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Background: DNA methylation is an important epigenetic modification, among which 5-
methylcytosine methylation (5mC) is generally associated with tumorigenesis.
Nonetheless, the potential roles of 5mC regulators in the tumor microenvironment
(TME) remain unclear.

Methods: The 5mC modification patterns of 1,374 lung adenocarcinoma samples were
analyzed systematically. The correlation between the 5mC modification and tumor
microenvironment cell infiltration was further assessed. The 5mCscore was developed
to evaluate tumor mutation burden, immune check-point inhibitor response, and the
clinical prognosis of individual tumors.

Results: Three 5mC modification patterns were established based on the clinical
characteristics of 21 5mC regulators. According to the differential expression of 5mC
regulators, three distinct 5mC gene cluster were also identified, which showed distinct
TME immune cell infiltration patterns and clinical prognoses. The 5mCscore was
constructed to evaluate the tumor mutation burden, immune check-point inhibitor
response, and prognosis characteristics. We found that patients with a low 5mCscore
had significant immune cell infiltration and increased clinical benefit.
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Conclusion: This study indicated that the 5mC modification is involved in regulating TME
infiltration remodeling. Targeting 5mC modification regulators might be a novel strategy to
treat lung cancer.

Keywords: lung adenocarcinoma, 5mC, tumour microenvironment, immunotherapy, mutation burden

INTRODUCTION

Lung cancer is the primary cause of cancer-related deaths
worldwide (Siegel et al., 2020) (NSCLC), accounting
approximately for 85% of newly diagnosed lung cancer cases,
is classified into lung adenocarcinoma (LUAD) and lung
squamous carcinoma (LUSC) (Curran et al., 2011). For
unresectable advanced NSCLC, a combination of radiotherapy
and chemotherapy has been the most common first-line
treatment (Yoda et al., 2019), and impressive clinical success
has been observed using targeted therapies (Treat, 2005; Yuan
et al., 2019; Alexander et al., 2020). Unfortunately, most NSCLC
patients will suffer the relapse within 1 year (Fountzilas et al.,
2021). Thus, understanding the mechanism and identifying novel
targets to treat NSCLC remain an urgent clinical need.

Immunotherapies represent a promising advance in cancer
treatment (Lussier et al., 2021). The immune checkpoint
inhibitors (ICI), including programmed death-ligand 1 (PD-
L1), programmed cell death 1 (PD-1), and cytotoxic
T-lymphocyte antigen-4 (CTLA-4), combined with
chemoradiotherapy, have been approved or are being widely
evaluated in clinical trials (Grant et al., 2021). However,
targeting PD-1 or PD-L1 has demonstrated durable efficacy
only in a subset of patients with NSCLC (Jazieh et al., 2021).
Thus, it is important to determine the underlying mechanisms
with the aim of improving the curative effect.

DNA methylation is an epigenetic modification that is
associated with regulating cell differentiation and tissue
development (Smith and Meissner, 2013; Slieker et al.,
2015). Dysregulation of DNA methylation patterns are
important characteristics of several diseases, including
cancers (Li et al., 2013; Božić et al., 2021; Cristall et al.,
2021; Miyakuni et al., 2021). 5-Methylcytosine (5mC), a
type of DNA methylation, was firstly reported by Wyatt,
(1951). DNA 5mC methylation is the classic epigenetic
process, which is controlled by “writers” (DNA
methyltransferases), “erasers” (DNA methyltransferases),
and “readers” (Ito et al., 2011; Du et al., 2015; Lio et al.,
2020). With the discovery of 5mC regulators, recent studies
suggested that DNA cytosine modifications may act as
epigenetic markers in tumorigenesis (Wu and Zhang, 2010;
Cavalcante et al., 2020; Jiang, 2020; Mo et al., 2020) and can
regulate tumor microenvironment (TME) infiltrating cells
(Chen et al., 2020; Zhao et al., 2021; Onodera et al., 2021).
However, the comprehensive roles of TME cell infiltration
directed by 5mC regulators in NSCLC remain unclear.

In this study, we evaluated 5mC methylation patterns
comprehensively by analyzing genomic information of 1374
LUAD samples, and correlated the 5mC methylation pattern
with the characteristics of TME cell infiltration. We identified

three 5mC methylation patterns, and revealed that 5mC
methylation mediation of TME cell infiltration characteristics
was closely associated with the immune response phenotype,
indicating the 5mC methylation played an important role in
modifying TME characteristics. Furthermore, the 5mCscore
could be applied as a promising biomarker to predict immune
response and clinical outcome in NSCLC.

MATERIALS AND METHODS

Dataset Acquisition and Processing
Supplementary Figure S1 shows the workflow of the this study.
mRNA expression with clinical and survival information were
downloaded from Gene Expression Omnibus (GEO) and GDC
data portal. Patients without clinical survival information were
excluded. Five eligible lung adenocarcinoma cohorts
(GSE19188, GSE31210, GSE37745, GSE50081, and TCGA-
LUAD [lung adenocarcinoma data from The Cancer genome
Atlas (TGCA)]) were included for further analysis
(Supplementary Table S1). For background correction and
normalization, the Robust Multichip Average algorithm was
used to uniformly process the raw. CEL files of the four GEO
datasets (Gautier et al., 2004). Next, a GEO meta-cohort were
created by merging the GEO datasets using the R sva package
(Leek et al., 2012).

Twenty-one 5mc regulators, including three writers (DNA
methyltransferase 1 (DNMT1), DNA methyltransferase 3 Alpha
(DNMT3A), DNA methyltransferase 3 beta (DNMT3B)), three
erasers (tet methylcytosine dioxygenase 1 (TET1), tet
methylcytosine dioxygenase 2 (TET2), tet methylcytosine
dioxygenase 3 (TET3)), and 15 readers (methyl-cpg binding
domain protein 1 (MBD1), methyl-cpg binding domain
protein 2 (MBD2), methyl-cpg binding domain protein 3
(MBD3), methyl-cpg binding domain protein 4 (MBD4),
methyl-cpg binding protein 2 (MECP2), nei like dna
glycosylase 1 (NEIL1), nth like dna glycosylase 1 (NTHL1),
single-strand-selective monofunctional uracil-dna glycosylase 1
(SMUG1), thymine dna glycosylase (TDG), ubiquitin like with
phd and ring finger domains 1 (UHRF1), ubiquitin like with phd
and ring finger domains 2 (UHRF2), uracil dna glycosylase
(UNG), zinc finger and btb domain containing 33 (ZBTB33),
zinc finger and btb domain containing 34 (ZBTB34), zinc finger
and btb domain containing 4 (ZBTB4)) (Chen et al., 2020), and
23 tumor immune related cells from published studies (Zhang
et al., 2020a; Zhao et al., 2021), were included for analysis. The
transcriptomics data, single nucleotide variant (SNV), copy
number variation (CNV), and 5mC phenotypic data were
collected using the UCSC Xena database (https://xenabrowser.
net) and the GDC data portal.
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Unsupervised Clustering of 21 5mC
Regulators
To identify 5mC regulator-mediated modification sub-clusters,
unsupervised consensus clustering was used to cluster tumor
samples into sub-clusters based on the expression levels of the
21 5mC regulators. To ensure the stability of the clusters, the
parameters of clustering were as follows: number of repetitions �
1,000 bootstraps, clustering algorithm � k-means method,
pFeature � 1.0, pItem � 0.8. The cluster with the most
significant survival difference was included for further analysis.

Gene Set Variation Analysis and Functional
Annotation
To explore the biological behavior among the different 5mC
modification patterns, their pathway scores were evaluated using
gene set variation analysis (GSVA) using the R GSVA package
(Hänzelmann et al., 2013), with the “c2. cp.kegg.v7.4. symbols”
gene set as the background. Differential pathways were further
screened using p < 0.05 in the R package limma.

Estimation of the Tumor Microenvironment
To identify the TME cell infiltration in LUAD samples, the
relative abundances of immune cells were quantified using the
single-sample gene-set enrichment analysis (ssGSEA) algorithm.
According to the method revealed by Charoentong et al. (2017b),
various kinds of immune cells, including regulatory T cells,
activated CD8+ T cells, dendritic cells, and B cells, were
evaluated. The relative abundance of TME infiltrating cells in
clinical samples was represented by the enrichment scores.

Differentially Expressed Genes
To identify 5mC-related differentially expressed genes (DEGs),
based on the expression levels of 21 5mC regulators, three distinct
5mC modification patterns were identified in the patients with
LUAD. The empirical Bayesian approach of R package limma
package was used for the difference analysis (Ritchie et al., 2015),
which screened out 324 DEGs, 246 DEGs and 144 DEGs
according to p < 0.001, p < 0.0005 and p < 0.0001. p < 0.0005
was most suitable for subsequent analysis.

Construction of 5mC Gene Signatures
Considering the heterogeneity and complexity of tumors, and
according to the method used by Zhang J. et al. (2020), the
5mCscore was developed to quantify the modification pattern of
individual patients with LUAD based on the identified DEGs. A
univariate Cox regression model was used for the prognostic
analysis of each gene in the 5mC signatures. We obtained 103
genes related to prognosis from among the 246 DEGs, and then
principal component analysis (PCA) was performed, scored as
PCi1 and PCi2. This approach had advantage of focusing the
score on the set with the largest block of well correlated (or
anticorrelated) genes in the set, while down-weighting
contributions from genes that do not track with other set
members. The 5mC score of each patient was calculated as
follows:

5mCscore � PCi1 + PCi2

Evaluation of Immune-Checkpoint Inhibitor
Genomic and Clinical Information
To explore the application of the 5mC score to predict immune-
checkpoint inhibitor (ICI) efficacy, the expression data and
clinical annotations of the immunotherapeutic cohort of
atezolizumab (IMvigor210 cohort) were downloaded from the
website based on the Creative Commons 3.0 License (http://
research-pub.Gene.com/imvigor210corebiologies) (Mariathasan
et al., 2018).

Statistical Analysis
Correlation coefficients between the expression of 5mC
regulators and the TME immune infiltration cells was
conducted using the Spearman method and distance
correlation analysis. The Wilcoxon test was used to analyze
the difference between two groups. The Kruskal–Wallis test
and one-way analysis of variance (ANOVA) were used to
analyze difference among three or more groups. The log-rank
test and the Kaplan–Meier (KM)method were applied to evaluate
the survival time. A statistical two-sided p value < 0.05 was
considered as having significance. All data processing in this
study was done using R 3.6.1 software.

RESULTS

Genetic Variation and Expression Analysis
of 5mC Methylation Regulators
According to the map described in Figure 1A, in this study,
21 5 mC methylation regulators (writers: DNMT1, DNMT3A
and DNMT3B; erasers: TET1, TET2, TET3; readers: MBD1,
MBD2, MBD3, MBD4, MECP2, NEIL1, NTHL1, SMUG1,
TDG, UHRF1, UHRF2, UNG, ZBTB33, ZBTB38, and ZBTB4)
were identified (Supplementary Table S2). To determine genetic
alternations, we firstly evaluated the SNV variation frequency of
the genes encoding the 21 5mCmethylation regulators. As shown
in Figure 1B, Among 561 LUAD samples, 21.39% of 5mC
regulators had mutations. The main mutation type was
missense_mutation. However, the mutation frequency of
individual regulators only ranged from 0 to 4%. The CNV
frequency of the 5 mC regulators showed that MECP2,
SMUG1, DNMT3B, ZBTB33, and NTHL1 had distinct CNV
amplification, with frequencies of 11.71, 6.13, 5.58, 4.68, and
4.68%, respectively. MBD3, UHRF1, MBD1, UHRF2, and TDG
had a CNV deletion, with frequencies of 6.30, 5.40, 5.58, 5.23, and
4.86%, respectively (Figure 1C and Supplementary Table S3).
The distribution analysis of CNV alterations on 23 chromosomes
showed that their distribution among the 21 5mC regulators was
scattered and unorganized (Figure 1D). Survival analysis
indicated that high expression of DNMT3B, MDB2, MDB3,
SMUG1, TDG, HURF1, UNG, and ZBTB38 were associated
with poor survival of LUAD (p < 0.05); while, high expression
of MDB4, MECP2, NEIL1, TET2, UHRF2, and ZBTB4 were
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associated with better survival of LUAD (p < 0.05,
Supplementary Figure S2 and Supplementary Table S4).

Identification of 5mC Methylation-Related
Phenotypes
To determine the roles of interaction among 5 mC methylation
regulators in LUAD, correlation analysis among the 21 5 mC
regulators was performed, which showed that there was a strong
positive correlation among most of the regulators
(Supplementary Figure S3A and Supplementary Table S5).
The prognostic values of the 21 5 mC regulators in LUAD
were evaluated using a univariate Cox regression model
(Supplementary Figure S3B). As shown in Figure 2A, MDB4,
MECP2, NEIL1, TET2, ZBTB4, and ZBTB33 were favorable
factors for overall survival (OS), while DNMT1, DNMT3A,
DNMT3B, TET1, TET3, SMUG1, TDG, UHRF1, UHRF2, UNG,
and ZBTB38 were risk factors for OS. Significant negative
correlations were obtained for UHRF1 and DNMT1, TDG and
DNMT3A, TDG and UNG, MECP2 and ZBTB33, MECP2 and
TET2, and TET2 and UHRF2 (p < 0.001). On the other hand,

several erasers and readers also showed significant negative
correlations: NTHL1 and TET2, NTHL1 and TET3, and
MBD3 and TET2 (p < 0.001) (Supplementary Tables S6–7).
Using unsupervised clustering analysis, three distinct 5mC
modification patterns were identified based on the expression
of 21 5mC regulators (Supplementary Figure S4). Prognostic
analysis of the three 5mC modification clusters revealed a
particularly prominent survival advantage for the 5mC cluster-
B modification pattern (Figure 2B and Supplementary Table S8;
p � 0.001). The results showed that cross-talk among the 5mC
modification regulators might be involved in the formation of the
5mC modification and in the characteristics of TME cell
infiltration.

Tumor Microenvironment Cell Infiltration
Characteristics in the 5mC Methylation
Clusters
To identify the potential function of the differentially expressed
5mC regulators, cluster analysis was first performed. As shown
in Figure 2C, the 21 5mC regulators had a distinct distribution

FIGURE 1 | Genetic landscape and expression analysis of 5mC regulators in LUAD. (A) Schematic diagram of 5mC DNA methylation mediated by 21 5mC
regulators. (B) Themutation frequency of 21 5mC regulators in the TCGA-LUAD cohort. The column indicates individual patients. The upper barplot shows the TMB, The
number on the right indicates the mutation frequency. The right barplot shows the percentage of mutation type in each regulator. The stacked barplot shows the fraction
of conversions. (C) The CNV variation frequency of 5mC regulators in the TCGA-LUAD cohort. The height of the column indicates the alteration frequency of the
regulators. The green dot is the deletion frequency; The red dot is the amplification frequency. (D) The locations of CNV alterations of 5mC regulators in the TCGA-LUAD
cohort. CNV, copy number variation; 5mC, 5-methylcytosine; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden.
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among the three 5mC clusters. Gene ontology (GO) analysis was
performed to identify the biological process (BP), cellular
component (CC), and molecular function (MF) of the
regulators. The aberrantly expressed 5mC regulators were
mainly enriched for GO terms related to regulation of
mitotic nuclear division, chromosome segregation, and
nuclear division (BP); chromosomal region, condensed
chromosome/centromeric region, and kinetochore (CC); and
ATPase activity, DNA helicase activity, and helicase activity
(MF) (Figure 2D). To further identify the potential behaviors,
GSVA enrichment analysis was performed, as shown in
Supplementary Table S9. To further exlpore unsupervised
consensus clustering of all tumor samples for the molecular
classification of LUAD. The optimal number of clusters was
determined by the K value. After assessing relative changes in
the area under the cumulative distribution function curve and
consensus matrix heatmap, we selected a three-cluster solution
(K � 3), which showed no appreciable increase in the area under

the cumulative distribution function curve (Supplementary
Figure S4). 5mC cluster A was markedly enriched in damage
repair-related pathways, such as base excision repair, DNA
replication, spliceosome, and RNA polymerase. 5mC cluster
B was prominently related to immune activation-related
pathways, such as the JAK-STAT signaling pathway, the
T cell receptor signaling pathway, and the calcium signaling
pathway. 5mC cluster C was mostly associated with
carcinogenic activation and damage repair pathways, such as,
the p53 signaling pathway, basal transcription factors,
spliceosome, RNA degradation, DNA replication, base
excision repair, homologous recombination, DNA replication,
and mismatch repair (Figures 3A–C). Based on the expression
levels of these 21 5mC regulators, the three 5mC modification
patterns could be partially differentiated using PCA
(Figure 3D). TME cell infiltration analysis showed 5mC
cluster B was associated with activated B cells, activated
dendritic cells, mast cells, natural killer T cells, and

FIGURE 2 | Prognostic and biological characteristics of 5mCmodification patterns in LUAD. (A) The interaction among 5mC regulators in the TCGA-LUAD cohort.
The circle size indicates the effect of each regulator on prognosis. Green dots indicate favorable factors for prognosis; Purple dots indicate risk factor for prognosis. The
lines linking regulators indicate their interactions, and thickness show the correlation strength between the regulators. Negative correlations are marked in blue and
positive correlation in red. (B) Survival analyses of 5mC modification patterns in the TCGA-LUAD cohort, including 500 cases in 5mC cluster A (n � 139), 5mC
cluster B (n � 187), and 5mC cluster C (n � 174) (p < 0.0001, Log-rank test). (C) Cluster analysis of 21 5mC regulators among the three 5mC modification patterns. (D)
Gene ontology (GO) analysis of 21 5mC regulators among the three 5mC modification patterns.
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FIGURE 3 | GSVA enrichment analysis and TME cell infiltration characteristics of 5mC modification patterns. (A–C) The states of biological pathways among the
three 5mC modification patterns enriched by GSVA analysis The general biological processes are shown as a heatmap, red represents activated pathways and blue
represents inactivated pathways. (A) 5 mC cluster A vs 5mC cluster B; (B) 5mC cluster B vs 5mC cluster C; (B) 5 mC cluster A vs 5mC cluster C. (D) Principal
component analysis of the 5mC modification patterns. (E) The abundance of TME infiltrating cells in the 5mC modification patterns (*p < 0.05; **p < 0.01; ***p <
0.001; ns means not significant).
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FIGURE 4 |Construction of 5mC gene signatures. (A) Unsupervised clustering of overlapping 5mC phenotype-related genes in the TCGA-LUAD cohort to classify
patients into different genomic subtypes, termed as 5mC gene cluster (A–C), respectively. The gene clusters, 5mC clusters, tumor stage, survival status, sex, and age
were used as patient annotations. (B) Overall survival of patients with the three 5mC modification genomic clusters in the TCGA-LUAD cohort, including 504 cases in
5mC gene cluster A (n � 191), 5mC gene cluster B (n � 135), and 5mC gene cluster C (n � 17) (p < 0.0001, Log-rank test). (C) The expression of 21 5mC regulators
in the three gene clusters (*p < 0.05; **p < 0.01; ***p < 0.001; ns means not significant). (D) Alluvial diagram showing the changes in 5mC clusters, 5mC gene cluster,
5mCscore, and survival. (E) Correlations between the 5mCscore and the known gene signatures in the TCGA-LUAD cohort using Spearman analysis. Negative
correlations are marked in blue and positive correlation in red. (F) Differences in the 5mCscore among three gene clusters in the TCGA-LUAD cohort (***p < 0.001,
Kruskal-Wallis test). (G) Differences in the 5mCscore among three the 5mC modification patterns in the TCGA-LUAD cohort (***p < 0.001, Kruskal-Wallis test).
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neutrophils (Figure 3E and Supplementary Table S10, p <
0.001). 5mC cluster C was remarkably rich in immune cell
infiltration including myeloid-derived suppressor cells
(MDSCs), regulatory T cells, type 1 T helper cells, type 2 T
helper cells, and type 17 T helper cell (Figure 3E and
Supplementary Table S10, p < 0.001). Prognosis analysis
showed that patients with different 5mC modification
patterns also had a matching survival advantage (Figure 2B,
p � 0.001). Based on the above results, cluster A, characterized
by innate immune cell infiltration, was defined as an immune-
excluded phenotype; cluster B, characterized by adaptive
immune cell infiltration and immune activation, was defined
as an immune-inflamed phenotype; and cluster C, characterized
by the inhibition of immunity, was defined as an immune-desert
phenotype.

Identification of 5mC Methylation Gene
Signature
To further identify the potential function of each m5C
modification pattern, we determined 246 m5C phenotype-
related DEGs (Supplementary Table S11). GO analysis
showed that the 246 DEGs were associated with cell cycle,
RNA transport, spliceosome, DNA replication, base excision,
and human T-cell leukemia virus 1 infection (Supplementary
Figure S5A and Supplementary Table S12). Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis indicated that the 5mC
gene clusters were involved in DNA transcription and translation
(Supplementary Figure S5B and Supplementary Table S13). To
further determine the potential regulation mechanism,
unsupervised clustering analyses was performed to identify the

FIGURE 5 | Prognostic and genetic characteristics between high and low 5mCscore groups. (A) Survival analysis of the 5mCscore in the TCGA-LUAD cohort (p <
0.0001, Log-rank test). (B) Survival analysis of the 5mCscore in the GEO-meta cohort (p < 0.0001, Log-rank test). (C) Sex proportion between the high- and low-
5mCscore groups. (D) The 5mCscore difference between females and males. (E) Age proportion between the high- and low-5mCscore groups. (F) The 5mCscore
difference between age (≤65) and age (>65). (G) Smoking status proportion between the high- and low-5mCscore groups. (H) The 5mCscore difference between
smoking status (ever) and smoking status (never). (I) Clinical stage status proportion between the high- and low-5mCscore groups. (J) The 5mCscore difference
between stage I and stage II. (K) The 5mCscore difference between genetic mutations (−) and genetic mutations (+). (L) Genetic mutations status proportion between
high- and low-5mCscore groups.
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genomic subtypes based on the 103 prognostic genes from the
246 5mC phenotype-related DEGs. The results showed that three
distinct 5 mC genomic phenotypes (5mC gene Cluster A–C)

could be identified (Figure 4A and Supplementary Table
S5C–J). These results indicated that the 5mC methylation
modification patterns did exist in LUAD and three distinct

FIGURE 6 | Characteristics of 5mCscore in the TCGA molecular subtypes and tumor somatic mutations. (A,B) Waterfall plot of tumor somatic mutations
established by those with a high 5mCscore (A) and a low 5mCscore (B). Each column represents individual patients. The upper barplot shows the TMB, the number on
the right indicates the mutation frequency in each gene. The right barplot shows the proportion of each variant type. (C) Tumor somatic mutation between high
5mCscore and low 5mCscore groups. (D) PD-L1 expression difference between high 5mCscore and low 5mCscore groups. (E) The correlation analysis between
tumor somatic mutation and the 5mCscore. (F) The correlation analysis between PD-L1 expression and the 5mCscore. (G) Survival analysis of tumor somatic mutations
in the TCGA-LUAD cohort (p < 0.0001, Log-rank test). (H) Survival analyses for patients stratified by both the 5mCscore and the tumor somatic mutation burden using
Kaplan–Meier curves (p < 0.0001, Log-rank test).
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5mC gene clusters were characterized by different signature
genes. Cluster analysis showed that 178 of 504 patients with
LUAD were clustered in 5mC gene cluster C, which was
associated with better prognosis. Patients with LUAD with
5mC gene cluster B (n � 135) had poorer prognosis. 5mC
gene cluster A, with 191 patients clustered, had an
intermediate prognosis (Figure 4B, p < 0.001). The expression
levels of the 5mC regulators among the 5mC gene clusters were
distinctly different (Figure 4C).

Clinical Characteristics of 5mCscore
Phenotypes
To better explore the pattern of 5mC modification in individual
patients, based on the 5mC phenotype-related genes
(Supplementary Table S14), the 5mCscore was used to
quantify the 5mC modification patterns of individual patients
with LUAD. An alluvial diagram was applied to clarify the
attributed changes of the LUAD patients. As shown in
Figure 4D, the 5mC modification patterns clusters were
almost consistent with the 5mC gene clusters, i.e., the 5mC
gene cluster B group patients mainly had a low 5mCscore,
which was associated with poor survival. To determine the
roles of 5mC-related phenotypes in immune regulation,
correlation analysis showed that the 5mCscore was associated
positively with most TME infiltrating cells (Figure 4E). The

Kruskal–Wallis test revealed there was a significant difference
in the 5mCscore among the 5mC gene clusters. 5mC gene cluster
C showed the highest median 5mCscore, while 5mC gene cluster
B had the lowest median 5mCscore, which indicated that a high
5mCscore was closely associated with immune activation-related
signatures, whereas a low 5mCscore was associated with immune
inactivation-related signatures (Figure 4F, p < 0.001). More
importantly, compared with the other clusters, 5mC
modification cluster C presented the lowest median 5mCscore,
and 5mC modification cluster B showed the highest 5mCscore
(Figure 4G, p < 0.001). These results indicated that a high
5mCscore correlated significantly with immune-activation and
the 5mCscore could be used to identify the 5mC modification
patterns in LUAD, and further assess the characteristics of TME
cell infiltration of individual tumors.

To further validate the value of the 5mCscore, patients in the
TCGA cohort were divided into low or high 5mCscore groups.
Prognosis analysis showed that patients with a high 5mCscore
showed a better survival benefit (Figure 5A, p < 0.001). Four GEO
datasets (GSE19188, GSE31210, GSE37745, and GSE50081,
Supplementary Table S1) were integrated into one meta-
cohort. Survival analysis in the GEO meta-cohort also
identified that a high 5mCscore was linked to a better clinical
outcome (Figure 5B, p < 0.001). These results indicated that the
5mCscore could act as an independent prognostic biomarker to
evaluate patient outcomes. To explore the effect of clinical
characteristics on the 5mCscore, the subgroups of clinical

FIGURE 7 | The role of the 5mCscore in anti-PD-L1 immunotherapy. (A) The proportion of patients with a response to ICI in the low or high 5mCscore groups.
Responder/Nonresponder: 26%/74% in the low 5mCscore groups and 8%/92% in the high 5mCscore groups. (B) 5mCscore differences between responders and
nonresponders. (C) IC infiltration proportion between high 5mCscore and low 5mCscore groups. (D) 5mCscore differences between different IC subgroups. (E) Immune
phenotype proportion between high 5mCscore and low 5mCscore groups. (F) 5mCscore differences among the immune-desert phenotype, immune-excluded
phenotype, and immune-inflamed phenotype. (G) Survival analyses for low (n � 291) and high (n � 57) 5mCscore patient groups in the anti-PD-L1 immunotherapy cohort
using Kaplan–Meier curves (IMvigor210 cohort; p � 0.015, Log-rank test). CR, complete response; IC, immune cell; ICI, immune check-point inhibitor; PD, progressive
disease; PR, partial response; SD, stable disease.
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characteristics were further analyzed. A significant distribution
difference of a high 5mCscore was observed for gender (59% in
female vs 41% in male, p � 0.0054; Figures 5C,D), smoking status
(41% vs 67% for ever smoking, P � 5e-05; Figures 5G,H), stage
I–II (83% vs 54% for stage I, p � 3.8e-08; Figures 5I,J), and genetic
mutations (63% vs 41% for EGFR mutations, p � 0.00019; 25% vs
42% in EGFR/KRAS/ALK mutations, p < 0.001; Figures 5K-L).
However, there were no 5mCscore differences between age (≤65)
and age (>65) (Figures 5E,F, p � 0.6). To assess the value of
clinical characteristics, patients in the TCGA-LUAD cohort were
further stratified by age (≤65/> 65), sex (female/male), T stage
(T1–2/T3–4), N stage (N0–1/N2–3), M stage (M0/M1), and
clinical stage (I–II/III–IV). We found that the clinical
characteristics, particularly T1–2, N0–1, M0, and I–II clinical
stages, could be clearly divided into high- and low-risk subgroups
(Supplementary Figure S6). These results indicated that multiple
clinical characteristics can have an effect on the 5mCscore, which
led to the heterogeneity of 5mC regulators in LUAD.

The Potential of the 5mCscore to Predict the
Response to anti-PD-L1 Immunotherapy
The above analyses demonstrated the impact of 5mCscore
regulators on the TME, as well as on the prognosis in
patients with LUAD. The genetic characteristics of the
patients in different 5mCscore groups were further explored.
As shown in Figures 6A,B and Supplementary Table S15, the
somatic mutation landscapes in the high and low 5mCscore
groups had a distinct difference. The mutation frequency was
77.35% in the high 5mCscore group and 94.89% in the low
5mCscore group. Specifically, except for KRAS, TP53 (18% vs
58%), TTN (20% vs 53%), MUC16 (28% vs 45%), and RYR2
(22% vs 40%) had important differences between the high and
low 5mCscore groups (Figure 6B). Besides, patients with a low
5mCscore showed a significantly higher tumor mutation burden
(TMB) and PD-L1 expression than patients with a high
5mCscore (Figures 6C,D and Supplementary Table S16).
5mC gene cluster C showed lower PD-L1 expression and a
lower TMB than 5mC gene cluster B. Correlation analysis
further identified that the TMB and PD-L1 expression were
related negatively with the 5 mCscore (Figures 6E,F, p < 0.001).
These results revealed a significant association between the
5mCscore and the TMB and PD-L1 expression. These factors
are important parameters in the assessment of immunotherapy
outcomes. However, the survival analysis associated with the
TMB found that there was no difference between the high and
low TMB groups (Figure 6G, p � 0.082). Next, the crosstalk
between the 5mCscore and TMB in terms of patient survival was
investigated. The high 5mCscore and high TMB group had
better survival than the low 5mCscore and high TMB group.
The low 5mCscore and low TMB group was associated with
poorer survival relative to those with a high 5mCscore and low
TMB (Figure 6H, p < 0.001).

To explore the potential roles of the 5mCscore in clinical
immune therapy of lung cancer, we investigated whether the
5mCscore could predict patients’ response to PD-L1
(atezolizumab) therapy based on the PD-L1 immunotherapy

cohort (IMvigor210). Compared with those with a high
5mCscore, patients with a low 5mCscore had significant
therapeutic advantages and clinical responses to anti-PD-L1
immunotherapy (Figures 7A,B and Supplementary Figure
S7A−B, p � 0.0015). The low 5mCscore group had a higher
immune cells 2 (IC2) score (38% vs 16%) and a lower tumor cells
2+ (TC2+) score (77% vs 96%) than the high 5mCscore group,
5mCscore was significantly associated with the enrollment ICs
and suppression of TCs (Figures 7C,D and Supplementary
Figure S7C−D). These results identified that the 5mCscore
played a non-negligible role in regulating TME immune cell
infiltration. We further investigated different immune
phenotypes among the high and low 5mCscore groups and
found that a higher 5mCscore was markedly associated with
exclusion and desert immune phenotypes, in which an
antitumor effect is difficult to exert using ICI therapy
(Figures 7E,F). Patients with a low 5mCscore exhibited
significant clinical benefits and a markedly prolonged
survival (Figure 7G, p � 0.015). These results clarified that
5mC modification patterns are significantly associated with
immune phenotypes and PD-L1 expression, and that the
5mCscore could be a prominent biomarker to predict the
response to ICI therapy.

DISCUSSION

DNA 5mC methylation is a dynamic and reversible post-
transcriptional modification regulated by 5mC related
regulators (Mayer et al., 2000; Oswald et al., 2000; Wu
et al., 2020). Recent research highlighted the biological
importance of 5mC modification on immune cell
infiltration and tumor suppression (Schübeler, 2015; Dor
and Cedar, 2018; Weng et al., 2021). However, most studies
focused only on a single TME cell type or one 5mC related
regulator, and the comprehensive roles of 5mC regulators on
TME infiltration characteristics are not fully elaborated. Thus,
further clarification of the potential roles of 5mC modification
patterns in the infiltration of TME cells will raise our
awareness of the effects of the heterogeneity and
complexity of the TME on the response to ICI therapy and
provide a novel biomarkers to evaluate the ICI response and
predict prognosis.

Herein, three distinct 5mC methylation modification
patterns were identified based on 21 5mC regulators. The
patterns had significantly distinct TME cell infiltration
characteristics. Based on the identified 246 5mC phenotype-
related DEGs, three genomic clusters of 5mC-related genes were
further identified, which were also validated for their association
with transcription modification and immune infiltration.
Recent studies had shown that DNA methylation can be
involved in the maintenance and reinforcement of T cell
exhaustion gene signatures (Pauken et al., 2016; Gate et al.,
2018). In murine antigen-specific CD8 T cells, DNMT3A-
mediated methylation impaired T cell expansion and led to
immune cell exhaustion under treatment with anti-PD-1 via
repression the expression of key genes (Ghoneim et al., 2017).
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By contrast, in the context of T cell exhaustion, the involvement
of DNA methylation in the reprogramming of the T cells has
also been reported (Araki et al., 2013), such as demethylation of
the PD1 promoter resulting in permanent CD8+T cell
exhaustion. Uhrf1-mediated tnf-α gene methylation
controlled proinflammatory macrophages in experimental
colitis resembling inflammatory bowel disease (Qi et al.,
2019). In breast cancer, ZBTB33 subcellular partitioning
functionally linked LC3A/B, the tumor microenvironment,
and cancer survival (Singhal et al., 2021). These results
indicated that the 5mC modification is intimately involved in
shaping TME landscapes.

Epigenetic alterations are associated extensively with the
immune response and tumore evasion. A DNA methylation
signature (the EPIMMUNE signature) has been identified as
an epigenetic biomarker of the response to ICI. The
multicenter and retrospective analysis revealed that the
EPIMMUNE signature could predict the response to anti-PD-
1 treatment in non-small-cell lung cancer (Seremet et al., 2016).
In metastatic melanoma treated with CTLA-4 blockers,
responders and non-responders to ICI had a differential DNA
methylation pattern (Chida et al., 2021). To better understand the
individual heterogeneity of TME-meditated 5mC modification
patterns, the 5mCscore was established to assess the 5mC
modification pattern of individuals with LUAD. 5mC gene
cluster C, characterized by an immune inflamed phenotype,
exhibited a higher 5mCscore, and 5mC gene cluster B,
characterized by an immune excluded phenotype, had a lower
5mCscore. These results revealed the 5mCscore was a useful
biomarker to comprehensively assess individual tumor 5mC
modification patterns, which could be used to evaluate TME
immune cell infiltration patterns. Prognosis analyses also
identified that the 5mCscore was an independent prognostic
biomarker in LUAD.

Alterations in 5mC regulatory genes might also be associated
with variations in LUAD. In this study, we identified twenty
driver genes, including TP53, TTN,MUC16, RYR2, and CSMD3.
Moreover, variations in KRAS were associated significantly with
alterations in 5mC regulatory genes. As an oncogene, KRAS
mutations were reported frequently in a variety of tumors,
including colorectal cancer (Prior et al., 2012), pancreatic
cancer (Arner et al., 2019), and bladder cancer (Santha et al.,
2020). Recent studies identified that KRAS might have a critical
role in the immunoregulation of NSCLC (Li et al., 2021; Wang
et al., 2021). Our data also revealed that the 5mCscore had a
markedly negative correlation with PD-L1 expression and the
TMB. The 5mCscore integrating the TMB could be the more
effective biomarker to predict ICI response. We also identified the
predictive value of the 5mCscore in the IMvigor210 cohort. The
5mCscore between non-responders and responders was
significantly different. These results provided new insights to
clarify different tumor immune phenotypes and improve the
clinical response to ICI therapy.

CONCLUSION

In summary, we comprehensively analyzed the potential
mechanisms of 5mC methylation modification during the
regulation of the TME. 5mC modification patterns
contributed to the heterogeneity and complexity of the
TME in LUAD, which was significantly associated with
TMB, PD-L1 expression, and immune phenotypes.
5mCscore could act as a biomarker to predict a patient’s
response to ICI therapy.
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