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Oncolytic viruses are naturally occurring or genetically engineered viruses that can replicate
preferentially in tumor cells and inhibit tumor growth. These viruses have been considered
an effective anticancer strategy in recent years. They mainly function by direct oncolysis,
inducing an anticancer immune response and expressing exogenous effector genes. Their
multifunctional characteristics indicate good application prospects as cancer therapeutics,
especially in combination with other therapies, such as radiotherapy, chemotherapy and
immunotherapy. Therefore, it is necessary to comprehensively understand the utility of
oncolytic viruses in cancer therapeutics. Here, we review the characteristics, antitumor
mechanisms, clinical applications, deficiencies and associated solutions, and future
prospects of oncolytic viruses.
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1. BACKGROUND

Cancer is the second leading cause of death worldwide with increased number of cases and cancer
deaths. According to estimates by the WHO, in the next 20 years, the number of global cancer cases
may increase by 60%, and cancer is a huge burden on society worldwide (Siegel et al., 2021). The
effects of traditional treatment modalities remain limited. In recent years, several strategies such as
immunotherapy and targeted therapy have been developed and have shown the potential to improve
the outcome of numerous malignancies.

Oncolytic viruses are a novel type of multimechanistic therapeutic agent for cancer treatment and
have the advantages of immunotherapy and targeted therapy (Kaufman et al., 2016). Modifying the
genome of the oncolytic virus improves its tumor-targeting capability and oncolytic potential.
Meanwhile, the host’s antitumor immunity can also be enhanced to achieve the purpose of treating
cancer (Ramelyte et al., 2021). Oncolytic viruses are presently under evaluation in clinical and
experimental trials, and some clinical research has demonstrated that oncolytic viruses significantly
improve the prognosis of cancer patients and have a good safety profile (Lawler et al., 2017). In this
review, we focus on the characteristics of oncolytic viruses and their mechanisms in tumor treatment.
We discuss combinatorial strategies with other traditional treatments and immunotherapies and the
challenges of oncolytic virotherapy.

2 CHARACTERISTICS OF ONCOLYTIC VIRUSES

Viruses are particles that must parasitize living cells, causing infection and a related immune
response (Boivin et al., 2002). The naked virion is composed of the core and the capsid (Lee et al.,
2017; Miranda-Saksena et al., 2018). The core of the virus comprises one type of nucleic acid (DNA
or RNA). This nucleic acid makes up the virus genome, storing all the genetic information of the
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virus and controlling its characteristics (Guerra et al., 2017).
Enveloped viruses consist of a nucleocapsid wrapped in an
envelope (Parvez, 2020). With the development of genetic
engineering and virology techniques, it is now possible to
modify the structure of viruses to make them useful for
human therapy; as examples, inactivated viruses can be used
for vaccines, viral vectors can be used for genetic engineering, and
viruses can also be used for cell fusion in cell engineering (Khattar
et al., 2011; Song and Viskovska, 2020).

Oncolytic viruses are a special type of virus that are naturally
or genetically engineered and can replicate preferentially in tumor
cells and inhibit tumor growth (Jennings et al., 2019; Harrington
et al., 2019). According to the type of nucleic acid they contain,
oncolytic viruses can be divided into DNA viruses and RNA
viruses (Table 1) (Bommareddy et al., 2018a). The differences
between DNA and RNA viruses are as follows. Compared with
RNA viruses, the advantage of DNA viruses is that most DNA
viruses can express high-fidelity polymerases, ensuring genetic
integrity and efficient replication. (Kaufman et al., 2016).
However, DNA viruses have many disadvantageous
characteristics. First, the ability of DNA viruses to induce
immunogenicity is not as good as that of RNA viruses.
Reasons for this include inefficient viral DNA delivery levels
and inadequate DNA-sensing machinery and nucleic acid-
sensing pattern recognition receptor expression levels
(McNamara et al., 20152015). Second, there is also a risk that
viral DNAwill integrate into the host genome, inactivating tumor
suppressors or activating oncogenes (Liu, 2019). Third, most

RNA oncolytic viruses have more efficient delivery processes and
are more advantageous for specifically killing central nervous
system tumors. RNA oncolytic viruses are much smaller than
DNA viruses, and they spread more easily throughout the human
body, they can even cross the blood-brain barrier (Yu et al., 2011).

3 MECHANISMS OF ONCOLYTIC VIRUSES

3.1 Selectivity
Tumor cells are different from normal cells in terms of genetics
and physiology. As a result of the abnormal antiviral ability and
signaling pathways of tumor cells and tumor-specific promoters
or mRNAs, oncolytic viruses can specifically target tumor cells
without replicating and growing in healthy cells. In addition, the
differential expression of apoptosis-related genes or surface
receptor proteins between tumor and normal cells is also
important for virus targeting. The selectivity of viruses is an
inherent guarantee of their safety in clinical applications.

Antiviral signaling pathways (such as the IFN pathway) in
normal cells can eliminate viruses. In tumor cells, there are
mutations or deletions among the key protein-coding genes of
these signaling pathways. Therefore, oncolytic viruses can use
dysregulated signaling pathways in tumor cells to promote virus
replication, infection and spread (Stewart et al., 2011; Ilkow et al.,
2014; Kurokawa et al., 2018). The matrix (M) protein is
commonly present in negative stranded RNA viruses, lining
the inner side of the envelope of the virions. The M protein of

TABLE 1 | The unique characteristics of oncolytic virus.

DNA RNA Rhabdovirus Picornavirus Togavirus Reovirus

Parvovirus Adenovirus Herpesvirus Poxvirus Paramyxovirus

ssDNA dsDNA dsDNA dsDNA ss (−)RNA ss (−)RNA ss (+)RNA ss (+)RNA dsRNA
Genome size 5–6 kb 26–45 kb 120–240 kb 130–280 kb 15.2–15.9 kb 11–15 kb 7–8 kb 9.7–11.8 kb 10

segments of
double-
stranded
(ds) RNA

Virion Naked Naked Enveloped Enveloped Enveloped Enveloped Naked Enveloped Naked
Capsid
symmetry

Icosahedral Icosahedral Icosahedral Complex Helical Helical Icosahedral Icosahedral Icosahedral

VAP NA spike or fiber
associated
with each
penton base
of the capsid

gp350/
gp220

A27L,
M115L, A26

HA gpG VP1-VP3 E1, E2 σ1s

Cell receptor Sialic acid
residues

CAR, CD46,
VCAM1

HVEM, nectin
1, nectin 2

GAGs, EFC SLAM, CD46,
Neuraminidase

LDLR CD155, CAR,
ICAM-1, DAF

phospholipid
receptors

JAM-A

Receptor,
sialoglycoconjugates

type of
penetration

Viropexis Viropexis Viropexis Fusion Fusion Viropexis Viropexis Viropexis NA

Ability to
penetrate BBB

+ − − − −/+ − −/+ + +

transgene
capacity

+ ++ +++ +++ + + + NA +++

Immunogenicity + − − − − − +/− + −

Antivirals − + + + − − − NA −

NA, not applicable.
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Vesicular stomatitis virus (VSV) is a structural protein and
virulence factor that plays a significant role in virus assembly
and suppression of host gene expression. M protein variants
retain virus assembly functions but can not inhibit host IFN gene
expression. VSVs expressing M protein variants cannot replicate
in normal tissue cells due to the activation of the IFN signaling
pathway. However, they can selectively replicate in tumor cells
with defective IFN immune responses (Stewart et al., 2011). In
addition, there are other abnormal nonimmune signaling
pathways in tumor cells. For example, ICP4 is a key protein
required for HSV replication that can be activated by ELK, a
downstream protein of RAS. A mutant HSVwhose expression of
ICP4 is controlled by activation of ELK has the selective ability
because the RAS signaling pathway is generally silent in normal
cells, while it is activated in tumor cells (Pan et al., 2009). Some
wild-type viruses, such as reovirus, have shown a good natural
preference for tumor cells with overactive RAS, and these viruses
can function without engineering (Shmulevitz et al., 2005; Carew
et al., 2017).

Some specific promoters can regulate the transcription and
expression of key viral replication genes. Controlling key viral
expression genes with such promoters can restrict the virus from
being highly expressed in tumor tissues (Deweese et al., 2001;
Cheng et al., 2015; Zhang et al., 2015). E2F-1 (Tsukuda et al.,
2002), hTERT (Sato et al., 2013) and HIF-1 (Longo et al., 2011)
are promoters with high expression in tumor tissues and low
expression in normal tissues. Placing a key viral replication gene
(such as E1A and E1B) under these specific promoters stimulates
the expression of the key gene in tumor tissues, which can
enhance the selectivity of the virus (Yoon et al., 2001).

Inserting tissue-specific miRNA sequences into the oncolytic
virus genome can also regulate the expression of key genes,
preventing the replication of viruses in normal tissue cells
(Yao et al., 2014). miR199 is a miRNA that is downregulated
in hepatocellular carcinoma (HCC) compared to in the normal
liver (Lou et al., 2018). Adenovirus-199T (Ad-199T) is a
recombinant adenovirus in which copies of DNA segments
complementary to miR199 are inserted within the essential
adenovirus replication gene E1A. Ad-199T can replicate in
cells lacking miR-199 to make virus replication and cytolytic
effects specifically selective for HCC cells (Callegari et al., 2013).

Viral selectivity can also be achieved by targeting key genes
that play an important role in viral replication in normal cells.
The genes themselves have to be unrelated to the replication of
the virus in the tumor. The E1B-55 K protein, which prevents
premature apoptosis, is expressed among wild-type adenoviruses
(Dix et al., 2000). The p53 gene is an important apoptosis-
inducing gene in normal cells. Inactivation of the p53 gene is
an important feature of tumor cells. Viral replication depends on
the inhibition of host cell apoptosis, which is related to the
function of p53. An oncolytic adenovirus with E1B gene
deletion cannot replicate in normal cells due to the
dysfunction of apoptosis inhibition, while in p53-deficient
tumor cells, replication is not affected (Bischoff et al., 1996).

Another way to make a virus tumor-specific is genetically
modifying the viral capsid protein to achieve tumor cell-specific
binding. For example, uPAR is a highly expressed receptor on the

surface of a variety of tumor cells. uPAR is closely related to
tumor aggressiveness and angiogenesis. The MV-h-uPA
construct contains an added fragment that binds to uPAR and
can specifically infect tumor cells with high expression of uPAR
through the receptor-ligand pathway (Jing et al., 2014).
Furthermore, inserting lysine residues into ciliated proteins
allows the virus to bind to tumor cells that widely express
heparin sulfate receptors. HER-2, a surface molecule, is
hyperexpressed in 15–20% mammary and ovary carcinomas.
HSVs can be engineered to target HER2 by replacing the Ig-
folded core in the receptor-binding virion glycoprotein D with an
anti-HER-2 single-chain antibody (Menotti et al., 2009). HSV
also mediates highly efficient infection in glioblastoma cells in
which EGFR is highly expressed, by combining engineered viral
glycoproteins, gD and gB (Uchida et al., 2013).

3.2 Tumor Lysis
The effects of tumor lysis can be categorized into direct effects on
cells and effects on tumor vasculature (Figure 1).

Oncolytic viruses use tumor cells as a processing factory and
replicate in large quantities. During proliferation, the oncolytic
virus can block the synthesis of cellular nucleic acids and proteins,
which causes cell metabolism dysfunction and ultimately lyses

FIGURE 1 | The effects of tumor lysis of oncolytic virus. (A) Oncolytic
viruses are able to kill tumor cells directly. (B) After infecting the endothelium of
the tumor vasculature, oncolytic viruses are able to recruit neutrophil cells and
mediate the formation of clots and vascular collapse, which induce the
ischemic death of tumor cells. (C) VEGF plays an important role in the
regulation of angiogenesis and tumor growth. Some specific oncolytic viruses,
such as adenovirus, can express the E1A protein, which can downregulate
VEGF by interacting with angiogenic proteins, thereby affecting new blood
vessels in the tumor microenvironment and ultimately achieving oncolytic
effects.
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tumor cells. In addition, the nucleus, lysosomes, endoplasmic
reticulum and mitochondria of the infected cells can all be
damaged as a result of high viral replication volumes. In
addition to the effects of replication, the structures of
oncolytic viruses, such as the capsid protein, can also cause
direct oncolysis.

Tumor neovascularization is a key mechanism by which
tumors maintain their growth and development (Lugano et al.,
2020). Inhibiting tumor neovascularization can cut off the supply
of tumor oxygen and nutrients, thereby inhibiting tumor growth
and metastasis (Qian and Pezzella, 2018). Oncolytic viruses have
potent antiangiogenic properties and can induce vascular
collapse, which in turn causes tumor cell death (Gholami
et al., 2016). HSV is able to infect the endothelium of the
tumor vasculature by recruiting inflammatory cells that lead to
the formation of local microthrombi (Breitbach et al., 2007). This
phenomenon has been verified in various cancers, such as ovarian
cancer, glioma, and rhabdomyosarcoma. Breitbach C. et al.
revealed that vaccinia viruses (VVs) can replicate within
endothelial cells of the tumor-associated vasculature (Breitbach
et al., 2013). Over time, the tumor’s blood vessel density gradually
decreases, and neutrophils continue to accumulate, resulting in
decreased tumor cell perfusion and the ischemic death of tumor
cells. Vascular endothelial growth factor (VEGF) is a highly
specific vascular endothelial cell growth factor. It plays critical
roles in the migration, proliferation and angiogenesis of vascular
endothelial cells, which are closely related to tumor progression.
Adenovirus can express E1A protein, which can downregulate
VEGF by interacting with angiogenic cell proteins, thereby
affecting new blood vessels formation in the tumor
microenvironment and ultimately achieving oncolytic effects
(Ye et al., 2006).

3.3 Antitumor Immunity
3.3.1 Innate Immunity
Tumor cells and their microenvironment usually express
cytokines (such as IL-10 and TGFβ) with immunosuppressive
functions, which inactivate effector immune cells and recruit
immunosuppressive cells to the tumor (Borsig, 2018). In some
cases, there are few immune cells in the tumor
microenvironment, which is known as a “cold”
microenvironment. Oncolytic viruses are capable of reversing
this immunosuppressive microenvironment, turning “cold”
tumors into “hot” tumors by changing the cytokine
environment and promoting immune cell maturation (Galon
and Bruni, 2019).

Following viral infection, oncolytic viruses can induce the
death of tumor cells by mediating immunogenic cells. Viral
elements (tumor-associated antigens (TAAs) and viral
pathogen-associated molecular patterns (PAMPs)) and cell-
derived damage-associated molecular patterns (DAMPs) can
be released (Yoo et al., 2013). Pattern recognition receptors
(PRRs) such as the family of Toll-like receptors can recognize
TAAs, PAMPs and DAMPs and trigger MYD88-dependent and
TRIF-dependent signaling (Chen et al., 2018). In addition, there
are other sensing elements, such as RIG-I-like receptors (RLRs:
RIG-1 and MDA5), PKR and cyclic GMP–AMP synthase

(cGAS)–stimulator of interferon genes (STING). PKR, RIG-I
and MDA5 recognize RNA, while the cytosolic sensor cGAS
detects DNA. RIG-I and MDA-5 are thought to recognize ssRNA
and dsRNA, stimulating the release of NF-κB, IRF3, and IRF7(Lin
et al., 2019). In the process of viral infection and invasion,
cytoplasmic DNA is recognized as a danger signal by the
DNA sensor cGAS, and the downstream protein STING is
used as an adaptor molecule to recognize cGAMP and activate
downstream signals to promote the production of type I
interferons and other cytokines (Kato et al., 2017).

These cytokines play a critical role in the recruitment and
activation of innate immune cells, such as dendritic cells (DCs)
and natural killer (NK) cells, which can reverse the
immunosuppressive microenvironment in tumors. For
example, dendritic cells loaded with human melanoma Mel888
cells (DC-Mel) cannot normally respond to PRR-PAMP
signaling, which leads to low antitumor immunity. Reovirus
can reverse the dysfunction of DCs-Mel by upregulating the
secretion of costimulatory factors and cytokines. Reovirus can
reduce the secretion of IL-10 from immunosuppressive cells and
induce the production of proinflammatory factors such as the
macrophage inflammatory protein MIP-1α/β. These cytokines
can activate DCs and mediate a variety of immune responses
(Prestwich et al., 2009).

3.3.2 Adaptive Immunity
Most tumor cells do not express MHCmolecules or express them
at a low level, resulting in tumor cells that lack or weakly present
tumor antigens. Such tumor cells do not induce cytotoxic T
lymphocyte (CTL) activation; thus, no immune-system-based
tumor-cell killing occurs (Axelrod et al., 2019). Oncolytic
viruses are capable of promoting DC maturation and
increasing their antigen presentation ability (Raja et al., 2018).
Mature DCs (mDCs) can present antigenic peptides on MHC I
and MHC II molecules to CD8+ and CD4+ T cells, respectively,
and deliver costimulatory signals that activate T cells (Pardee
et al., 2015). In a murine ovarian cancer model, J. Patrick Murphy
et al. revealed that tumorMHC-1 ligand expression was increased
after treatment with oncolytic reovirus (Murphy et al., 2019). An
increase in MHC was detected not only in tumor cells but also in
spleen tissues. The same results were also observed in CMT64
lung adenocarcinoma cells infected with oncolytic adenovirus. In
a model in which DCs are incubated with tumor cells, tumor cells
not infected with reoviruses cannot induce the killing response of
cytotoxic T cells, but this response can be induced by infected
tumor cells (Figure 2).

As a new potential cancer therapy, oncolytic viruses can
prevent tumor recurrence by establishing immune memory in
the body. Minjun Yu et al. induced lymphoma regression in mice
by administering Sindbis virus vectors in combination with α4-
1BB monoclonal antibodies (Yu et al., 2019). In addition, all mice
treated with Sindbis virus vectors and α4-1BB monoclonal
antibodies were proven to have durable antitumor immune
memory. Havunen et al. constructed an oncolytic adenovirus
with insertion of the human IL-2 gene and the human tumor
necrosis factor α (hTNF-α) gene (Havunen et al., 2017). They
combined the transformed adenovirus with tumor-infiltrating
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lymphocytes (TILs) to form the Ad5/3-E2F-d24-hTNFα-IRES-
hIL2 (TILT-123) strategy, which was tested in Syrian hamsters
with tumors formed from transplanted pancreatic cancer cells.
The results indicated that oncolytic viruses carrying the IL-2 and
TNF-α genes could increase the frequency of CD4+ and CD8+

TILs and strengthen the persistence and proliferation of T cells.
After treatment, Syrian hamsters were again inoculated with the
same pancreatic cancer cells, and the tumor recurrence rate was
lower than that of Syrian hamsters that received oncolytic virus
treatment alone.

3.4 Transgene Expression
Oncolytic viruses can also be genetically modified to serve as
vectors to express therapeutic genes to kill tumor cells in multiple
ways, effectively avoiding the current common drug resistance
problem of single-target anticancer drugs (Marino et al., 2017).
This strategy is known as “arming” and is similar to combining an
oncolytic virus with a cancer-killing “accomplice".

3.4.1 Suicide Genes
Suicide gene therapy is known as virus-directed enzymatic
prodrug therapy (VDEPT) (Zhang et al., 2010; Karjoo et al.,
2016). Suicide gene therapy involves the introduction of a gene
encoding a specific sensitivity factor into tumor cells, which
causes the cells to be specifically sensitive to a specific
originally nontoxic or low-toxicity drug, thereby causing
tumor cell death. This expressed sensitivity gene is called a
suicide gene or a drug sensitivity gene. T601 is a VV with TK
and RR knocked out that expresses the fusion suicide gene
FCU1(Foloppe et al., 2019). FCU1 is a product of the fusion
of the yeast cytosine deaminase gene and the uracil
phosphoribosyltransferase gene (Husseini et al., 2017). Yeast
cytosine deaminase can convert the prodrug 5-FC into the
chemotherapeutic drug 5-fluorouracil (5-FU), while uracil
phosphoribosyltransferase can further convert 5-FU into 5-
fluorouracil triphosphate (FUTP) and 5-fluorodeoxyuracil
monophosphate (FdUMP). FUTP inhibits the activity of RNA,

FIGURE 2 | Oncolytic viruses can induce host systemic anti-tumor immunity to kill tumor cells. Following viral infection, viral replication leads to ER stress and
genotoxic stress in tumor cells, which results in the release of the viral elements TAAs, PAMPs, and DAMPs. Sensing elements, such as PRRs, can recognize these
molecules, which leads to immune cell activation and inflammatory signal transduction. With virus replication, antiviral pathways can be activated. This activation induces
the production of cytokines and type I IFNs, which mediate the activation and maturation of immune cells, such as DCs and NK cells. NK cells migrate to the tumor
area under the action of chemokines, such as IL-12, IL-2, and IFN-α/β, and exert antitumoral properties by releasing IFN-γ, TNF-α and CD107. Mature DCs can present
antigenic peptides within the context of MHC I molecules to CD4+ T cells and within the context of MHC II molecules to CD8+ T cells. CD8+ T cells are also activated
through the stimulation of CD4+ T cells. The activation of CD4+ T cells by DCs helps to activate CD8+ T cells by inducing the production of cytokines such as IL-2. The
recognition of tumor surface antigens by antibodies can trigger CTL killing of tumor cells through Fas-FasL interactions, TNF-TNFR signaling, and the perforin/granzyme
pathway.
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and FdUMP inhibits the synthesis of DNA and can reduce the
degradation of 5-FU, thereby killing tumor cells (Dias et al.,
2010).

3.4.2 Anti-angiogenesis Genes
Angiogenesis is essential for tumor progression. It has been
proven that angiogenesis inhibitors have antitumor effects.
Endostatin and angiostatin are two broad-spectrum
angiogenesis inhibitors (Gonzalez et al., 2018). However,
endostatin and angiostatin have no direct tumor cell killing
effect and must be continuously transported to the tumor
microenvironment. Due to their short half-life in serum, low
solubility and poor stability, angiostatin and endostatin cannot
function in a traditional manner (Marshall, 2002). Oncolytic
viruses genetically modified to continuously express
angiogenesis inhibitors in the tumor microenvironment can
inhibit angiogenesis factors and significantly reduce the
activation and migration of endothelial cells (Indraccolo et al.,
2002). Hutzen B et al. constructed the measles virus (MV)
variants MV-hE: A and MV-Me. These viruses can express
human and mouse endostatin/angiostatin fusion proteins,
respectively. In medulloblastoma, the target gene is continually
expressed as the oncolytic virus replicates, which leads to the
inhibition of angiogenesis factors and induces the death of tumor
cells. (Hutzen et al., 2014).

3.4.3 Immune-Related Genes
Inserting cytokine-related genes into the oncolytic virus genome
can effectively increase the local immune inflammatory
mediators in the tumor microenvironment, thereby activating
the body’s antitumor immune response and enhancing the
antitumor effect of the oncolytic virus. To date, various
cytokine genes have been used to generate recombinant
oncolytic viruses, such as interleukin, colony-stimulating
factor, tumor necrosis factor, and chemokine genes (Zhu et al.,
2012; Conrad et al., 2015; Hirvinen et al., 2015; Bourgeois-
Daigneault et al., 2016; Deng et al., 2016). GM-CSF is
currently the most widely used cytokine in clinical practice
(Chon et al., 2019). It has been integrated into the genomes of
various oncolytic viruses and has shown a certain degree of
therapeutic efficacy in preclinical studies (Liu et al., 2013). The
first oncolytic virus approved by the FDA, T-VEC, is a version of
HSV-1 with GM-CSF inserted into its genome (Andtbacka et al.,
2015).

In addition, viruses can be engineered to express other
immune factor genes to enhance the body’s antitumor
immune response. The oncolytic virus G47Δ-IL-12, derived
from an HSV-1 strain, has a strong oncolytic effect on
malignant gliomas (Saha et al., 2017). This virus can
significantly promote the killing of tumor cells and virus-
infected cells by expressing IL-12. A preclinical model showed
that monotherapy with IL12-expressing HSV is sufficient to
eradicate glioma and provides resistance to rechallenge with
high-grade gliomas, even without immune checkpoint
blockade (Alessandrini et al., 2019). Ad-ZD55 is an adenovirus
derived from the deletion of the E1B-55 kD gene (Liu and Gu,
2006). Ad-ZD55-TRAIL and Ad-ZD55-IL-24 are viruses derived

from Ad-ZD55 with the TRAIL gene and IL-24 gene inserted,
respectively (Zhao et al., 2006). TRAIL and IL-24 can interact and
promote each other, further inducing substantial tumor apoptosis
by activating intracellular tumor-killing mechanisms. Oncolytic
adenoviruses can express the chemokines MIP-1α or RANTES,
which induce the recruitment of DCs and enhance the antitumor
immune response (Edukulla et al., 2009).

3.4.4 Tumor Microenvironment Related Genes
The formation of the tumor microenvironment may prevent
oncolytic viruses from exerting their effects. To eliminate the
unfavorable factors caused by the tumor microenvironment,
viruses can be genetically modified or altered by other
methods to enhance their efficacy. The extracellular matrix
(ECM) of solid tumors can affect the infection and spread of
therapeutic viruses (Mok et al., 2007). Matrix-degrading enzymes
improve tumor permeability by degrading ECM, increasing the
spread of viruses and the concentration of viruses in tumor cells.
Li et al. constructed an oncolytic adenovirus expressing decorin
(DCN) (Li et al., 2018). The results of their experiments showed
that the virus mediated the expression of DCN, which
downregulated the main components of the ECM (such as
collagens I and III), in pancreatic cancer tumor tissues. This
effect resulted in the accelerated spread of the virus in mice with
pancreatic tumors in situ and induced tumor cell apoptosis.

4. ONCOLYTIC VIRUSES IN CANCER

Given the antitumor properties of oncolytic viruses, a variety of
oncolytic viruses with tumor-killing effects have been developed.
The clinical applications of oncolytic viruses are introduced
below according to their types (TABLE 2).

4.1 Different Types of Viruses
4.1.1 Adenoviruses
Adenoviruses are non-enveloped viruses with double-stranded
DNA genomes (Greber and Flatt, 2019). They have a large
genome (approximately 35 kb), which is convenient for genetic
modification (Shen et al., 2009). Human adenovirus (HAdV)
can be divided into more than 50 serotypes, which can be
classified into seven species (HAdV-A to -G) (Marrugal-
Lorenzo et al., 2019). CG0070 and ONYX-015 are two classic
examples of oncolytic adenoviruses. CG0070 has antitumor
activity by expressing the immunoregulatory factor GM-CSF.
Nagarajan Ramesh et al. investigated antitumor efficacy of
CG0070 in several bladder transitional cell carcinoma
models, which has shown good tumor specificity and
oncolytic effects (Ramesh et al., 2006). Barker et al. used
ONYX-015, which has a deletion of the E1B gene, in the
therapy of head and neck cancer, pancreatic cancer and
recurrent granulation tumors, The objective remission rate of
patients in clinical trials has been improved (Barker and Berk,
1987). Studies of Ilya V Ulasov et al. showed that CRAd-S-pk7
cells selectively target and penetrate tumor metastases,
effectively delivering the CRAd-S-pk7 virus (Ulasov et al.,
2007). Ilya V Ulasov established the effectiveness and safety
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TABLE 2 | Oncolytic virus anti-tumor clinical trials.

Virus Modification Virus
administration

Status Indication Therapeutic
Approach

Clinical trials Status

Adenovirus

DNX-2401 Δ24-RGD insertion Intratumoural I Glioblastoma, ovarian cancer Combination or
OV only

NCT03178032
NCT01956734

Active
Completed

VCN-01 PH20 hyaluronidase Intratumoural I Pancreatic cancer,
Retinoblastoma, Head and Neck
Neoplasms

Combination or
OV only

NCT03799744
NCT03284268

Recruiting

Osteosarcoma Recruiting
CG0070 GM-CSF and E3

deletion
Intratumoural I-III Bladder Cancer Combination or

OV only
NCT04610671
NCT02365818

Recruiting
Completed

Colo-Ad1 Chimeric Ad11/3
group B

Intratumoural I Colon cancer, NSCLC, Renal cell
carcinoma, Bladder cancer

OV only NCT02053220 Completed

ICOVIR5 Modified DNX-2401-
E2F promoter
opimitized

Intravenous I-II Melanoma, Solid Tumors OV only NCT01864759 Completed
NCT01844661 Completed

Ad5-yCD/
mutTKSR39rephIL12

Ad serotype 5;
insertion of IL12,
yeast cytosine
deaminase and
TKSR39

Intratumoural I Prostate Cancer, Pancreatic
Cancer

OV only NCT02555397 Recruiting
NCT03281382 Recruiting

H101 E1B deletion, partial
E3 deletion

Intratumoural I-III Hepatocellular Carcinoma and
head and neck cancer

Combination NCT03790059
NCT03780049

Recruiting
Recruiting

ProstAtak TK insertion Intratumoural II-III Prostate Cancer Combination or
OV only

NCT01436968
NCT02768363

Recruiting
Active

Herpesvirus

T-VEC ICP34.5 deletion,
US11 deletion, GM-

CSF insertion

Intratumoural I-III Melanoma, head and neck
cancer and pancreatic cancer

Combination or
OV only

NCT03086642 Recruiting
NCT03069378 Recruiting
NCT01368276 Completed

HF10 UL56 deletion,
selected for single
partial copy of UL52

Intratumoural I-II Breast cancer, melanoma, and
pancreatic cancer

Combination or
OV only

NCT03153085
NCT03259425

Completed
Terminated

HSV1716 ICP34.5 deletion Intratumoural I-II Malignant Pleural Mesothelioma,
Rhabdomyosarcoma,
Osteosarcoma, Anaplastic
Oligodendroglioma

Combination or
OV only

NCT01721018
NCT00931931
NCT02031965

Completed
Completed
Terminated

G207 ICP34.5 deletion Intratumoural I-II Glioblastoma OV only NCT03911388 Recruiting
UL39 disruption NCT04482933 Not yet

recruiting

Measles Virus

MV-NIS NIS insertion intraperitoneal and
Intratumoural

I-II Myeloma, Ovarian cancer,
Mesothelioma, NSCLC

Combination or
OV only

NCT02919449
NCT02364713

Terminated
Recruiting

MV-CEA CEA insertion Intraperitoneal,
Intratumoural and

Intravenous

I-II Glioblastoma, Ovarian Cancer,
Fallopian Tube Endometrioid
Adenocarcinoma

OV only NCT00390299
NCT00408590
NCT02068794

Completed
Completed
Recruiting

Vaccinia Virus

Pexa-vac (JX-594) GM-CSF insertion,
TK disruption

Intratumoural and
Intravenous

I-III Melanoma, liver cancer,
colorectal cancer, breast cancer,
and hepatocellular carcinoma

Combination or
OV only

NCT02562755
NCT00554372
NCT00629759

Completed
Completed
Completed

GL-ONC1 TK disruption,
haemagglutin
disruption, F14.5 L
disruption

Intraperitoneal,
Intratumoural and

Intravenous

I-II Lung cancer, head and neck
cancer, and mesothelioma

Combination or
OV only

NCT02759588
NCT01443260

Active
Completed

Reovirus

Reolysin None Intravenous and
intratumoral

I-III Glioma, sarcomas, colorectal
cancer, NSCLC, ovarian cancer,
melanoma, pancreatic cancer,
multiple myeloma, head and neck
cancer

Combination or
OV only

NCT01166542
NCT02620423
NCT01656538

Completed
Completed
Completed

(Continued on following page)
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of NSC-CRAd-S-pk7 in patients with high-grade glioma in a
phase I clinical trial (Fares et al., 2021). Adenoviruses are also
applied in celyvir, an advanced treatment that combines
mesenchymal stem cells (MSCs) loaded with ICOVIR-5, an
oncolytic adenovirus. David Ruano et al. demonstrated that
MSCs ensure sufficient viral load by providing an immune
shield to the virus in vitro (Ruano et al., 2020).

4.1.2 Herpesviruses
Herpesviruses are enveloped, icosahedral viruses containing
double-stranded DNA, approximately 120–240 kb. A total of
more than 100 Herpesviruses have been found, which can be
divided into three categories: α, β, and γ(Heldwein, 2018).
Herpesviruses have demonstrated oncolytic properties in a
variety of tumor types. T-VEC is an oncolytic virus derived
from HSV-1 encoding GM-CSF. Robert H I Andtbacka et al.
conducted a phase III clinical trial, which demonstrated that
T-VEC has good and durable therapeutic effects in the
treatment of advanced melanoma (Andtbacka et al., 2015).
In 2015, T-VEC was approved by the United States FDA for the
treatment of metastatic melanoma (Poh, 2016). T Mineta et al.
created G207, a double mutant of the herpes simplex virus
(HSV) type with deletion of ICP34.5 and insertional
inactivation of UL39 (Mineta et al., 1995). Radiographic
and neuropathological examinations have shown that G207
has antitumor activity and can be safely administered multiple
times for the treatment of glioma (Markert et al., 2009). HF10
is a spontaneously mutated oncolytic virus derived from HSV-
1. Nakao et al. treated six breast cancer patients with HF10
(Nakao et al., 2007). Two superficial nodules were selected in
all patients with metastatic breast cancer, one of which was
injected with the virus directly and one of which served as a
control. After treatment, none of the patients had obvious
adverse reactions, and tumor cell death in the nodules was
observed by histopathological methods.

4.1.3 Measles Virus
Measles virus is spherical or filamentous, with a diameter of about
120–250 nm. The core inside is a single negative strand RNA,
without segmentation, and the full length of the genome is about
16 kb. Many studies have confirmed that MV has killing activity
in prostate cancer, mesothelioma, ovarian cancer and other
tumor cell lines (Hasegawa et al., 2006; Msaouel et al., 2009;
Xia et al., 2019; Delaunay et al., 2020). Loi K Phuong et al.
constructed MV-CEA, an MV that carries a gene encoding a
carcinoembryonic antigen (Phuong et al., 2003). In a clinical trial,
21 patients with relapsed ovarian cancer received multiple
intraperitoneal injections of MV-CEA within 4 weeks: 14 of
them had stable disease (SD) after treatment, and five patients
had decreased CA125 levels, which indicated that MV-CEA has
good tumor-killing activity. Therefore, MV-CEA is a potentially
effective antitumor drug.

4.1.4 Vaccinia Virus
Vaccinia virus is an enveloped virus. The genome of the vaccinia
virus is made up of double stranded DNA of nearly 200 kb and
replicates in the cytoplasm of the host cell (Greseth et al., 2012).
Several genetically modified VV strains have been extensively
tested in clinical trials (Guo et al., 2019). J H Kim et al. developed
JX-594, a targeted, thymidine kinase (−) vaccinia virus expressing
human GM-CSF. It can replicate in cancer cells and activate the
body’s antitumor immune response by expressing GM-CSF(Kim
et al., 2006; Heo et al., 2013). A phase 1b study showed that
administration of JX-594 via intravenous infusion once every
2 weeks was safe and well tolerated (Park et al., 2015). A new
phase 1/2 study in early-stage tumors revealed that the
combination of JX-594 and chemotherapy had a synergistic
effect. However, the phase III study of JX-594/Sorafenib was
terminated early. Combination therapy beyond Sorafenib
monotherapy has yet failed to demonstrate superiority.
Though it’s a clinical failure for oncolytic virotherapy,

TABLE 2 | (Continued) Oncolytic virus anti-tumor clinical trials.

Virus Modification Virus
administration

Status Indication Therapeutic
Approach

Clinical trials Status

Newcastle Disease
Virus

PV701 None Intravenous I Squamous Cell Carcinoma of the
Larynx, Salivary Gland Cancer

OV only NCT00081211 Terminated
NCT00055705 Completed

NDV-HUJ None Intravenous I-II Glioblastoma, Sarcoma,
Neuroblastoma

OV only NCT01174537 Withdrawn

Coxsackievirus

Cavatak (CVA21) None Intravenous and
Intratumoural

I-II Bladder Cancer, NSCLC, Uveal
Melanoma, Breast Cancer,
Prostate Cancer, Head and Neck
Cancer

Combination or
OV only

NCT00636558
NCT03408587
NCT01636882

Completed
Completed
Complete

Vesicular Stomatitis
Virus

VSV-hIFNβ IFN-β insertion Intratumoural I Head and Neck Squamous Cell
Carcinoma, NSCLC,
Hepatocellular Carcinoma

Combination NCT02923466
NCT01628640

Active
Active
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Sorafenib was further shown to inhibit vaccinia virus replication
in tumor cells, which indicates that JX-594 may not very suitable
in the combination with Sorafenib (Gilchrist et al., 2020).

4.1.5 Reoviruses
Reoviruses are naked viruses with 10 segments of double-stranded
DNA genomes. They are widely present in human respiratory and
digestive tracts (Müller et al., 2020). Pelareorep, a serotype 3 reovirus,
showed encouraging antitumor efficacy in combination with
pembrolizumab in patients with advanced pancreatic
adenocarcinoma (Mahalingam et al., 2020). Studies have shown
that intratumoral injection and intravenous applications of reovirus
are safe and tolerable (Samson et al., 2018). In clinical studies of
intravenous injection of reovirus combined with administration of
chemotherapeutics, such as carboplatin and paclitaxel, the patient
survival period was significantly prolonged, and tumor progression
has been inhibited (Kyula et al., 2012).

4.1.6 Newcastle Disease Virus
Newcastle disease virus is a ssRNA virus with an envelope. Virus
particles are pleomorphic, including round, elliptical, and long
rod-shaped. Since the Newcastle disease virus (NDV) was first
discovered to replicate and kill tumor cells in 1955, researchers
have investigated its potential as a tumor treatment (Hanson and
Brandly, 1955; Wei et al., 2015). Due to tumor-specific defects in
the IFN-mediated antiviral response, PV701, a natural attenuated
virus, kills tumors selectively (Pecora et al., 2002). Seventy-nine
patients with solid tumors were enrolled in a phase I clinical trial
evaluating intravenously injected of PV701(Lorence et al., 2003).
Among them, one patient with tonsil squamous cell carcinoma
experienced tumor regression after treatment, and seven patients
with different tumor types experienced tumor shrinkage.
However, a patient with lung metastases died. The autopsy
revealed severe inflammation in the lung tissue, which might
have been related to the PV701 treatment.

4.1.7 Coxsackieviruses
Coxsackieviruses are non-enveloped viruses with single-stranded
and positive polarity RNA genome and belong to the picornavirus
family of the enterovirus genus (Kaese et al., 2017).
Coxsackieviruses can be divided into two types, A and B. They
are common viruses that infect the human body through the
respiratory and digestive tracts. Coxsackievirus A21 (CVA21) is a
naturally ICAM-1-targeted RNA virus (Müller et al., 2019). It can
target ICAM-1-expressing tumor cells, leading to a systemic
antitumor immune response. Phase I of the CVA21 study was
conducted as part of an experimental treatment for bladder
cancer, and the results confirmed that CVA21 is effective as
an antitumor treatment by inducing immunogenic apoptosis in
cancer cell lines (Annels et al., 2019).

4.1.8 Vesicular Stomatitis Virus
Vesicular Stomatitis Virus (VSV) is an enveloped, single-stranded
negative sense RNA viruses of the family Rhabdoviridae (Nikolic
et al., 2018). Two major serotypes of VSV have been identified,
with representative strains named Indiana (VSIV) and New
Jersey (VSNJV) strains (Velazquez-Salinas et al., 2017).

Vesicular stomatitis virus (VSV) can preferentially kill tumor
cells with defective antiviral responses and has effective antitumor
activity (Durham et al., 2017). Masatsugu Obuchi et al. genetically
engineered VSV-hIFNβ that highly expresses the murine IFN-
beta gene. While nonlytic against normal human cells, it easily
kills tumor cells. Many clinical trials evaluating VSV-hIFNβ for
different cancer types, such as head and neck cancer, lung cancer,
melanoma, liver cancer, and endometrial cancer, are ongoing
(Sterman et al., 2007; Willmon et al., 2009).

4.1.9 Novel Nano-Pseudovirus
Yingzhong Li et al. constructed a novel nano-pseudovirus that
mimics the characteristics of oncolytic viruses that trigger
immune responses in the body (Li et al., 2020). The nano-
pseudoviruses carry self-replicating RNA, which can activate
the TLR3 signaling pathway, induce the body’s immune
response and promote the immunogenic cell death (ICD) of
tumor cells. Preclinical research data show that 60–90% of
melanoma and colon cancer lesions can be eliminated by one
treatment with nanopseudovirus. The nano-pseudovirus can also
effectively inhibit tumors in cases in which lung metastases have
already formed. More clinical studies are needed in the future to
verify the clinical safety and effectiveness of this approach.

4.2 Combined Therapy
The multifunctional characteristics of oncolytic viruses in the
process of tumor treatment endow them with great potential for
synergy when used in combination with other drugs. At present,
substantial evidence indicates that oncolytic virus therapy can
induce ICD when used in combination with radiotherapy,
chemotherapy and other immunotherapies by enhancing
tumor cell antigenicity or susceptibility to immune cells.

4.2.1 Radiotherapy
With the emergence of strategies combining oncolytic virus
therapy with radiotherapy, the relationship between the two
therapies has attracted the attention of researchers. The
combination strategy has shown synergistic antitumor effects
in various preclinical studies (Touchefeu et al., 2011; Mell et al.,
2017). In some instances, radiotherapy could enhance oncolysis
partly because it increases the virus replication rate. Radiotherapy
promotes the upregulation of intracellular GADD34 expression,
which can functionally replace γ34.5, promote continuous
protein synthesis, and increase the virus replication rate (Chou
and Roizman, 1994; Kramm et al., 1997). After irradiation, the
expression level of the coxsackie-adenovirus receptor (CAR) and/
or integrins increases, which leads to an increase in the uptake of
the virus (Qian et al., 2005). As a radiation-inducing element,
Egr-1 can enhance the expression of transgenes caused by
radiation. TRAIL is an apoptosis-related gene (Oikonomou
and Pintzas, 2013). Treatment of tumor cells with adenovirus
expressing Egr-1/TRAIL combined with radiotherapy can induce
high TRAIL expression levels. During this process, the expression
of caspase3 and caspase8 can be increased, and their biological
effects on apoptosis are also improved. These changes induce
tumor regression and improve the survival time of tumor-bearing
mice (Zhou et al., 2010; Wang et al., 2012).
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4.2.2 Chemotherapy
Chemotherapy is a common cancer treatment. However, tumor
cells can develop resistance to chemotherapy drugs, often leading
to chemotherapy failure. In recent years, some studies have
proven that oncolytic viruses combined with chemotherapeutic
drugs have significantly improved efficacy compared with the
original single-drug treatment. When ONYX-015 is combined
with the chemotherapeutic drugs cisplatin and 5-FU, the
objective remission rate can reach 65%, significantly higher
than the 15% response rate of ONYX-015 alone (Khuri et al.,
2000). Experimental data showed that combining the oncolytic
virus H101 with chemotherapy can have antitumor effects by
inducing cell cycle arrest in tumor cells (Cun et al., 2012).
Combining vincristine (VCR) with oncolytic adenovirus
SG600 slowed tumor growth by altering the cell cycle and
reducing Akt phosphorylation (which normally induces
chemotherapy resistance), thus increasing the sensitivity of the
tumor cells to VCR. It was further confirmed that VCR does not
affect the replication of SG600, ensuring oncolysis efficacy (Song
et al., 2012).

4.2.3 Targeted Therapies
Targeted therapy inhibits the growth of tumor cells by acting on
important tumorigenesis and development pathways. The
combination of T-VEC and MEK inhibitors enhanced
melanoma cell death in vitro, suppressed tumor growth and
prolonged survival in mouse models (Bommareddy et al.,
2018b). Combining si-Notch1 treatment with the oncolytic
virus H101 did not affect viral replication and enhanced
tumor cell apoptosis compared with the use of the single-agent
therapy (Huang et al., 2012a; Yao et al., 2012). H101 combined
with si-Bcl acts on the bax-p53 pathway, resulting in cell
apoptosis and cell cycle arrest (Zhang et al., 2009; Huang
et al., 2012b). GNAQ mutations are known to be associated
with uveal melanoma (Jager et al., 2020). Combined therapy using
si-GNAQ and H101 inhibits the proliferation of uveal melanoma
cells by blocking the phosphorylation of mek1/2 and promoting
the phosphorylation of yap (Li et al., 2019).

Immune checkpoint blockade (ICB) aims to resolve tumor
escape by reversing tumor immunosuppressive signals. ICB
cannot target tumors with low expression levels of immune
checkpoint proteins; thus, no antitumor effects are observed in
such tumors (Benci et al., 2016). When oncolytic viruses are
used in combination with ICB drugs, the viruses can induce a
large number of immune cells to infiltrate the tumor
(Harrington et al., 2019). The tumor cells will further
increase the expression level of checkpoint molecules, such
as PD-L1 and CTLA-4, and induce the development of a self-
protection mechanism to escape immune attacks. Such
combinations expand the scope of ICB drugs and enhance
tumor sensitivity to ICB (Raja et al., 2018).

In a murine colon carcinoma model, the combination of a
recombinant VV expressing CXCL11 and PD-L1 inhibitors was
significantly more effective than monotherapy (Liu et al., 2017).
In a phase I clinical study evaluating melanoma patients,
combined treatment with T-VEC and the PD1 monoclonal
antibody pembrolizumab yielded an objective response rate of

62% among 21 patients, and the complete response rate was 33%.
In addition, the expression levels of PD-L1 and IFN-γ were
increased, and T cells infiltrated significantly into tumor
tissues (Ribas et al., 2017).

4.2.4 Adoptive T Cell Therapy
Adoptive T cell therapy is a powerful strategy to augment T cell
immune responses and improve antitumor capabilities (Restifo
et al., 2012). Studies have revealed that oncolytic viruses enhance
CAR-T cell recruitment by triggering antitumoral immunity
(Wing et al., 2018). In a mouse neuroblastoma model,
combined treatment with an oncolytic adenovirus (Ad5A24)
expressing CCl5 and IL-15 and CAR-T cells targeting the
tumor-associated ganglioside gd2 increased the overall survival
period and survival rate of mice, and the function of CAR-T cells
was strengthened (Nishio and Dotti, 2015). Recently, a new study
reported that combined therapy with oncolytic viruses and CAR-
T cells can overcome the barriers of the tumor microenvironment
and can successfully target and eradicate solid tumors that are
otherwise difficult to treat with CAR-T cell therapy alone. In this
study, researchers engineered the oncolytic virus to infect tumor
cells and force tumor cell surface expression of CD19. Thus, the
oncolytic efficacy of CD19-targeted CAR-T cells was enhanced
(Park et al., 2020).

5. DEFICIENCIES AND IMPROVEMENTS
FOR ONCOLYTIC VIRUSES

5.1 Production
The active replication properties of oncolytic viruses pose a
unique challenge for monitoring and production. Most viruses
multiply in tissues, and methods for high-titer virus production,
foreign pathogen detection, viral purity determination and viral
replication potential are required (Langfield et al., 2011). Such
methods are costly, and existing technologies do not fully meet
the requirements, limiting the large-scale production of oncolytic
viruses. For some viruses, it is difficult to obtain the extremely
high-titer lysate required for clinical doses; thus, oncolytic virus
manufacturing is more challenging than the manufacturing of
traditional biological products (Ungerechts et al., 2016). In
addition, regulatory guidance and quality control systems for
the manufacture of oncolytic viruses are not yet complete. It is
necessary to consider safety issues related to production and
amplification processes.

5.2 Barriers
Many factors determine the efficacy of oncolytic viruses in the
body. There are some physical barriers in the body, such as
macrophages, which can directly capture viruses in organs such as
the liver, thereby reducing the viral titer in the body and affecting
the oncolytic effect (Fulci et al., 2007; Yang et al., 2015).
Macrophages are affected by clodronate; therefore, clodronate
treatment may solve this problem (Denton et al., 2018). The use
of appropriate cell carriers and liver off-target technology can also
reduce the impact of macrophages on the virus (Power and Bell,
2008).
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The body’s immune barriers and antiviral responses can
inhibit viral replication and lead to resistance to oncolytic
viruses. Studies have shown that UL41 of HSV encodes host
closure protein, which can shut down the synthesis of host
proteins, destroy pre-existing polysomes, degrade host mRNA,
and interfere with the production of viral offspring (Su and
Zheng, 2017). This blockade of host protein production is not
conducive to the expansion of neoantigen-reactive CTLs. To
avoid the restriction caused by the blockade of host protein
production, it is better to choose viruses that have evolved to
inhibit or shut down host cell protein synthesis when selecting
oncolytic viruses. Genetic engineering can also be used to insert
sequences into the viral genome that regulate biomolecules in the
host protein synthesis pathways, thereby avoiding the impact of
host protein shutdown on the oncolytic effect. After recognizing
PRRs, the virus can promote the production of IFN1 and induce
the inherent cellular antiviral response. Another method is the
use of histone deacetylase inhibitors (HDIs), which are small
molecules that were developed as anticancer agents
(Gumbarewicz et al., 2016). HDIs can not only directly kill
cancer cells but can also be combined with oncolytic viruses to
reduce the antiviral immune response in the body. Nguyen et al.
demonstrated that HDIs can enhance the activity of oncolytic
viruses in multiple systems in vivo and in vitro (Nguyên et al.,
2008) (Figure 3). However, safety is an important consideration
when administering immunosuppressants, and systemic
infectious diseases must be avoided.

5.3 Safety
The most common adverse events due to oncolytic viruses are
low-grade systemic symptoms and local injection site
reactions. Fever is the most common treatment-related
adverse event, and the viruses can also cause chills, nausea

and vomiting, flu-like symptoms, fatigue, and pain (Macedo
et al., 2020). A recent clinical study showed that monotherapy
and combined therapy with G207 significantly improve the
prognosis of pediatric high-grade gliomas, with good safety
and tolerability, which indicates that oncolytic viruses are not
only safe and effective for adults, but also show good tolerance
in children (Friedman et al., 2021). Generally, the safety of
oncolytic viruses is acceptable. However, oncolytic viruses are
not entirely safe, and some safety problems urgently need to be
solved. Although genetically engineered oncolytic viruses have
increased targeting and decreased toxicity, they still have off-
target and unexpected toxic effects (Buijs et al., 2015). Qiao
et al. observed that the use of cyclophosphamide to suppress
the immune response and the ablation of neutralizing
antibodies can lead to severe reovirus toxicity (Qiao et al.,
2008). The oncolytic virus VSV has been shown to have low
targeting ability and is mainly found in large numbers in
normal tissues. In IFN-α/β knockout mice, VSV can exhibit
severe toxicity. Such experiments have proven that although
the immune system may reduce the antitumor effect of
oncolytic viruses, it also plays an important role in limiting
the virus and maintaining safety. Researchers are continuously
making efforts to improve tumor targeting and virus potency.
To improve tumor targeting ability, sequences of differentially
expressed microRNAs are integrated into OVs, which can be
adapted to various viruses and reduce damage to healthy cells
(Ruiz and Russell, 2015). Ad (CgA-E1A-miR122) was
constructed using miR-122 to regulate E1A expression,
ensuring selective replication in tumors. Studies have shown
that this combination of transcriptional and
posttranscriptional regulation allows higher doses of
adenovirus for antitumor treatment without liver toxicity
(Leja et al., 2010).

FIGURE 3 | Therapeutic barriers of oncolytic viruses. There are two main barriers to the induction of antitumor effects by oncolytic viruses. (A) Macrophages can
directly capture viruses in organs such as the liver. Macrophages reduce the virus titer and the antitumor effects through phagocytosis. (B) The other barrier for oncolytic
viruses is blockade of host protein synthesis. Oncolytic viruses encode host closure proteins that can shut down synthesis of host proteins, destroy pre-existing
polysomes, degrade host mRNAs, and interfere with the production of viral offspring. This “host shutoff” is not conducive to virus replication or the expansion of
neoantigen-reactive CTLs.
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6. DISCUSSION

Oncolytic viruses are natural or genetically modified viruses that
can selectively replicate in tumor cells and have long been
recognized for their ability to kill cancer cells. Many years of
research have shed light on the mechanism by which oncolytic
viruses kill tumors. Oncolytic viruses not only kill tumor cells
directly through virus replication but also convert cold tumors
into hot tumors by regulating the release of immune-related
molecules, enhancing the immunogenicity of tumors, and
promoting the maturation, migration and infiltration of
immune cells, thereby improving the antitumor immune
response. In addition, oncolytic viruses can affect the
neovascularization of tumors and inhibit tumor growth. The
effectiveness of the oncolytic virus depends on the oncolytic
virus infecting tumor cells in a sufficient number. The dose-
response relationship of OVs cannot be predicted easily and
varies across different methods of delivery (Peng et al., 2006). As
the best route of administration is still uncertain, it is essential to
explore suitable routes. The most common route of OV
administration is intratumoral injection. This approach has
advantages in avoiding hemodilution and the anti-vector
immunity response. It can also decrease the risk for off-target
side effects. However, this method has some deficiencies.
Intratumoral administration is associated with a risk for deep
tissue injuries and bleeding in some tumors, such as intracranial
tumors and malignancies near the edge of the liver. Meanwhile,
the lack of secondary viremia may result in limited immune
activity (Andtbacka et al., 2016). The advantage of intravenous
delivery is that multiple sites (including metastasis sites) can be
targeted regardless of tumor location; additionally, the therapy is
easy to administer (Bommareddy et al., 2018a). However,
hemodilution is a limiting factor (Breitbach et al., 2011). The
tumor is not accessible when it comes to isolation in non-target
organs or the inability of the virus to extravasate through the
vasculature (Ferguson et al., 2012). There are other routes of
administration for specific types of tumor, such as
intraperitoneal delivery for digestive tract malignancy (Kulu
et al., 2009), isolated limb perfusion for extremity sarcoma
(Pencavel et al., 2015) and aerosol delivery for lung tumors

(Hong et al., 2015). Developing suitable drug delivery systems
is an important direction for oncolytic virus research.
Recently, many clinical trials evaluating oncolytic viruses
have been carried out, involving different types of viruses
and tumors. Treatment methods also vary from single-drug
therapies to multidrug combination therapies. Most trials have
achieved good results. Although oncolytic viruses have
immeasurable application potential and can be marketed as
therapeutic agents, some barriers exist to their production and
application. Current molecular biotechnology strategies have
enhanced the targeting and killing effects of oncolytic viruses;
however, to develop tumor treatment methods with higher
curative effects and lower adverse reaction rates, further
development is needed. Additionally, because the
production technology used to generate oncolytic viruses is
not perfect, and there is no unified standard for the supervision
and quality inspection of industrial production, there are still
barriers to the large-scale production and application of
oncolytic viruses. Therefore, more extensive research on
oncolytic viruses is needed in the future to develop more
optimized treatments.
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GLOSSARY

5-FU 5-fluorouracil

Ad-199T Adenovirus-199T

BBB Blood-brain barrier

CAR coxsackie-adenovirus receptor

CAR-T Chimeric Antigen Receptor T-Cell Immunotherapy

cGAS cyclic GMP–AMP synthase

CTL cytotoxic T lymphocyte

DAMP damage-associated molecular pattern

DC dendritic cell

DC-Mel dendritic cells loaded with human melanoma Mel888 cells

DCN decorin

dsDNA double-stranded DNA

dsRNA double-stranded RNA

ECM extracellular matrix

FDA Food and Drug Administration

FdUMP fluorodeoxyuracil monophosphate

FUTP fluorouracil triphosphate

HCC hepatocellular carcinoma

hTNF-α human tumor necrosis factor α

HSP Heat shock protein

HSV herpes simplex virus

ICB Immune checkpoint blockade

ICD immunogenic cell death

mDC mature dendritic cell

MV measles virus

NK natural killer cell

NDV newcastle disease virus

PAMP pathogen-associated molecular pattern

Pexa-Vec(JX-594) pexastimogene devacirepvec

ssDNA single-stranded DNA

ssRNA single-stranded RNA

STING stimulator of interferon genes

TAA tumor-associated antigen

TIL tumor infiltrating lymphocyte

UL41 HSV virion host shutoff protein

VAP virus adsorption protein

VCR vincristine

VDEPT virus-directed enzymatic prodrug therapy

VEGF vascular endothelial growth factor

VSV vesicular stomatitis virus

VV vaccinia virus
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