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Mild cognitive impairment (MCI) is generally considered to be a key indicator for predicting the
early progression of Alzheimer’s disease (AD). Currently, the brain connection (BC) estimated by
fMRI data has been validated to be an effective diagnostic biomarker for MCI. Existing studies
mainly focused on the single connection pattern for the neuro-disease diagnosis. Thus, such
approaches are commonly insufficient to reveal the underlying changes between groups ofMCI
patients and normal controls (NCs), thereby limiting their performance. In this context, the
information associated with multiple patterns (e.g., functional connectivity or effective
connectivity) from single-mode data are considered for the MCI diagnosis. In this paper,
we provide a novel multiple connection pattern combination (MCPC) approach to combine
different patterns based on the kernel combination trick to identify MCI from NCs. In particular,
sixty-three MCI cases and sixty-four NC cases from the ADNI dataset are conducted for the
validation of the proposed MCPC method. The proposed method achieves 87.40%
classification accuracy and significantly outperforms methods that use a single pattern.
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INTRODUCTION

As the most concerning neurodegenerative disease, Alzheimer’s disease (AD) comes to be the most
common causes of dementia (Gaugler et al., 2016). In particular, AD can seriously interfere with
patient’s daily lives, and eventually lead to deaths. Thus, a natural ambition is to delay the progression
of AD during its early stages via pharmacological and behavioural interventions. In particular, mild
cognitive impairment (MCI) is often considered an early indicator of potential progression to AD
(Wee et al., 2012). Nearly 10–15% of patients with MCI progress to AD per year (Misra et al., 2009).
Therefore, the accurate diagnosis of MCI has attracted considerable attention.

Recently, functional magnetic resonance imaging (fMRI) comes to a popular technique to reveal
brain activities and patterns for the MCI diagnosis (Kevin et al., 2008). However, due to the random
and asynchronous spontaneous brain activity between the subject and the scanner, it is still a
challenge to identify MCI patients and normal controls (NC) based on fMRI alone. In contrast, the
connectome-based methods provide a new stable biomarker which potentially helps us to
understand brain information (Stam, 2014). Specifically, several studies have illustrated that
several neurological diseases, such as AD (Chen et al., 2016), MCI (Gao et al., 2020), autism
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spectrum disorder (Li et al., 2017), and Parkinson’s disease (Abós
et al., 2017) are highly related to the functional brain connections.

Notably, the exiting works are highly dependent on the
estimated networks or connections. Thus, several efforts have
been devoted to estimating the ideal network by incorporating
additional biological priors into BCs to improve the discriminative
ability of the networks, e.g., sparsity (Lee et al., 2011), scale-free
priors (Li et al., 2017), modularity (Qiao et al., 2016; Li et al., 2020c;
Li et al., 2020a), and group sparsity (Liang et al., 2018; Zhang et al.,
2019). Moreover, the data noisy prior (Li et al., 2019) and domain
knowledge prior (Li et al., 2020d) can also be adopted. However,
these approaches may still be insufficient to identify MCI from
NCs, since they focus only on a single connection pattern, which
fails in combining the information from the multiple connections
for neurological disorder diagnosis.

In this paper, we provide a simple yet valuable approach,
i.e., multiple connection pattern combination (MCPC), which
combines the information from multiple connection patterns to
achieve a better diagnostic performance of neurological disorders. In
particular, a multi-kernel support vector machine (MK-SVM) trick
is employed as a naive attempt to combine the multiple connection
patterns for theMCI diagnosis. Further, anMCI identification task is
explored to verify the performance of the proposed MCPC method.
The highlights of this paper are as follows.

1) To our best knowledge, MCPC is the first attempt that
combines the multiple connection patterns to identify
MCIs from NCs. The experimental results also confirm
that the proposed MCPC scheme significantly outperforms
single-pattern methods.

2) We identify hubs and consensus connections based on the
proposed multiple connection patterns. Analyses of graph
theory attributes and critical functional connectivity are
performed to discriminate individuals with MCI from NCs
and identify the pathological mechanism of MCI.

MATERIALS AND METHODS

Data Preparation
The publicly available neuroimaging data from the Alzheimer’s
disease Neuroimaging Initiative (ADNI)1 database (Jack et al.,
2010) is adopted. Notably, 127 participants, including sixty-three
MCIsand 64 NCs were included in this experiment. The SPM8
toolbox2 is used to pre-process the fMRI data according to a
commonly adopted pipeline for fMRI. Finally, the pre-processed
BOLD time series signals were partitioned into 116 ROIs, based
on the Automated Anatomical Labeling (AAL) atlas.

Construction of Multiple Brain Connection
We adopted the commonly-used BC estimation model to
discover the connection patterns, including Pearson’s
correlation (PC), sparse representation (SR) and Granger

causality mapping (GCM). Let X ∈ RT×N the BOLD signal
matrix, where T is the volume length and N is the ROI
number. Denote xi ∈ RT the fMRI time series derived from the
ith ROI i � 1,/, N. Then, the details of these methods are given
as follows.

Pearson’s Correlation
Pearson’s correlation (PC) is among the most simplicity and
intuitiveness scheme for the BC estimation. The edge weights of
the PC-based BC W � (Wij) ∈ RN×N is in the following:

Wij �
(xi − �xi)T(xj − �xj)���������������

(xi − �xi)T(xi − �xi)
√ ����������������(xj − �xj)T(xj − �xj)√ , (1)

where xi − �xi is a centralized counterpart of xi.

Partial Correlation With Sparse
Representation
Due to the cofounding effect caused by the PC-based method, the
partial correlation method involves regressing complex factors
from other ROIs that naturally come into being (Huang et al.,
2010). Inspired by the sparsity nature of the brain connection, one
popular solution is to incorporate an additional l1-norm
constraint, resulting in a sparse representation (SR)-based BC
estimation scheme, as follows.

minW ∑n

i�1
����xi −∑

j≠ i
Wij xj

����2 + λ∑
j≠ i

∣∣∣∣Wij

∣∣∣∣ (2)

where λ is the hyper-parameter for controlling the balance of
sparsity and partial correlation.

Granger Causality Mapping
Granger causality mapping (GCM) models the effective
connectivity, i.e., causality relations among nodes, which
connection is thereby nonsymmetric (Goebel et al., 2003).
Specifically, given two-time x[n] and y[n], the Granger
causality mapping process from x[n]to y[n]] is defined as follows:

Fx,y � ln

∣∣∣∣ ∑ (ζ t)
∣∣∣∣∣∣∣∣ ∑ (ηt)∣∣∣∣ (3)

where ζ t and ηt are the residuals of the restricted and unrestricted
regression models, respectively, and Σ indicates the variance.

Combination of Multiple Connection
Patterns
The simplest way to combine the information for multiple
connection patterns is to concatenate all of the data directly.
However, this approach is quite inappropriate in cases with high-
dimension curves and small samples. To achieve this, this paper
provided Multiple Connection Pattern Combination (MCPC),
which is given in Figure 1. Specifically, an MK-SVM model is
adopted to combine multiple information. Notably, this is the
first attempt, which combines the information from different
connectomes derived from single-mode data. Here, the primal

1http://adni.loni.ucla.edu.
2http://www.fil.ion.ucl.ac.uk.spm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7827272

Li et al. Multiple Connection Pattern Combination

http://adni.loni.ucla.edu
http://www.fil.ion.ucl.ac.uk.spm
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


problem of MK-SVM is given as follows: (Rakotomamonjy et al.,
2007)

min
W

1
2
∑M
m�1

βm‖wm‖2 + C∑n
i�1
ξ i

s.t. yi
⎛⎝∑2

m�1
βm(wm)Tφm(xm

i ) + b⎞⎠≥ 1 − ξ i

ξ i ≥ 0, i � 1/, n

(4)

where n is the number of training samples andM is the number of
connection patterns, yi ∈ {1,−1} representing the label of the
patients or healthy controls from the ith sample. φm

represents the mapping function, wm represents t the
hyperplane in the Represent Hilbert Kernel Space (RHKS) and
βm denotes the combined weight of the mth connection pattern.
Then, the dual form of the MK-SVM can be expressed as:

max
α

∑n
i�1
αi − 1

2
∑
i,j
αiαjyiyj ∑M

m�1
βmk

m(xm
i , x

m
j )

s.t.∑n
i�1
αiyi � 0

0≤ αi ≤C, i � 1,/, n

(5)

where km(xm
i , x

m
j ) � φm(xm

i )Tφm(xm
j ) βm is learned based on

Alain’s method (Rakotomamonjy et al., 2007). Additionally, we
utilized the commonly-used linear kernel as a naive attempt due
to its simplicity. The predictive level based on the MK-SVM can
be formulated as follows:

f(x1, x2, . . . , xM) � sign⎛⎝∑n
i�1

yiαi ∑M
m�1

βmk
m(xm

i , x
m) + b⎞⎠ (6)

RESULTS

Multiple Brain Connection Matrix
Estimation From Single-Mode Data
The PC-based and SR-based BC is estimated by BrainNetClass
(Zhou et al., 2020). Note that there exists a hyperparameter λ in

SR. To construct the SR-based BC, we selected the
hyperparameter λ the SR by leave-one-out cross-validation
(LOOCV) at the range of {2−5, 2−4, . . . , 25}. Specifically, we
empirically set λ � 23, with an accuracy of 81.10%. The
accuracies of different hyperparameters by LOOCV are given
in Figure 2. For the GCM estimation, the dynamicBC toolbox is
selected (Liao et al., 2014).

We visualized the BC adjacency matrices3 of PC, SR and GCM
methods in Figure 3. In Figure 3, the brain connections obtained
by different BC estimation methods are completely different in
their topology, since these methods model different statistical
information or relation across ROIs.

Classification
Due to the limited sample size, we adopt the nest LOOCV strategy
for evaluating the performance of the MCI classification.
Specifically, to determine the optimal parameters (i.e., the
optimal value of the hyperparameter C in the SVM), an inner
LOOCV is conducted. The hyperparameter C is ranged in
{2−5, 2−4, . . . , 25}. Moreover, the accuracy, sensitivity, specificity
and AUC, are used to evaluate the classification performance of
different measurements. The mathematical definitions of these
measurements are as follows:

FIGURE 1 | The entire framework of the proposed method for combining multiple connection patterns.

FIGURE 2 | The accuracy of different hyperparameters λ for the SR.

3For the convenience of comparison among PC and SRmethods, all the weights are
normalized to the interval [−1, 1].
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Accuracy � TP + TN

TP + FP + TN + FN
, (7)

Sensitivity � TP

TP + FN
, (8)

Specificity � TN

TN + FP
, (9)

Here, TP (TruePositive) is the number of the positive subjects
that are correctly classified in the ASD identification task.
Similarly, TN (TrueNegative), FP (FalsePostive) and FN
(FalseNegative) are the numbers of their corresponding
subjects, respectively.

The classification results based on single connection patterns
are given in Table 1, which results are achieved by a single linear
kernel SVM classifier. In addition, the results based on combining
the partial connection patterns (e.g., PC + SR, PC + GCM and SR
+ GCM) are also reported. The ROC curve is given in Figure 4.

From these results in Table 1 and Figure 4, we can easily
observe that the performance of MCPC achieves much better
results than that of the single-kernel SVM. The results indicate
the rationality of the proposed MCPC. To investigate the
significance of model performance improvement, differences
between various AUCs were compared by using a Delong test
(Delong et al., 1988), the proposed MCPC methods are
significantly superior to results of the single pattern, e.g., PC,
SR, GCM under 95% confidence interval with p-value equals to
0.0251, 0.041 and 0.005, respectively. The superior performance
illustrated that the proposed MCPC approach can significantly
improve the classification performance with only single modal
data. In addition, although theMCPC only use single-mode data, it
can still significantly improve the accuracy of the MCI diagnosis.

Distribution of Hubs
The hub nodes (the top 5% degree of brain nodes) of the MCI and
NC groups based on three different BC network estimation
methods are obtained. As shown in Tables 2-5, the

FIGURE 3 | The connection networks obtained by the (A) PC, (B) SR and (C) GCM methods.

TABLE 1 | The Classification results of different methods.

Method Accuracy Sensitivity Specificity AUC

PC 77.95 76.19 79.69 0.851
SR 81.10 84.13 78.13 0.882
GCM 72.44 66.67 78.13 0.801
PC + SR 85.83 85.71 85.94 0.898
PC + GCM 79.53 74.60 84.38 0.855
SR + GCM 82.68 80.95 84.38 0.896
MCPC 87.40 90.48 84.38 0.922

FIGURE 4 | The ROCs of different methods.
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distribution of hub nodes of the networks estimated by the PC, SR
and GCM methods are similar. Most hubs are mainly distributed
in the parietal lobes, temporal, and frontal, which correspond to
the default mode network (DMN) and frontoparietal task control
(FTC) network. Furthermore, the results suggest that hub nodes
in the NC group are mainly located in the DMN. In comparison,
the distribution of hub nodes in patients with MCI covers a
relatively wide range of brain connection distributions, such as
the frontoparietal task control network and visual network, in
addition to the DMN.

Consensus Connections
In this study, the nested cross-validation scheme was adopted to
evaluate the performance of the proposed MCPC. In particular,
the selected connections in each validation loopmight vary due to
the validation resampling. Thus, we record the consensus
connections and regard them as the most discriminative
features for differentiating individuals with MCI from NCs (Li
et al., 2020b). The consensus connections based on different

TABLE 2 | Hubs of the MCI and NC groups based on the PC method.

AAL number Corresponding brain region Subnetwork

MCI 26 Frontal_Mid_Orb_R DMN
54 Occipital_Inf_R VN
47 Lingual_L DMN
24 Frontal_Sup_Medial_R DMN
8 Frontal_Mid_R FTC
9 Frontal_Mid_Orb_L FTC
5 Frontal_Sup_Orb_L DMN
22 Olfactory_R DMN
68 Precuneus_R DMN
57 Postcentral_L SH

NC 50 Occipital_Sup_R VN
51 Occipital_Mid_L VN
48 Lingual_R VN
65 Angular_L DMN
17 Rolandic_Oper_L CTC
61 Parietal_Inf_L DMN
3 Frontal_Sup_L DMN
57 Postcentral_L SH
22 Olfactory_R DMN
25 Frontal_Mid_Orb_L DMN
34 Cingulum_Mid_R DMN
15 Frontal_Inf_Orb_L DMN
24 Frontal_Sup_Medial_R DMN

DMN:default mode network; VN: visual network; FTC: Frontoparietal task control; SH:
Sensory/somatomotor hand; CTC: Cingulo-opercular task control.

TABLE 3 | Hubs of the MCI and NC groups based on the SR method.

AAL number Corresponding brain region Subnetwork

MCI 60 Parietal_Sup_R DAN
18 Rolandic_Oper_R AN
57 Postcentral_L SH
8 Frontal_Mid_R FTC
9 Frontal_Mid_Orb_L FTC
20 Supp_Motor_Area_R SH
53 Occipital_Inf_L VN
2 Precentral_R SH

NC 53 Occipital_Inf_L VN
50 Occipital_Sup_R VN
18 Rolandic_Oper_R AN
66 Angular_R DMN
4 Frontal_Sup_R DMN
62 Parietal_Inf_R DMN
12 Frontal_Inf_Oper_R DMN
64 SupraMarginal_R AN

DAN: dorsal attention network; AN: auditory network.

TABLE 4 | Hubs of the MCI group based on the GCM method.

AAL number Corresponding brain region Subnetwork

MCI 62 Parietal_Inf_R DMN
In degree 8 Frontal_Mid_R FTC

52 Occipital_Mid_R DMN
3 Frontal_Sup_L DMN
48 Lingual_R VN
29 Insula_L SN
37 Hippocampus_L DMN
49 Occipital_Sup_L DAN
53 Occipital_Inf_L VN
12 Frontal_Inf_Oper_R FTC
38 Hippocampus_R DMN

Out degree 16 Frontal_Inf_Orb_R DMN
74 Putamen_R SN
85 Temporal_Mid_L DMN
2 Precentral_R SH
86 Temporal_Mid_R DMN
34 Cingulum_Mid_R DMN
55 Fusiform_L DMN
18 Rolandic_Oper_R AN
33 Cingulum_Mid_L DMN
41 Amygdala_L SN
90 Temporal_Inf_R FTC

SN: salience network; SBN: Subcortical network; CTC: Cingulo-opercular task control.

TABLE 5 | Hubs of the NC group based on the GCM method.

AAL number Corresponding brain region Subnetwork

In degree 87 Temporal_Pole_Mid_L DMN
90 Temporal_Inf_R FTC
84 Temporal_Pole_Sup_R DMN
70 Paracentral_Lobule_R SH
14 Frontal_Inf_Tri_R FTC
4 Frontal_Sup_R DMN
23 Frontal_Sup_Medial_L DMN
24 Frontal_Sup_Medial_R DMN
41 Amygdala_L SBN
29 Insula_L SN
8 Frontal_Mid_R FTC

Out degree 60 Parietal_Sup_R DAN
80 Heschl_R AN
79 Heschl_L AN
83 Temporal_Pole_Sup_L CTC
73 Putamen_L SBN
36 Cingulum_Post_R DMN
88 Temporal_Pole_Mid_R DMN
87 Temporal_Pole_Mid_L DMN
33 Cingulum_Mid_L DMN
34 Cingulum_Mid_R DMN
59 Parietal_Sup_L DAN
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connection pattern methods are shown in Figure 5. In addition,
the degrees of consensus connection for different patterns are
given in Tables 6-8. As shown in Tables 6-8, among the three BC
estimation methods, the brain connection based on the PC
method exhibits the maximum number of consensus
connections. It is worth noting that the consensus connections
with significant differences betweenMCI individuals and NCs are
associated with multiple brain regions: the frontal lobe, occipital
lobe, cingulate gyrus, hippocampus, and thalamus. Moreover,

these brain regions corresponding to subnetworks are mainly
distributed in the DMN, visual network, and subcortical network.

DISCUSSION

Classification With Different Network
Estimation Methods
From the classification results in Table 1, the SR method
exhibited the highest accuracy compared to the PC and GCM
methods. Although the PC method obtained more consensus
connections, GCM considered more graph theory information
with directions, SR achieves the best results in the single-pattern
methods. These results indicated that the SR approach can

FIGURE 5 | Consensus connections obtained by the (A) PC, (B) GCM and (C) SR methods.

TABLE 6 | Top-10 brain regions corresponding to consensus degree based on
the PC methods.

AAL number Brain region Subnetwork Degree

72 Caudate_R SBN 27
42 Amygdala_R SBN 22
30 Insula_R SN 20
58 Postcentral_R SH 15
80 Heschl_R AN 12
73 Putamen_L SBN 10
62 Parietal_Inf_R DMN 9
15 Frontal_Inf_Orb_L DMN 9
50 Occipital_Sup_R VN 8
41 Amygdala_L SBN 8

TABLE 7 | Top-10 brain regions corresponding to consensus degree based on
the SR method.

AAL number Brain region Subnetwork Degree

52 Occipital_Mid_R DMN 5
23 Frontal_Sup_Medial_L DMN 5
58 Postcentral_R SH 4
39 ParaHippocampal_L DMN 4
61 Parietal_Inf_L DMN 3
59 Parietal_Sup_L DAN 3
35 Cingulum_Post_L DMN 3
54 Occipital_Inf_R VN 3
49 Occipital_Sup_L VN 3
47 Lingual_L DMN 3

TABLE 8 | Top-10 brain regions corresponding to consensus connections based
on the GCM method.

Direction AAL number Brain region Subnetwork Degree

In 52 Occipital_Mid_R DMN 5
72 Caudate_R SBN 4
63 SupraMarginal_L AN 4
77 Thalamus_L SBN 3
49 Occipital_Sup_L VN 3
43 Calcarine_L VN 3
38 Hippocampus_R DMN 3
37 Hippocampus_L DMN 3
78 Thalamus_R SBN 2
66 Angular_R DMN 2

Out 79 Heschl_L AN 4
74 Putamen_R SBN 4
86 Temporal_Mid_R DMN 3
82 Temporal_Sup_R AN 3
52 Occipital_Mid_R DMN 3
33 Cingulum_Mid_L DMN 3
18 Rolandic_Oper_R AN 3
80 Heschl_R AN 2
76 Pallidum_R SBN 2
67 Precuneus_L DMN 2
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effectively overcome the limitations of the PC approach. Moreover,
the MCPC achieved a much better performance than the results
which only utilize the single connection patterns, indicating that the
proposed MCPC approach can significantly improve the diagnosis
performance of MCI. Notably, different connection patterns can
provide different discriminative information for diagnosis. In
addition, the MCPC method outperforms the results which only
considers two patterns; this result further confirms the superiority of
the proposed method. Overall, as was mentioned in previous studies
(Xu et al., 2020a; Xu et al., 2020b), multiple connection patterns can
be combined with an MK-SVM to effectively consider the weights of
different information types and differentiate MCI patients fromNCs.

The Distribution of Discriminative Features
The hub nodes of the consensus connections obtained from the three
different BC estimation methods (PC, SR and GCM) are given in
Tables 6-8. It can be significantly found that the most discriminative
brain regions and functional connections between the MCI and NC
groups were mainly distributed in the temporal, frontal and parietal
lobes, which correspond to the DMN, FTC, VN, and AN. Previous
studies have verified that these subnetworks correspond to various
cognitive functions, such as attention, execution, and spatial
positioning (Rolle et al., 2017; Bi et al., 2018). Our results suggest
that patients with MCI may have altered subnetworks and
corresponding cognitive functions. In particular, the DMN
exhibited the most significant discriminative ability, which was
consistent with previous studies of brain connections involving
MCI and NC groups (Gao et al., 2020). In fact, the DMN has
always been regarded as the key role for cognitive function (Anticevic
et al., 2012; Liu et al., 2019). In addition, we found abnormalities in
the subcortical network involving the thalamus, putamen, and
amygdala in MCI. In recent years, several studies have indicated
that the individuals in the early stages of AD, including subjective
cognitive decline and MCI, exhibit abnormalities in subcutaneous
nuclei, e.g., basal forebrain, basal ganglia, and thalamus (Fernández-
Cabello et al., 2020; Xu et al., 2021). In a follow-up study, we intend to
use a more detailed brain atlas than that used in this study to further
explore subcortical nuclei in the early stage of AD.

CONCLUSION

In this paper, we attempt to improve the performance of MCI
identification by single-mode data by generating multi-view

information. Specifically, we utilized the information
associated with multiple brain connection patterns, which are
derived from the fMRI data. The MKSVM is selected to identify
the MCI from the NCs as a naive attempt, which successfully
combines the information from the multiple brain connection
patterns. The experimental results reveal that the MCPC strategy
can significantly improve the diagnosis performance than the
single pattern. Further analysis of the hub nodes and consensus
connections among brain connections emphasize the importance
of the DMN in the pathological mechanism associated with the
early stage of AD.
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