo adaptors recognize the sorting motif within the cytoplasmic domain of the
transmembrane proteins. Then, clathrin is recruited to TGN and thus facilitates sorting the
cargos into the specific membrane carriers (Guo et al., 2014). As a heterotetramer, AP complex
contains two large subunits (α, β, γ, δ, ε, or ζ), one medium subunit (μ1–μ5) and one small subunit
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(σ1–σ5) (Nakatsu et al., 2014). Previous studies have shown that
AP-1 is implicated in the cargo sorting at the TGN (Brodsky
et al., 2001; Nakatsu et al., 2014). In mammals, two AP-1
adaptor complexes have been identified, including AP-1A
and AP-1B (Folsch et al., 2003; Shteyn et al., 2011). C.
elegans genome encodes five AP-1 subunits, including APM-
1 (μ1), UNC-101 (μ1), APB-1 (β1), APG-1 (γ), and APS-1 (σ1)
(Shim et al., 2000; Zhou et al., 2016). Loss of APM-1 failed to
cause uncoordinated (UNC) phenotypes (Shim et al., 2000;
Zhou et al., 2016). Instead, UNC-101/AP-1 μ interacts with
the bipartite signal within KVS-4/Kv2.1, mediating the
polarized sorting of KVS-4 in DA9 neuron (Zhou et al.,
2016). Regarding the functionality of clathrin, in addition to
clathrin-coated pits during endocytosis, clathrin-coated vesicles
also bud from TGN. Arf1 triggers the assembly of the clathrin
coat on TGN (Thomas et al., 2021). A mechanistic study

revealed that TGN-associated clathrin and AP-1 quickly
exchange with free proteins in the cytoplasm, and AP-1 can
exchange independently of clathrin (Wu et al., 2003). Together,
these results suggested that AP-1 assembly and clathrin
assembly are relatively independent events. Additional
mechanisms are likely required to couple these two assembly
processes, which remains to be elucidated.

Here, we introduced SMAP-1 (stromal membrane-associated
protein-1) as a polarized secretion regulator in C. elegans
intestinal epithelia. SMAP-1 overlapped well with TGN
markers, AP-1, and clathrin. Notably, the presence of the AP-
1 complex was essential for SMAP-1 localization. Furthermore,
we found that SMAP-1 deficiency led to a loss of TGN
localization of clathrin. Overexpression of clathrin instead of
AP-1 component effectively alleviated secretion defects. In
summary, our results suggested that AP-1 governs the TGN

FIGURE 1 | Loss of SMAP-1 disturbs the polarized secretion in the intestine. (A) A model of the C. elegans intestine indicates the apical and basal sides of
intestinal epithelia. (B) SMAP-1 contains an N-terminal ArfGAP domain, and amino acid numbers are indicated. (C-C9) In smap-1(ycxEx1639)mutants, ERM-1-
GFP and NHX-2-GFP accumulated on the basolateral side, while SLCF-1-GFP and LET-413-GFP appeared on the apical membrane. White asterisks indicate
intestinal lumen. Error bars are 95% CIs (n � 18 each). Asterisks designate the significant differences in the Mann-Whitney test (***p < 0.001). Scale
bars, 10 μm.
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localization of SMAP-1, and SMAP-1 acts to facilitate clathrin
assembly during polarized secretion.

RESULTS

Loss of SMAP-1 Disturbs the Polarized
Secretion in the Intestine
To better understand the regulatory mechanisms of polarized
secretion in epithelia, we deployed apically localized ERM-1-GFP
(a membrane-cytoskeleton linker) and basolateral SLCF-1-GFP
(a monocarboxylate transporter) as cargos for a genome-wide
RNAi screen. We found that loss of W09D10.1 led to defective
secretion in the C. elegans intestine. W09D10.1 encodes the sole
C. elegans homolog of mammalian SMAPs (Funaki et al., 2013;
Sato et al., 1998; Tanabe et al., 2005), which we referred to as
SMAP-1. Sequence alignment indicated that the N-terminal
region (aa 15-119) of SMAP-1 shares 68% identity with
SMAP2, while their C-terminal regions lack significant
homology. SMAP-1 contains an N-terminal Arf GAP domain
(aa 20-128) (Figure 1B). Unlike the C-terminus of SMAP2, which
harbors a clathrin-interacting domain and a CALM-interacting
domain (Natsume et al., 2006), the C-terminal part of SMAP-1
has not been characterized yet.

In accordance with the predicted expression profile (Spencer
et al., 2011), SMAP-1 is broadly expressed in tissues such as the
intestine, neuron, and pharynx (Supplementary Figure S1).
Whole-animal knockout of SMAP-1 causes larval arrest
(Gonczy et al., 2000). Hence, we prepared the transgenic allele
smap-1(ycxEx1639), a heat-shock-inducible CRISPR/Cas9
conditional mutant (Supplementary Figure S2A-A9). In smap-
1(ycxEx1639) intestinal cells (Figures 1A,B), ERM-1-GFP
consistently accumulated on the basal side, while SLCF-1
abnormally appeared on the apical membrane (Figure 1C-C9).
Similarly, the localization of apical cargo protein NHX-2 (Na+/
H+ exchanger) and basolateral recycling regulator LET-413/
Erbin were affected (Figure 1C-C9). Previous studies suggested
that SMAP2 could act as an Arf1GAP (Arf1 GTPase-activating
protein) and regulate the formation of the clathrin coat on the
trans-Golgi network (TGN) (Thomas et al., 2021), leading us to
examine the distribution of GFP-ARF-1.2. In smap-1(ycxEx1639)
cells, GFP-ARF-1.2 accumulated in punctate structures
(Supplementary Figure S3A-A9), suggesting that SMAP-1 acts
as a GAP of ARF-1.2 in intestinal cells. Consistently,
overexpression of the SMAP-1 (R60A) variant that lost GAP
activity was not sufficient to alleviate cytosolic overaccumulation
of ARF-1.2-GFP in smap-1(ycxEx1639) cells (Supplementary
Figure S3A-A9). The membrane-to-cytosol ratio of ARF-1.2-
GFP was increased by ∼70% in smap-1(RNAi) animals
(Supplementary Figure S3B-B9), and overexpressed SMAP-1-
mCherry reduced the puncta labeling of ARF-1.2-GFP
(Supplementary Figure S3A-A9).

To verify the role of ARF-1.2 in SMAP-mediated cargo
sorting, we examined the localization of ERM-1 and SLCF-1.
Notably, the distribution of ERM-1-GFP and SLCF-1-GFP was
affected in arf-1.2(RNAi) animals (Supplementary Figure S3C-
C9). However, ARF-1.2 knockdown failed to alleviate the

distributional defects of ERM-1 and SLCF-1 in SMAP-1-
deficient cells (Supplementary Figure S3C-C9). Conversely,
overexpression of SMAP-1 (R60A)-mCherry rescued the
distributional defects of ERM-1 and SLCF-1 (Supplementary
Figure S3D-D9). It is noteworthy that Arf1 GTPase has been
shown to recruit AP-1 to facilitate the formation of the clathrin
coat on the trans-Golgi network (TGN) (Ren et al., 2013;
Beacham et al., 2019). Altogether, our results suggested that in
addition to acting as a GAP of ARF-1.2 during polarized cargo
sorting, SMAP-1 plays an additional role in facilitating sorting in
C. elegans intestinal epithelia.

ARF-1.2 is required for the retrograde transport from Golgi to
the endoplasmic reticulum (ER) (Arakel et al., 2019). To this end,
we set to examine the localization of COPB-1 (COP-I complex
subunit beta 1), which is expressed in the intestine (Hunt-
Newbury et al., 2007; Ackema et al., 2014). As expected,
COPB-1 predominantly colocalized with Golgi marker
mCherry-P4M (Supplementary Figure S4B-B9). In the
absence of SMAP-1, the level of colocalization between COPB-
1-GFP and MC-P4M was decreased significantly
(Supplementary Figure S4B-B9). Similarly, the Golgi
localization of COPG-1 (COP-I complex subunit gamma 1)
was reduced (Supplementary Figure S4A-A9). These results
indicated that the increase in ARF-1.2 activity induced by
SMAP-1 deficiency affected the Golgi recruitment of COP-I.
Alternatively, SMAP-1 could directly participate in the
assembly of COP-I coatomer.

Additionally, Arf1 has been reported to promote the Golgi
association of gamma ear-containing Arf-binding proteins
(GGAs) (Doray et al., 2002; D’Souza-Schorey and Chavrier,
2006), which cooperates with clathrin in cargo sorting. In C.
elegans, APT-9 is the homolog of human GGA1. To determine
whether SMAP-1 affects the localization of APT-9/GGA1, we
assessed the distribution of APT-9-GFP. In the absence of SMAP-
1, although APT-9-GFP accumulated in the cytosol, the
localization of APT-9-GFP in mCherry-P4M-labeled Golgi
apparatus was significantly reduced (Supplementary Figure
S4C-D9). These results suggested that SMAP-1 also functions
as a negative regulator of APT-9/GGA1 in C. elegans intestinal
cells. However, the increase in ARF-1.2 activity does not seem to
affect the Golgi association of APT-9/GGA1 directly.

SMAP-1 Is Localized at the trans-Golgi
Network
To characterize the intracellular position of SMAP-1, we
compared mCherry-tagged SMAP-1 with a set of organelle
markers. In the wild-type background, SMAP-1 localized to
punctate structures in intestinal cells. In agreement with its
functional implication, SMAP-1 overlapped with TGN marker
GOLG-4/golgin-245 (Figures 2A,B) (Munro, 2011). AMAN-2
(alpha-mannosidase II) labels cis- and medial-Golgi (Sato et al.,
2011). We observed an absence of colocalization between SMAP-
1 and AMAN-2 (Figures 2A,B), which were often adjacent.
Phosphoinositide PI(4)P is mainly enriched in the Golgi
(Dickson et al., 2016). Consistently, SMAP-1 colocalized with
PI(4)P marker GFP-P4M in cytosolic punctate structures
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(Supplementary Figure S5A,B). SMAP-1 was also juxtaposed to
exocytosis-associated endosome markers RAB-11 and RAB-8
(Figures 2A,B) (Huber et al., 1993; Ang et al., 2003; Sato
et al., 2008; Winter et al., 2012).

Localization of SMAP-1 in the trans-Golgi
Network Requires AP-1
Previous studies showed that the AP-1 complex mediates clathrin
assembly and acts synergistically with clathrin to regulate sorting
on the TGN (Robinson and Bonifacino, 2001). The punctate
structures labeled by CHC-1 (clathrin heavy chain) were
consistently reduced in the absence of AP-1 subunits (Figure
3A-A9). In addition, depleting AP-1 subunits or clathrin caused
ERM-1 to accumulate around the basolateral membrane and
resulted in the presence of SLCF-1 in the apical membrane of
intestinal cells (Supplementary Figure S6A-A9). Remarkably,

most SMAP-1-GFP-labeled structures also disappeared upon loss
of AP-1 subunits (Figure 3A-A9). It is noteworthy that the C.
elegans genome encodes an additional AP-1 μ1 subunit UNC-101
(Shim et al., 2000), which has been implicated in the polarized
sorting of KVS-4 in DA9 motor neurons (Zhou et al., 2016).
Conversely, loss of UNC-101 did not disturb the distributional of
CHC-GFP (Supplementary Figure S6C-C9), supporting the
distinct, tissue-specific functions of APM-1 and UNC-101
(Shim et al., 2000).

To further determine the genetic relationship between
SMAP-1 and AP-1 or clathrin, we examined the distribution
of clathrin and the AP-1 complex in smap-1 mutants. Of note,
CHC-1-positive punctate structures decreased in SMAP-1-
deficient cells (Figure 3B-B9). Large subunits APG-1 (γ
subunit) and APB-1 (β1 subunit) are associated with the
membrane and clathrin (Heldwein et al., 2004; Doray et al.,
2007). Both GFP-APG-1 and GFP-APB-1 accumulated on the

FIGURE 2 | SMAP-1 is localized at the trans-Golgi network. (A) SMAP-1 overlapped well with TGN marker GOLG-4/golgin-245. SMAP-1 and cis- and medial-
Golgi marker AMAN-2 were often juxtaposed. SMAP-1 was also juxtaposed to endosome marker RAB-11 and RAB-8. Arrowheads designate structures co-labeled by
GFP and mCherry. (B) Pearson’s correlation coefficients are calculated, error bars are 95% CIs (n � 12 animals). Scale bars, 10 μm.
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FIGURE 3 | The localization of SMAP-1 in the trans-Golgi network requires AP-1. (A-A9) In the middle focal plane, SMAP-1-GFP-labeled structures were reduced
upon loss of AP-1 subunits. Also, the punctate structures labeled by CHC-1 (clathrin heavy chain) were decreased in the absence of AP-1 subunits. Error bars are 95%
CIs (n � 18 each). Asterisks designate the significant differences in a one-way ANOVA followed by a post-hoc test (Dunn’s Multiple Comparison Test) for multiple
comparisons (***p < 0.001). (B-B9) Loss of SMAP-1 led to the accumulation of GFP-APG-1 and GFP-APB-1 on the punctate structures. In contrast, CHC-1-
positive punctate structures were reduced in SMAP-1-deficient cells. Error bars are 95% CIs (n � 18 each). Asterisks designate the significant differences in the Mann-
Whitney test (***p < 0.001). (C-C9) SMAP-1-mCherry colocalized well with CHC-1 and APB-1. Arrowheads designate structures co-labeled by GFP and mCherry.
Pearson’s correlation coefficients are calculated, error bars are 95%CIs (n � 12 animals). (D–H)Western blot showing GST pull-down with in vitro translated HA-tagged
proteins. GST-APG-1 exhibited interactions with HA-SMAP-1. Scale bars, 10 μm.
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punctate structures in smap-1 mutants (Figure 3B-B9).
Furthermore, we noticed that SMAP-1-mCherry colocalized
with CHC-1, APB-1, and APM-1 (μ1 subunit) in intestinal

cells (Figure 3C-C9; Supplementary Figure S6B-B9). To
determine the interaction between SMAP-1 and AP-1
subunits APM-1 (μ1), APB-1 (β1), APG-1 (γ), and APS-1

FIGURE 4 | Overexpression of CHC-1 relieved the mislocalization phenotype of ERM-1 and SLCF-1 in SMAP-1 knockdown animals. (A-A9) In smap-1(RNAi)
mutants, overexpressed CHC-1 fully rescued the basolateral mislocalization phenotype of ERM-1. Error bars are 95% CIs (n � 18 each). Asterisks designate the
significant differences in a one-way ANOVA followed by a post-hoc test (Dunn’s Multiple Comparison Test) for multiple comparisons (***p < 0.001, **p < 0.01, *p < 0.05,
ns: no significance). (B-B9) In smap-1(RNAi)mutants, overexpressed CHC-1 fully rescued the apical mislocalization phenotype of SLCF-1. Error bars are 95% CIs
(n � 18 each). Asterisks designate the significant differences in a one-way ANOVA followed by a post-hoc test (Dunn’s Multiple Comparison Test) for multiple
comparisons (***p < 0.001, **p < 0.01, *p < 0.05, ns: no significance). Scale bars, 10 μm.
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(σ1), we performedGSTpull-down assays.We found that SMAP-1
was bound to APG-1, while there was no significant interaction
between SMAP-1 and APM-1, APB-1, and APS-1 (Figures
3D–G). In contrast, we did not observe the interaction between
SMAP-1 and clathrin heavy chain (CHC-1) (Figure 3H). Together,
these data suggested that the integrity of the AP-1 complex is
required for SMAP-1 localization in TGN and that the clathrin
assembly event likely occurs downstream of SMAP-1.

Next, we inspected the subcellular distribution of ERM-1-GFP
and SLCF-1-GFP in SMAP-1 knockdown animals (Supplementary
Figure S2B). As expected, overexpression of CHC-1 rescued the
mislocalization phenotype of ERM-1 and SLCF-1 in the case of

SMAP-1 deficiency (Figure 4A-B9). Conversely, the simultaneous
overexpression ofmCherry-tagged APM-1 (μ1), APB-1 (β1), APG-1
(γ), and APS-1 (σ1) failed to fully alleviate distribution defects of
cargos in smap-1(RNAi) animals (Figure 4A-B9). Hence, our results
suggested that SMAP-1 helps couple the AP-1 complex and clathrin
in TGN-mediated sorting in the C. elegans intestine.

Loss of SMAP-1 Leads to Reduced Clathrin
Coat Assembly in the TGN
Thus far, our analysis revealed that clathrin assembly is likely to
occur downstream of SMAP-1. To further clarify the effect of

FIGURE 5 | Loss of SMAP-1 leads to a decrease in TGN-located clathrin. (A-A9) Loss of SMAP-1 led to a decrease in the colocalization between CHC-1 and P4M.
Pearson’s correlation coefficients are calculated, error bars are 95% CIs (n � 12 animals). p-value: Mann-Whitney test. ***p < 0.001. (B-B9) The colocalization between
APM-1 and P4Mwas not affected by the depletion of SMAP-1. Pearson’s correlation coefficients are calculated, error bars are 95%CIs (n � 12 animals). p-value: Mann-
Whitney test. ns: no significance. (C-C9) In the absence of SMAP-1, CHC-1 failed to overlap with APG-1 in punctate structures. Pearson’s correlation coefficients
are calculated, error bars are 95% CIs (n � 12 animals). p-value: Mann-Whitney test. ***p < 0.001. Scale bars, 10 μm.
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SMAP-1 on clathrin localization, we compared clathrin with the
PI(4)P marker GFP-P4M in the absence of SMAP-1. Remarkably,
loss of SMAP-1 reduced the overlap between residual CHC-1-
GFP and mCherry-P4M (Figure 5A-A9), validating that SMAP-
1/SMAP2 regulates the occurrence of clathrin in the Golgi
apparatus. However, the Golgi localization of APM-1 was not
affected upon loss of SMAP-1 (Figure 5B-B9). We subsequently
examined the level of colocalization between CHC-1-GFP and
mCherry-APG-1. In the absence of SMAP-1, we found that the
remaining CHC-1-labeled structure no longer colocalized with
APG-1 (Figure 5C-C9). In addition to biosynthetic sorting, the
clathrin coat is known to mediate the formation of endocytic
clathrin-coated vesicles (Chen and Schmid, 2020; Moulay et al.,
2020). Also, clathrin has been reported to function as a
component of the retrograde transport machinery on the
surface of the endosome (Saint-Pol et al., 2004; Shi et al.,
2009). Therefore, the punctate structures distinct from the
P4M- or APG-1-positive puncta are likely clathrin-coated
vesicles and sorting endosomes (Figure 5A-A9, C-C9). Taken
together, our results indicated that SMAP-1 acts as an
indispensable regulator that directs TGN clathrin coat
assembly downstream of the AP-1 complex.

DISCUSSION

Here, we identified SMAP-1/SMAPs as a polarized secretion
regulator in the C. elegans intestine. SMAP-1 colocalizes with
AP-1 and clathrin in the TGN. The integrity of the AP-1 complex
is required for SMAP-1 positioning, and SMAP-1 acts to sustain
clathrin assembly to ensure AP-1/clathrin-dependent cargos
sorting (Supplementary Figure S7).

Studies in mammals indicated that SMAP1 functions as an
Arf6GAP to regulate clathrin-dependent endocytosis via binding
directly to clathrin (Tanabe et al., 2005). Additionally, SMAP2
was implicated in endosome-to-Golgi retrograde transport
(Natsume et al., 2006). A recent study showed that SMAP2
facilitates clathrin assembly protein (CALM) mediated
formation of clathrin-coated carriers on the TGN, promoting
acrosome formation (Funaki et al., 2013). Together, these results
suggested that SMAPs are clathrin assembly regulators in the
TGN, and this efficacy could be due to its ArfGAP activity. In the
current study, we found that SMAP-1 regulates polarized sorting,
and this function seems independent of ARF-1.2, supporting the
role of SMAPs as secretion regulators. Furthermore, our study
highlighted the diversity of SMAPs functionality and
corroborated the significance of AP-1/clathrin coat assembly
in polarized sorting.

Previous studies have shown that SMAPs interact with
clathrin and CALM, modulating clathrin-coated vesicle
formation on the TGN (Tanabe et al., 2005; Natsume et al.,
2006; Funaki et al., 2013). However, the mechanism controlling
the localization of SMAPs is still not well understood. Here, by
using a well-established in vivo membrane trafficking
investigation model (Chen et al., 2018; Chen et al., 2019; Gao
et al., 2020; Zhang et al., 2020; Yan et al., 2021), we showed that
the integrity of AP-1 adaptor is necessary for the TGN

positioning of SMAP-1. Although we did not specifically
identify which AP-1 subunit governs the TGN localization of
SMAP-1, our results suggested that in addition to CALM, SMAP-
1 underlies an additional clathrin assembly mechanism, enriching
the understanding of AP-1/clathrin coat assembly. It is
reasonable to speculate that a similar mechanism might be
involved in the budding of clathrin-coated vesicles during
endocytosis. Further analyses are required to dissect the details
of this biological process.

MATERIALS AND METHODS

C. elegans Strains
Genetic crosses of C. elegans were performed by standard
methods (Brenner, 1974). A list of strains was provided in
Supplemental Materials. RNAi-mediated gene expression
interference was implemented by the feeding protocol
(Timmons and Fire, 1998). RNAi constructs were from the
Ahringer library (Kamath and Ahringer, 2003). For chc-1, apb-
1, apg-1, apm-1, and aps-1 RNAi experiments, L2-L3 stage larvae
were cultured for 48–60h and scored as adults.

Antibodies
Mouse anti-α-Tubulin monoclonal antibody (T6199, Sigma, St.
Louis, MO), and mouse anti-Flag monoclonal antibody (F1804;
Sigma, St. Louis, MO) were used in this study.

CRISPR-Cas9 Mutant Strains
The CRISPR/Cas9 vectors were assembled by swapping the eft-
3 promoter in pDD162 (Addgene, #47549) with the heat-shock
promoter Phsp-16.2 (Shen et al., 2014; Li et al., 2015). CRISPR
design tool (https://chopchop.cbu.uib.no/) was used to
identify the knockout targets. Three smap-1 target
sequences were selected, including AGGTAAAGTGGATCC
GAAGAagg, AAGACTGCAAGGCTTCCTGTtgg, AAAAGT
GCGCTCAGTGAATCtgg. The CRISPR/Cas9 plasmids were
validated by sequencing. CRISPR/Cas9 conditional knockout
strains were created by microinjection of plasmids at 50 ng/μl
and Podr-1:rfp (50 ng/μl) into wild-type hermaphrodites
germline (Zhou et al., 2016). Heat-shock was executed at
0 h, 8 h, 16 h, 24 h, and 32 h after egg-hatching. The apical
membrane cargo SLCF-1-GFP showed significant defects after
heat shock at 0 h.

Plasmids and Transgenic Strains
For the SMAP-1 (R60A) rescue assay, a guide RNA (sgRNA)
resistant plasmid was prepared by introducing silent
mutations into each target sequence (5′-AGGCAAGGT
TGACCCAAAAAaag-3′, 5′-GAGACTACAGGGATTTCT
ATtag-3′, 5′-GAAGGTACGTTCTGTTAACCtag-3′). We
also introduced a single missense mutation in the SMAP-1
GAP domain. To construct transgenes expressed explicitly in
C. elegans intestine, the intestine-specific promoter vha-6
driven vectors modified with a Gateway cassette were
deployed. The cDNA sequences of smap-1(w09d10.1), erm-
1, slcf-1, nhx-2, chc-1, apb-1, apg-1, apm-1, aps-1, golg-4, P4M,
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and arf-1.2 lacking a stop codon or a start codon were cloned
into intestinal vectors by LR reaction (Chen et al., 2006).
Transgenic strains were generated by standard
microinjection; plasmids were co-injected with selection
markers Podr-1:gfp or Podr-1:rfp into wild-type or smap-
1(ycxEx1639) hermaphrodites germ lines.

Worm Lysate Preparation and Western Blot
Around 100 wild-type or smap-1(RNAi) young adults (24 h after
L4 stage) were picked into 20 μl lysis buffer [100 mM Tris pH 6.8,
8% SDS, 20 mM β-mercaptoethanol], then mixed with 20 μl
2xSDS-PAGE loading buffer and boiled at 100 °C for 10min.
Lysates were resolved on SDS-PAGE [12% (wt/vol)
polyacrylamide], blotted to nitrocellulose. After 5% milk
blocking and washing, the membrane was blotted with anti-
Flag and anti-Tubulin antibodies.

Microscopy and Image Analysis
Live animals were mounted on 2% agarose pads (100 mM
levamisole). Fluorescence images were obtained with a
Nikon C2 laser scanning confocal microscope (Nikon,
Tokyo, Japan) equipped with a 100×N.A. 1.2 oil-immersion
objective. Images were collected with NIS-Elements AR
4.40.00 software. Z-series of optical sections were acquired
using 0.8–1 μm step size. Fluorescence data were evaluated
with Metamorph software version 7.10.3.279 (Universal
Imaging, West Chester, PA). The “Integrated Morphometry
Analysis” component was utilized to assess the fluorescence
intensity (total intensity), puncta number (structure count),
and fluorescence area (total area) within unit regions. For each
genotype, a total of 6 animals were analyzed in three unit
regions of each intestine defined by a 100 × 100 (pixl2) box
located randomly (n � 18 each). In this case, “total area” is a
comprehensive parameter indicating the number and size of
the fluorescent structures. Colocalization images were
analyzed by Fiji (Image J) software (Schindelin et al., 2012).
Pearson’s correlation coefficients were calculated with 6
animals for all genotypes.

Statistical Analysis
Prism software version 8.02 (GraphPad Software, La Jolla, CA)
was deployed to perform statistical analyses.
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Supplementary Figure S1 | Differential interference contrast (DIC) and
fluorescence images showing that SMAP-1 is expressed in multiple tissues of C.
elegans. (A) A GFP transgene driven by the smap-1 promoter in an adult
hermaphrodite. (B) In the tail, arrows indicate neuron and intestine. (C) In the
posterior region, arrows indicate intestine and ventral nerve cord (VNC). (D) In the
head, arrowhead indicates pharynx. (E) In the mid-body, arrows indicate VNC and
dorsal nerve cord (DNC). Scale bars, 10 μm.

Supplementary Figure S2 | (A-A9) Confocal images showing SLCF-1-GFP
distribution in the intestinal cells. Heat-shock was executed at 0, 8, 16, 24, and
32 h after hatching. The SLCF-1-GFP localization was examined in young adult
animals. Error bars are 95% CIs (n � 18 each, 9 animals of each genotype were
sampled in whole-cell regions of two intestinal cells). Asterisk indicates the significant
difference in a one-way ANOVA followed by a post-hoc test (Dunn’s Multiple
Comparison Test) for multiple comparisons (***p < 0.001, ns: no significance).
(B) Western blot showing Flag-SMAP-1 levels in wild type and smap-1(RNAi)
backgrounds. Scale bars, 10 μm.

Supplementary Figure S3 | (A-A9) Confocal images showing the subcellular
localization of ARF-1.2-GFP. Black asterisks in the panels indicate intestinal
lumen. Error bars are 95% CIs (n � 18 each, 9 animals of each genotype were
sampled in whole-cell regions of two intestinal cells). Asterisks indicate the significant
differences in the Mann-Whitney test (***p < 0.001, *p < 0.05). (B-B9) The
membrane-to-cytosol ratio (P/S) of ARF-1.2-GFP increased in smap-1(RNAi)
animals. Membrane structures were separated from the cytosol of worm lysates
by ultracentrifugation. ARF-1.2-GFP in the supernatants and pellets were analyzed
by western blotting using an anti-GFP antibody. The loading control was blotted by
the anti-Tubulin antibody. The SEMs from three independent experiments are
shown, asterisk indicates the significant differences in the one-tailed Student’s t-
test (***p < 0.001). (C-C9) Confocal images of the intestinal cells expressing GFP-
tagged ERM-1 and SLCF-1. Asterisks in the panels indicate intestinal lumen. Error
bars are 95% CIs (n � 18 each, 9 animals of each genotype were sampled in whole-
cell regions of two intestinal cells). Asterisks indicate the significant differences in the
Mann-Whitney test (***p < 0.001, ns: no significance). (D-D9)Confocal images of the
intestinal cells expressing GFP-tagged ERM-1 and SLCF-1. In smap-1(ycxEx1639)
mutants, overexpression of SMAP-1(R60A)-mCherry that has lost GAP activity
rescued the distribution defects of ERM-1-GFP and SLCF-1-GFP. Asterisks in
the panels indicate intestinal lumen. Error bars are 95%CIs (n � 18 each, 9 animals of
each genotype were sampled in whole-cell regions of two intestinal cells). Asterisks
indicate the significant differences in the Mann-Whitney test (***p < 0.001, ns: no
significance). Scale bars, 10 μm.

Supplementary Figure S4 | (A-A9) Confocal images showing colocalization
between COPG-1 and Golgi marker P4M in the intestinal cells. Arrowheads
indicate structures labeled by both GFP and mCherry. Pearson’s correlation
coefficients for GFP and mCherry signals are calculated, error bars are 95% CIs
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(n � 12 animals). P-value: Mann-Whitney test. ***p < 0.001. (B-B9) Confocal images
showing colocalization between COPB-1 and Golgi marker P4M in the intestinal
cells. Arrowheads indicate structures labeled by both GFP and mCherry. Pearson’s
correlation coefficients for GFP and mCherry signals are calculated, error bars are
95% CIs (n � 12 animals). P-value: Mann-Whitney test. ***p < 0.001. (C-C9)
Confocal images showing colocalization between APT-9 and Golgi marker P4M
in the intestinal cells. Arrowheads indicate structures labeled by both GFP and
mCherry. Pearson’s correlation coefficients for GFP and mCherry signals are
calculated, error bars are 95% CIs (n � 12 animals). P-value: Mann-Whitney test.
***p < 0.001. (D-D9) Confocal images showing APT-9-GFP in the intestinal cells.
Error bars are 95% CIs (n � 18 each, 9 animals of each genotype were sampled in
whole-cell regions of two intestinal cells). Asterisks indicate the significant
differences in the Mann-Whitney test (***p < 0.001). Scale bars, 10 μm.

Supplementary Figure S5 | (A) Confocal image showing colocalization between
PI(4)P marker GFP-P4M and SMAP-1-mCherry in the intestinal cells. Arrowheads
indicate structures labeled by both GFP and mCherry. (B) Pearson’s correlation
coefficients for GFP and mCherry signals are calculated, error bars are 95% CIs (n �
12 animals). Scale bar represents 10 μm.

Supplementary Figure S6 | (A-A9) Confocal images of the intestinal cells
expressing GFP-tagged ERM-1 and SLCF-1. Asterisks in the panels indicate
intestinal lumen. Error bars are 95% CIs (n � 18 each, 9 animals of each
genotype were sampled in whole-cell regions of two intestinal cells). Asterisks
indicate the significant differences in a one-way ANOVA followed by a post-hoc
test (Dunn’s Multiple Comparison Test) for multiple comparisons (***p < 0.001). (B-
B9) Confocal image showing colocalization between GFP-APM-1 (μ1 subunit) and
SMAP-1-mCherry in the intestinal cells. Arrowheads indicate structures labeled by
both GFP and mCherry. Pearson’s correlation coefficients for GFP and mCherry
signals are calculated, error bars are 95% CIs (n � 12 animals). (C-C9) Confocal
images showing CHC-1-GFP in the intestinal cells. Error bars are 95% CIs (n � 18
each, 9 animals of each genotype were sampled in whole-cell regions of two
intestinal cells). Asterisks indicate the significant differences in the Mann-Whitney
test (ns: no significance). Scale bars, 10 μm.

Supplementary Figure S7 | In the C. elegans intestine, ARF-1.2 regulates clathrin
coat assembly via downstream AP-1 and SMAP-1, promoting TGN sorting. In
addition, SMAP-1 acts as a GAP to regulate ARF-1.2 activity in a negative feedback
manner.
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