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During preimplantation development, a wave of genome-wide DNA demethylation occurs
to acquire a hypomethylated genome of the blastocyst. As an essential epigenomic event,
postfertilization DNA demethylation is critical to establish full developmental potential.
Despite its importance, this process is prone to be disrupted due to environmental
perturbations such as manipulation and culture of embryos during in vitro fertilization
(IVF), and thus leading to epigenetic errors. However, since the first case of aberrant DNA
demethylation reported in IVF embryos, its underlying mechanism remains unclear and the
strategy for correcting this error remains unavailable in the past decade. Thus,
understanding the mechanism responsible for DNA demethylation defects, may
provide a potential approach for preventing or correcting IVF-associated complications.
Herein, using mouse and bovine IVF embryos as the model, we reported that ten-eleven
translocation (TET)-mediated active DNA demethylation, an important contributor to the
postfertilization epigenome reprogramming, was impaired throughout preimplantation
development. Focusing on modulation of TET dioxygenases, we found vitamin C and
a-ketoglutarate, the well-established important co-factors for stimulating TET enzymatic
activity, were synthesized in both embryos and the oviduct during preimplantation
development. Accordingly, impaired active DNA demethylation can be corrected by
incubation of IVF embryos with vitamin C, and thus improving their lineage
differentiation and developmental potential. Together, our data not only provides a
promising approach for preventing or correcting IVF-associated epigenetic errors, but
also highlights the critical role of small molecules or metabolites from maternal paracrine in
finetuning embryonic epigenomic reprogramming during early development.

Keywords: vitamin C, active DNA demethylation, TET dioxygenases, preimplantation embryos, in vitro fertilization,
lineage differentiation, epigenetic errors

INTRODUCTION

Well-orchestrated epigenomic reprogramming that extensively occurs during the early phases of
mammalian development is essential for normal embryogenesis. However, epigenetic events during
the critical developmental window, especially by preimplantation stage, are very susceptible to
environmental perturbations such as in vitro manipulation and culture of embryos, and thus leading
to epigenetic errors. Increasing evidence based on epidemiologic analyses and laboratory studies
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suggested that in vitro fertilization (IVF)-induced epigenetic
errors were tightly linked to a series of complications, such as
embryonic lethality, fetal overgrowth, postnatal disorders, and
shortened life span (Halliday et al., 2004; Sutcliffe et al., 2006;
Rexhaj et al., 2013; Chen et al., 2015; Tan et al., 2016a; Johnson
et al, 2018). Thus, although children born after IVF have
exceeded nine millions and contributed to 1-5% of all
newborns in developed countries (Manipalviratn et al., 2009),
and the great majority of IVF-conceived offspring are in good
health, IVF-induced epigenetic risks remain a matter of great
concern during the past decades.

Among IVF-associated epigenetic errors, DNA methylation
defects are remarkable and extensively studied in humans (Katari
et al., 2009; Vermeiden and Bernardus, 2013; Hattori et al., 2019),
domestic animals (Deshmukh et al., 2011; Chen Z. et al., 2013;
Chen et al., 2015), and mouse models (Li et al., 2005; Rivera et al.,
2008; Li et al., 2011). However, the mechanism underlying IVEF-
associated DNA methylation defects, remains poorly understood.
Thus, the effective strategy for preventing or correcting those
defects remains lacking. Our recently published study identified
IVF embryos undergo impaired de novo DNA methylation
during implantation and postimplantation stages. We also
demonstrated that FGF signaling repression and consistent
Dnmt3b inhibition could be responsible for this defect, and
identified FGF signaling as the main target for correcting IVF-
associated DNA methylation defects (Fu et al., 2020). This work,
together with our earlier study that identified impaired X
chromosome inactivation is responsible for female-biased
developmental defects and skewed sex ratio (Tan et al,
2016a), highlight the importance of understanding the
mechanism of IVF-associated defects for improving current
in vitro culture system.

During preimplantation development, one of the most
remarkable epigenomic reprogramming DNA
demethylation that extensively occurs in newly formed
embryos following fertilization. DNA demethylation is crucial
to establish a hypomethylated genome of the blastocyst, which is
essential for regulating pluripotency in the naive epiblast cells
(Tan and Shi, 2012; Smith and Meissner, 2013; Messerschmidt
et al,, 2014). Of note, comprehensive DNA demethylation from
the zygote to blastocyst stage largely depends on ten-eleven
translocation (TET) proteins TET1, TET2 and TET3 that can
oxidize 5mC and generate 5mC derivatives, including 5-
hydroxymethylcytosine  (5hmC). As the Fe(Il) and
a-ketoglutarate (a-KG)-dependent dioxygenase, TET proteins
require a-KG, oxygen and Fe(II) for their enzymatic activity.
Thus, small molecules that regulates TET enzymatic activity, such
as a-KG and vitamin C that can maintain reduced Fe(II) (Kohli
and Zhang, 2013), are critical for fine-tuning the prosses of active
DNA demethylation (Minor et al., 2013; Yin et al., 2013).

Evidences from mice embryos of genetic depletion of
individual Tet or in combination give rise to increased
embryonic lethality throughout pregnancy, as well as
developmental defects that can be observed as early as the 2-
cell stage (Ito et al., 2010; Gu et al., 2011; Kang et al., 2015) Despite
the important role of TET-mediated DNA demethylation by
preimplantation stage in determining embryonic survival and

events is
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growth, previous results observed in rat and porcine IVF embryos
(Yoshizawa et al., 2010; Deshmukh et al., 2011), as well as our
analyses from mice and bovine, suggested impaired DNA
demethylation in IVF preimplantation embryos. However, the
underlying regulatory mechanism have yet to be functionally
elucidated, and the strategy for correcting this error remains
unavailable until now.

In the present study, focusing DNA hypermethylation in IVF
blastocysts, we used mouse and bovine IVF embryos as the model
and reported that TET-mediated active DNA demethylation is
impaired throughout preimplantation development. Detections
of in vivo conceived preimplantation embryos and their maternal
oviductal environment indicated that the requirement for vitamin
C (also known as L-ascorbic acid or L-acerbate), the important co-
factors for stimulating TET enzymatic activity, during
preimplantation development would be satisfied by both
oviductal paracrine and embryonic autocrine. Accordingly, we
identify the impaired active DNA demethylation can be corrected
by incubation of IVF embryos with vitamin C, and thus
improving their lineage differentiation and developmental
potential. Thus, our data not only provides a promising
approach for preventing or correcting IVF-associated
epigenetic errors, but also highlights the critical role of
maternal paracrine in finetuning embryonic epigenomic
reprogramming during early development.

MATERIALS AND METHODS

Animals

ICR female mice aged 8 weeks, male mice aged 10 weeks were
kept in controlled conditions of temperature (24°C) and light
(12 h light:12 h dark) and had free access to food and water. All
mice were approved by the Institutional Animal Care and Use
Committee of China Agricultural University.

In vivo (IVO) Embryo Collection

The female mice were superovulated by intraperitoneal injection
of 5 IU of pregnant mare serum gonadotropin (PMSG, Ningbo,
China) and a further intraperitoneal injection 48 h of 5 IU human
chorionic gonadotrophin (HCG, Ningbo, China). The female
mice were cocaged individually with male mice after the hCG
injection. On the next morning, the females with vaginal plug
were selected as mating successfully. Zygotes, the 2-cell, 4-cell, 8-
cell embryos, morulae and blastocysts (16-20 h, 44-46 h, 54-56 h,
66-68 h, 74-76 h and 94-96 h post HCG, respectively) were
recovered from donors by flushing the oviduct and uterus with
M2 medium.

In vitro Fertilization, Embryo Culture and
Embryo Collection

The IVF procedure were performed as previously described (Ren
etal., 2015; Tan et al., 2016a; Tan et al., 2016b; Ren et al., 2017). In
brief, sperm were released from the cauda epididymis and
capacitated for 1h in modified Krebs-Ringer bicarbonate
medium (TYH), and the cumulus-oocyte complexes were
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transferred into modified human tubal fluid (mHTF) for 30 min,
then inseminated for 4 h. After the insemination, zygotes were
washed and cultured in potassium simplex optimized medium
containing amino acids (KSOM + AA; Millipore, Darmstadt,
Germany) at 37°C in 5% CO,. IVF embryos at different
preimplantation stages were collected based on their
developmental progress and morphology.

Preparation of Bovine Blastocysts

Bovine oocytes were collected from ovaries obtained from a
slaughterhouse, and matured in Tissue Culture Medium-199
(TCM-199, Thermo Fisher Scientific, Rockford, IL,
United States) plus 10% (vol/vol) FBS (HyClone,
Marlborough, United States), 1% antibiotic-antimycotic
(Gibco BRL, Thermo Fisher Scientific), and 10 ng/ml
epidermal growth factor (22-24 h). In vitro fertilization was
conducted in Bracket and Oliphant’s (BO) medium. Briefly,
matured oocytes with multiple layers of expanded cumulus
cells were washed and then in BO fertilization medium
supplemented with 6 mg/ml essential fatty acid-free (FAF)-
BSA (Millipore, Billerica, MA, United States) and 10 mg/ml
heparin. Fifteen to 20 cumulus-oocyte complexes (COCs)
were placed in 50 uL BO medium, under mineral oil,
containing frozen-thawed sperm (1-2 x 10° sperm/ml) for
24 h in 5% (vol/vol) CO, in air at 38.5°C. Cumulus cells were
removed by pipetting, and presumptive zygotes were cultured
in 20-pl drops of Bovine VitroCleave (IVF Vet Solutions,
North Adelaide, Australia) under mineral oil for 5 days. On
day 5, embryos were transferred in groups of 5-10-20-pl
drops of Bovine VitroBlast (IVF Vet Solutions) under
mineral oil.

Extraction of Oviductal/Uterine Fluids and

Preparetion of Oviductal/Uterine Tissue
Oviduct and uterine fluids were collected from female mouse
according to the protocol of a previous study (Harris et al., 2005).
Briefly, once oviduct excised, the tissue was dried and placed
under mineral oil, stabbed by needle. Then we collected the fluids
with mouse pipette into 1.5 ml tube. Uterine was ligatured with
nylon thread, gentle pressured from the thread end to another
one, the fluids were flowed into 1.5ml tube. All fluids were
centrifuged for 5min at 12,000 revolutions per minute (rpm)
to obtain the supernatants, stored into -80°C. Remained tissue
was washed twice with PBS solution, then 0.1 g tissue was put into
1.5ml tube and immediately throwed in liquid nitrogen
until assay.

RNA Extraction and Quantitative
Real-Time PCR

Total RNA was extracted from embryos, the oviduct and
uterus with TRIzol (Thermo Fisher Scientific) following the
manufacturer’s instructions. Then the reverse transcription
was performed by the HiscriptRll Q RT Supermix (Vazyme,
Nanjing, China) according to the manufacturer’s instructions.
Quantitative real-time PCR (qRT-PCR) was performed with
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SoFast EvaGreen Supermix (BioRad, Hercules, California,
United States) using a CFX96 real-time PCR machine
(BioRad). All primers were listed in Supplementary Table S1.

RNA-Seq of Embryos and Tissue

Total RN As were extracted from embryos, oviducts and uterine at
different stages with TRIzol Reagent (Invitrogen, Carlsbad, CA,
United States). Then the RNA was delivered to BGI (BGI,
Shenzhen, China) for sequencing. Gene expression levels were
measured in reads per kilobase of exon model per million mapped
reads (RPKM). The RPKM was listed in Supplementary
Table S2-4.

The database for Annotation, Visualization and Integrated
Discovery (DAVID v6.7; http://david.abcc.ncifcrf.gov) was used
to annotate biological themes (gene ontology, GO). The Kyoto
Encyclopedia of Genes and Genomes (KEGG; http://www.
genome.jp/kegg/) was used to determine the associated
pathways. Phenotype annotations were analyzed based on the
Mouse Genome Informatics (MGI; http://www.informatics.jax.
org/phenotypes.shtml) database.

Immunofluorescence Analysis

Collected embryos were washed three times with 0.1%PVA-PBS and
then washed with acidic Tyrode’s solution to eliminate the zona
pellucida. Then embryos were fixed in 4% paraformaldehyde in PBS
overnight at 4°C. After permeabilized with 0.5% Triton X-100 in
0.1% PVA-PBS, embryos were blocked in 1% BSA (Millipore) in
0.1% PVA-PBS for 1h, then sequentially incubated with primary
antibody overnight at 4°C. Next, the embryos were washed three
times with 0.1%PVA-PBS for 5 min and incubated with secondary
antibodies for 1 h at room temperature. Finally, the samples were
treated with DAPI for 5 min, mounted with coverslips. Images were
recorded using fluorescence microscope (BX51TRF; Olympus,
Tokyo, Japan) and processed using Image] software (Rawak
Software Inc., Stuttgart, Germany).

For 5mC and 5hmC staining, nuclear DNA was denatured
with 4M HCI for 10 min, neutralized with Ph8.0 Tris-HCI for
15 min, then embryos were blocked overnight, incubated with
primary antibody for 2 h. Other steps were same as described
above. The following antibodies used in this research were
listed as follows: anti-5mC (1:200, Active motif 39,649), anti-
5hmC (1:500 dilution, 39,791, Active motif, California,
United States), anti-TET1 (1:200 dilution, GTX124207,
GeneTex, Irvine, CA, United States), anti-TET2 (1:100
dilution, ab94580, Abcam, Cambridge, UK), anti-NANOG
(1:500 dilution, ab80892), anti-CDX2 (1:500 dilution,
BioGenex-MU392A-UC, BioGenex Laboratories, Fremont,
CA 94538, United States).

Vitamin C Content Assay

Preimplantation embryos, the oviduct and uterus, as well as the
oviductal or uterine fluid were prepared as described above. Each
50 oocytes, 50 embryos or total cumulus cells surrounding 150
oocytes as a biological replicate, CC indicates the total cumulus
cells surrounding one oocyte. The ascorbic acid assay kit
(ab65346, Abcam) was used for detecting the vitamin C
content according to the manufacturer’s instructions.
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Blastocyst Transfer and E7.5 Embryos
Photographic

Pseudo-pregnant female mice (recipients) were co-caged
individually with vasectomized males 3.5 days before embryo
transfer. The morning after mating, the recipients were
checked for the presence of a vaginal plug. The day of
plugging was considered as day 0.5 of the pseudo-pregnancy.
12 well-developed blastocysts were transferred into each
recipient. At embryonic day (E)7.5 (4 days of embryo
transfer), the conceptuses covered with decidual mass were
gently teased away from the uterus, E7.5 embryos were E7.5
embryos were separated and washed in PBS, then imaged using a
stereomicroscope (SZX16; Olympus, Tokyo, Japan) equipped
with a digital camera.

Statistical Analysis

Student’s t-test or one-way ANOVA were used to analyze the
difference among groups by using SPSS 23.0 software (Statistical
Package for the Social Sciences). Statistically significant
differences were defined as p < 0.05.

RESULTS

IVF Embryos Undergo Impaired Active DNA
Demethylation and Exhibit Global

Hypermethylation by Blastocyst Stage

To test the impact of IVF processes on DNA demethylation
during preimplantation development, we compared our
previously published global MeDIP-seq data of IVO and IVF
blastocysts (Ren et al., 2015; Ren et al., 2017). Focusing on
promoter DNA methylation, which undergoes postfertilization
demethylation (Smith et al, 2012) and participates in TET-
induced transcriptional regulation (Ito et al, 2010; Gu et al,
2011; Blaschke et al., 2013), we found IVF blastocysts showed
higher DNA methylation levels (Figure 1A) and a greater
proportion of promoters were relatively hypermethylated in
IVF blastocysts compared with their IVO counterparts
(Figure 1B) Similarly, reanalysis of previously published DNA
methylation array data also showed more hypermethylated
regions in IVF bovine blastocysts (Supplementary Figure
S1A). In addition, Gene ontology (GO) analysis and Mouse
Genome Informatics (MGI)-based phenotype annotations
suggested hypermethylated genes can participate in many basic
molecular functions and cellular processes, and are essential for
normal embryonic development and survival throughout the
pregnancy (Supplementary Figure S1B, C). Venn diagram
based on previously published methylome (Smith et al., 2012)
showed that a substantial proportion of promoters that should be
demethylated before blastocyst formation, were hypermethylated
promoters in IVF blastocysts (Figure 1C). Next, we detected the
chromosome-wide distribution of hypermethylated promoter in
IVF blastocysts, and found hypermethylated promoters were
globally distributed across all autosomes and sex chromosomes
(Figure 1D). These results suggest that IVF preimplantation
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embryos may undergo extensive in DNA
demethylation.

Given results of an early study suggested that impaired DNA
demethylation can be initially observed in paternal genome of
IVF zygotes (Yoshizawa et al., 2010), we speculated that TET-
mediated active demethylation may be impaired. To confirm this
hypothesis, we tested 5mC and 5hmC levels at each stage of
preimplantation development. Quantitation of 5hmC/5mC ratio
indicated that TET-mediated active DNA demethylation was
consistently impaired in IVF preimplantation embryos

(Figures 1E,F).

impairment

Expression of Tet Family Members is

Inhibited in IVF Preimplantation Embryos
Having confirmed the defects of TET-mediated active DNA
demethylation in IVF embryos, we next asked if the gene
expression level of Tet family members was inhibited in IVF
preimplantation embryos. We found Tetl and Tet2 expression,
which should be increased during cleavage stages, were
significantly inhibited in IVF embryos at the two- to 8-cell stage
and the morula stage respectively (Figure 2A). In addition, Tet3
expression, although showed maternal deposition, was consistently
inhibited in IVF embryos from the 4-cell stage onwards (Figure 2A).
The IVF-induced expression inhibition of Tet family members was
further confirmed using our RNA-seq data (Figure 2B). Moreover,
the inhibition of TET1 and TET2 were also validated on the protein
level. In line with the result of mRNA detection, quantitation of
immunofluorescence signal indicated that TET1 and TET2 proteins
were significantly deficient in IVF 8-cell embryos and morulae,
respectively (Figures 2C,D). Of note, we also noticed that a
proportion of blastomeres exhibit cytoplasmic localization of TET2,
and the mislocation in IVF embryos were more evident (Figure 2D).
Next, we attempted to test if the inhibited expression of Tet
family members in IVF embryos could be rescued by
supplementing cytokines or small molecules that have been
reported to upregulate Tet expression: retinoic acid (Hore
et al., 2016), FGF2 (Choi et al.,, 2018), LIF (Tahiliani et al.,
2009; Koh et al., 2011) and insulin (Lv et al., 2017). Given
Tet3 is a well-known maternally deposited transcripts, we next
focused on the embryo-expressed Tetl and Tet2. However,
neither these factors alone (Supplementary Figure S2A-D)
nor combinations (Supplementary Figure S2E, F) could
upregulate expression levels of Tetl and Tet2 in IVF embryos.

TET Cofactors Vitamin C and
a-ketoglutarate Are Enriched in Oviductal

Environment

Having failed to rescue IVF-induced Tet inhibition, we next asked if
impaired active DNA demethylation can be rescued by enhancing
TET activity. To this end, we focused on vitamin C and
a-ketoglutarate (a-KG) because TET enzymes are Fe(II)- and
a-KG-dependent dioxygenases, and vitamin C can stimulate TET
activity by maintaining reduced Fe(II) (Kohli and Zhang, 2013).
Time-course expression profiling of genes related to vitamin C
synthesis and transport in preimplantation embryos, as well as in
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temporally corresponding oviduct based on our RNA-seq data
(Figures 3A,B), indicated that vitamin C synthesis and transport
occurred in both preimplantation embryos and the oviduct,
especially in the oviduct. These findings were further supported
by results of qRT-PCR (Figures 3C,D). More importantly, we
detected that vitamin C was highly enriched in the oviduct and
uterus throughout the preimplantation stage (Figure 3E), and thus
being detectable in the oviductal and uterine fluid (Figure 3F). In
addition, we also detected low-level vitamin C in preimplantation
embryos and found vitamin C might be pre-deposited in oocytes,
and no significant difference can be detected between IVO and IVF
embryos (Figures 3G,H). These results suggest that the requirement
for vitamin C during preimplantation development may be satisfied
by both oviductal paracrine and embryonic autocrine.

Similarly, our results also suggest that the requirement for
a-KG, another cofactor for TET dioxygenases, may be also
satisfied via synergistic effect of oviductal paracrine and
embryonic autocrine, because a-KG synthetic and transporter
genes were detectable in both embryos and the oviduct by
preimplantation stage (Supplementary Figure S3A-C).

Collectively, these results led us to test if supplementation of
embryo culture medium with vitamin C and/or a-KG could
rescue impaired active DNA demethylation in IVF embryos.

Vitamin C, but Not a-KG, Enhances TET
Enzymatic Activity in IVF Preimplantation
Embryos

Next, we screened effective concentration of vitamin C
supplementation by evaluating its efficacy in prompting
preimplantation development, because TET deficiency would
impair survival and growth of preimplantation embryos (Kang
et al,, 2015). We found 100 pg/ml vitamin C supplementation to
culture medium significantly increased cleavage rate and
blastocyst rate (Supplementary Figure S4A, B). Using this
concentration, found vitamin C supplementation
significantly enhanced TET enzymatic activity in IVF embryos
throughout the preimplantation development to the levels
comparable to those of IVO embryos, as revealed by increased
5hmC/5mC ratio in both zygotes (Figure 4A and blastocysts

we
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(Figure 4B). Moreover, the beneficial effect of vitamin C
supplementation on enhancing TET enzymatic activity was
also confirmed using bovine IVF embryos as the model
(Figure 4C), although the expression patterns of bovine TET
enzymes were largely distinct from those in mouse embryos
(Jiang et al, 2014; Salilew-Wondim et al, 2015)
(Supplementary Figure S4F, G).

In contrast, however, a-KG supplementation using previously
published effective concentration (Zhang et al., 2019) just tended
to, but not significantly, enhance TET enzymatic activity in both
IVF  zygotes and blastocysts. In addition, combined
supplementation of vitamin C and a-KG didn’t display
synergistic effect on prompting TET enzymatic activity
(Figure 4A, B), in line with their effect on preimplantation
development (Supplementary Figure S4C-E).

Vitamin C Regulates Preimplantation
Lineage Differentiation and Promotes

Developmental Potential of IVF Blastocysts
Given previous studies have demonstrated that TET-mediated active
DNA demethylation participate in inner cell mass (ICM) specification,
and regulate embryonic growth and developmental potential (Ito et al.,
2010; Kang et al., 2015), we next tested whether vitamin C-prompted
TET enzymatic activity would affect total cell number and lineage
differentiation of IVF blastocysts. In addition, we also evaluated the
effect of vitamin C supplementation on embryonic developmental
potential by detecting implantation rate and postimplantation survival
rate following embryo transfer. Our results showed IVF blastocysts
exposed to vitamin C displayed a significant increase in total cell
number (Figures 5A,B), and ICM cell number (Figures 5A,C). Of
note, vitamin C supplementation resulted in a changed lineage
differentiation towards the ICM fate in IVF Dblastocysts (Figures
5A,D). Correspondingly, in comparison to their control
counterparts, IVF embryos exposed to vitamin C had significantly
higher implantation rate and survival rate shortly after implantation
(Figures 5EJF). Similarly, the beneficial effects of vitamin C
supplementation on preimplantation lineage differentiation and
developmental potential, were also confirmed in bovine IVF
embryos (Figures 5H,I).

Moreover, we found a-KG alone, but not in combination with
vitamin C, enhanced total cell number and ICM specification of
IVF blastocysts, as well as subsequent implantation success
(Figures 5A-F). These beneficial effects, were not completely
in line with quantification results of 5hmc/5mC ratio (Figures
4A-D), implying that functions of a-KG in improving IVF
embryo development are complicated and may be partially
independent of TET enzymatic activity.

The Beneficial Effects of Vitamin C on IVF
Embryos are Mediated by TET Enzymatic
Activity

Having confirmed the function of vitamin C on rescuing
impaired active DNA demethylation in IVF embryos, we next
attempted to determine if this beneficial effect was mediated by
TET proteins. To this end, we used dimethyloxallyl glycine

VitC Corrects IVF-Associated Epigenetic Errors

(DMOG), an inhibitor that blocks TET enzymatic activity
(Zhang et al., 2017; Duforestel et al., 2019), to assess the role
of TET enzymes in mediating vitamin C-induced active DNA
demethylation and developmental advantages. We found DMOG
significantly attenuated the active DNA demethylation-
prompting effect of vitamin C in both IVF zygotes
(Figure 6A) and blastocysts (Figure 6B). In addition, the
beneficial effects of vitamin C on total cell number and lineage
differentiation of IVF blastocysts were also attenuated by DMOG
supplementation (Figure 6C). These results suggest that the
beneficial effects of vitamin C are largely mediated by TET
enzymatic activity.

DISCUSSION

DNA methylation in mammalians is an essential epigenetic mark
to diverse processes, including transcriptional regulation,

protection of genomic integrity, maintenance of gene
imprinting and X-chromosome inactivation, as well as
repression of transposable elements (Maher, 2005;

Manipalviratn et al,, 2009; Vermeiden and Bernardus, 2013).
During early development, DNA methylation is highly dynamic
and susceptible to environmental factors. Fine-tuned DNA
methylation dynamics is critical for normal development,
whereas any disruption in the dynamics may compromise
embryogenesis or lead to long-term complications. Therefore,
IVF-associated DNA methylation defects were thought to be
linked to development disorders and postanal defects observed
in both humans and animals (Manipalviratn et al., 2009; Chen Z.
et al., 2013; Shechter-Maor et al., 2018).

To the best of our knowledge, the first case of IVF-associated
hypermethylation in preimplantation embryos was reported in
rats as early as 2010 (Yoshizawa et al., 2010). This phenomenon
has been confirmed repeatedly in porcine IVF blastocysts
(Deshmukh et al, 2011). Together with these findings, our
results observed form mouse IVF blastocytes, as well as
reanalysis of published DNA methylation array data of IVF
bovine blastocysts, suggested that IVF-induced
hypermethylation in IVF preimplantation embryos might be
common among various species, although human embryos
cannot be measured in vivo until now.

DNA demethylation is a hallmark epigenomic event during
preimplantation development, and is essential for normal
embryogenesis. It is generally believed that DNA
demethylation contributes zygotic gene activation and is
dispensable for maintaining the consistency of gene
transcription during preimplantation development, which is
critical for initiation of nuclear reprogramming towards
pluripotency (Bhutani et al., 2010; Shen et al, 2014; Kang
et al, 2015). Although it has been reported that replication-
dependent DNA dilution, also known as passive demethylation, is
the major contributor to DNA demethylation after fertilization
(Guo et al.,, 20145 Shen et al., 2014), TET-mediated active DNA
demethylation also plays an important role in epigenetic
reprogramming. Knockout of Tetl or Tet3 alone, or in
combination, led to attenuated zygotic gene activation,
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increased cleavage arrest, blastomeres apoptosis or fragments,
skewed lineage differentiation in preimplantation embryos, as
well as smaller embryonic size and morphological abnormalities
during postimplantation development (Ito et al., 2010; Gu et al.,
2011; Peat et al., 2014; Kang et al., 2015). These phenotypes, are
similar with those observed in IVF embryos (Nie et al., 2013; Ren
et al., 2015; Tan et al,, 2016a; Tan et al., 2016b), implying the
possible involvement of impaired DNA demethylation in IVF-
induced developmental defects. This notion is also supported by
the development-prompting effect of vitamin C that depends on
TET enzymatic activity.

Our results of 5mC and 5hmC staining indicated that TET-
mediated active DNA demethylation was impaired in both mouse

and bovine IVF embryos throughout preimplantation
development. Although TET enzymes displayed evident
transcriptional inhibition, our efforts to sitmulate Tet

expression using cytokines or small molecules that have been
reported to upregulate Tet expression in other cell types
(Tahiliani et al., 2009; Koh et al., 2011; Hore et al.,, 2016; Lv
etal, 2017; Choi et al., 2018), has failed. These results suggest that

transcriptional regulation of Tet family members in
preimplantation embryos, may be partially distinct form that
in somatic cells, and need to be further explored in future studies.

Despite this, our study provides an alternative and efficient
strategy for rescuing TET-mediated active DNA demethylation in
IVF embryos. By supplementing vitamin C to culture medium,
we successfully rescued 5mC to 5hmC conversion to levels
comparable to those in naturally conceived embryos. In
addition to its well-known function as an antioxidant, vitamin
C is a well-established cofactor for many Fe(II) and a-KG-
dependent dioxygenases, which include collagen prolyl
hydroxylases and epigenetic enzymes of histone and DNA
methylation (Lu et al,, 2015). Among these, TET proteins are
key epigenetic enzymes that play pivotal roles in epigenetic
remodeling of stem cells and preimplantation embryos (Ito
et al,, 2010; Gu et al.,, 2011; Wu et al., 2011; Kang et al., 2015)
Vitamin C, as the cofactor of dioxygenases enzymes, has been
reported to directly enhance TET enzymatic activity by
maintaining reduced Fe(Il), and thus simulating TET-
mediated active DNA demethylation (Minor et al.,, 2013; Yin
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et al,, 2013). Based on this mechanism, vitamin C showed ability
to induce a blastocyst-like pluripotency in ES cells (Blaschke et al.,
2013) and facilitate somatic cell reprogramming (Esteban et al.,
2010; Chen J. et al,, 2013) via a TET-dependent mechanism.

Given TET-mediated active DNA demethylation plays critical
role in regulating preimplantation lineage differentiation and
acquiring developmental potential (Ito et al., 2010; Gu et al,
2011; Kang et al., 2015), we also focused developmental
phenotypes of IVF embryos exposed to exogenous vitamin C
supplementation. Coinciding with rescued active DNA
demethylation, we found that vitamin C significantly improved
blastocyst formation and ICM specification, as well as
implantation success and postimplantation survival of IVF
embryos. A previous study showed that vitamin C
supplementation in culture medium could reduce oxidative
stress—-induced embryo toxicity and improve the blastocyst
development rate, thus the beneficial effect was thought to
depend on its ROS-scavenging function as an antioxidant
(Wang et al, 2002). In contrast, however, using chemical-
induced inhibition of TET enzymatic activity, our results
indicated that the effect of vitamin C on reversing IVF-
induced impairment in DNA demethylation is largely
mediated by TET enzymes. Of note, given previous studies
have demonstrated TET1 and TET3 are main demethylase
responsible for preimplantation active DNA demethylation
(Ito et al, 2010; Gu et al, 2011; Kang et al, 2015) it is
presumable that these two enzymes, rather than TET?2, is
primarily responsible for impaired active DNA demethylation
in IVF embryos. In addition, the low-level vitamin C detected in
oocytes and cumulus cells suggest that maternal deposit of
vitamin C may also participate in active DNA demethylation
during the period shortly after fertilization, perhaps mainly via
the maternally deposited TET3.

Compared with notable efficacy of vitamin C, exogenous
a-KG supplementation is less effective in enhancing TET
enzymatic activity, or synergize with vitamin C, in IVF
embryos, implying that endogenously synthesized a-KG may
be sufficient for developmental requirement. Of note, our
results were not completely in accordance to those reported by
a recent study (Zhang et al, 2019). A possible explanation is
variable TCA cycle metabolism among IVF embryos, since a-KG
is an important intermediate metabolite.

Our results also highlight the important role of paracrine factors
from maternal oviduct in fine-tuning epigenomic reprogramming
during preimplantation development. Because vitamin C are
enriched in both embryos and oviductal environment, it is
presumable that TET enzymatic activity is well orchestrated via
the synergic effects of embryonic autocrine and maternal paracrine.
In addition, since the vitamin C levels are comparable between IVO
and IVF embryos, the loss of oviductal vitamin C may be may be the
main contributor to impaired TET enzymatic activity of IVF
embryos. This concept, is in line with results reported by P Coy
et al: DNA methylation and gene expression of IVF embryos can be
partially corrected via supplementation of culture medium with
oviductal fluid (Barrera et al., 2017; Canovas et al., 2017). Given
safety concerns of transmission of diseases have not fully been
addressed after addition of oviductal fluids, this strategy is only

VitC Corrects IVF-Associated Epigenetic Errors

applicable to in vitro embryo production in domestic and laboratory
animals. By contrast, the chemically defined culture medium that
can specifically correct epigenetic errors in IVF embryos should be a
more reasonable strategy, especially in the context of clinical use of
human assisted reproductive technologies. Until now, however,
only very limited growth factors or cytokines that present in
oviductal fluid are proven to be used in commercially available
culture media (Chronopoulou and Harper, 2015). Thus, identifying
the developmental role of oviductal cytokines or growth factors in
supporting early embryogenesis, and thus formulating the culture
media, may be a promising strategy.

In summary, focusing on hypermethylated IVF blastocysts,
our study identifies that TET-mediated DNA demethylation is
impaired in IVF embryos throughout preimplantation
development. Exogenous vitamin C supplementation into
culture medium corrects DNA demethylation in IVF embryos
by enhancing TET enzymatic activity, and thus improving
preimplantation  lineage differentiation and promoting
developmental potential of IVF blastocysts (Figure 7). Our
current findings have not only suggested a potential strategy
for preventing or correcting IVF-associated epigenetic errors via
the use of oviductal growth factors or cytokines, but also
highlighted the important role of maternal oviduct in
supporting embryonic epigenomic reprogramming.
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