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Diabetes is a widespread metabolic disease with various complications, including diabetic
nephropathy, retinopathy, cardiomyopathy, and other cardiovascular or cerebrovascular
diseases. As the prevalence of diabetes increases in all age groups worldwide, diabetes
and its complications cause an emerging public health burden. NLRP3 inflammasome is a
complex of several proteins that play a critical role in inflammatory response and various
diseases, including diabetes and its complications. Accumulating evidences indicate that
NLRP3 inflammasome contributes to the development of diabetes and diabetic
complications and that NLRP3 inflammation inactivation is beneficial in treating these
illnesses. Emerging evidences suggest the critical role of long non-coding RNAs (lncRNAs)
in regulating NLRP3 inflammasome activity in various diseases. LncRNAs are non-coding
RNAs exceeding 200 nucleotides in length. Its dysregulation has been linked to the
development of diseases, including diabetes. Recently, growing evidences hint that
regulating lncRNAs on NLRP3 inflammasome is critical in developing and progressing
diabetes and diabetic complications. Here, we discuss the role of lncRNAs in regulating
NLRP3 inflammasome as well as its participation in diabetes and diabetic complications,
providing novel insights into developing future therapeutic approaches for diabetes.
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INTRODUCTION

Diabetes is a chronic metabolic disorder characterized by hyperglycaemia. Persistent hyperglycaemia
and long-term metabolic disorders can damage a wide range of organs throughout the body,
including diabetic nephropathy, retinopathy, cardiomyopathy, and many other complications
(Forbes and Cooper, 2013; Reddy et al., 2015; Vujosevic et al., 2020). As the prevalence for all
age groups increases worldwide, diabetes and its related complications not only impair physical and
psychological properties of people but also impose a tremendous burden on society, both in
economic and well-being terms (Cho et al., 2018). Therefore, a better understanding of the
pathogenesis of diabetes and its complications is crucial for identifying therapeutic targets and
developing effective medications.

The pathogenesis of diabetes and its complications is complex and encompasses a plethora of
distinct pathways. Inflammation plays a vital role in diabetes and its complications, and the
underlying mechanisms have been investigated for a prolonged time. An early clinical trial has
indicated that high inflammation levels were strongly associated with type 2 diabetes (Bertoni et al.,
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2010). Chen G. and Goeddel D. V. depicted an authoritative
tumor necrosis factor receptor-1 (TNF-R1)-mediated
inflammatory signaling pathway that was implicated in the
pathogenesis of diabetes (Chen and Goeddel, 2002). Obesity-
associated diabetes causes an intensified crisis via numerous fat-
derived molecules, such as IkappaB kinase, which seriously
provoke inflammation (Lazar, 2005; Olefsky, 2009). In
addition, previous research has proved that chronic
inflammatory stimulation can cause a surge in plasma glucose
levels by inhibiting the rate-limiting enzyme of bile acid
biosynthesis, CYP7A1, which is linked to hepatic mevalonate
pathway regulation (Okin and Medzhitov, 2016). Recently,
several lncRNAs have been implicated in the inflammation
associated with diabetes and its complications. Kato and
others discovered that a megacluster of nearly 40 microRNAs
(miRNAs) hosted by long non-coding RNA-megacluster (lnc-
MGC) is coordinately upregulated to induce renal extracellular
matrix accumulation and glomerular hypertrophy through

cumulative effects in diabetic nephropathy (Kato et al., 2016).
A study revealed that long non-coding RNA (lncRNA) and
microRNA (miRNA) are correlated with inflammatory
response, oxidative stress, apoptosis, hypertrophy, and fibrosis
in diabetic cardiomyopathy, implying the development of new
therapeutic and preventative strategies in diabetes complications
(Jakubik et al., 2021).

Currently, NLRP3 inflammasome activation is a prominent
mechanism of inflammation response (Haneklaus et al., 2013;
Swanson et al., 2019; Sharma and Kanneganti, 2021). NLRP3
inflammasomes are innate immune system protein complexes
composed of NLRP3 (Figure 1); the adaptor protein apoptosis-
associated speck-like protein (ASC), proinflammatory caspase,
and caspase-1 (Swanson et al., 2019). NLRP3 is an intracellular
sensor that detects a broad range of microbial motifs, endogenous
danger signals, and environmental irritants. ASC is mainly
distributed in the nucleus of human monocytes/macrophages.
It quickly transfers to the cytoplasm under stress, connecting

FIGURE 1 | Mechanisms of NLRP3 inflammasome activation. NLRP3 inflammasome must be primed, followed by activation. The priming step is activated by
pathogen-associated molecular patterns (PAMPs) or cytokines, leading to transcriptional upregulation of NLRP3, pro-IL-1β, and pro-IL-18. The activation step is induced by
numerous PAMPs or damage-associated molecular patterns (DAMPs), such as particulates, pore-forming toxins, and ATP. RNA viruses activate NLRP3 through
mitochondrial antiviral signaling protein (MAVS) on the mitochondrial outer membrane. NLRP3 inflammasome activates caspase-1, which in turn cleaves pro-IL-1β and
pro-IL-18.GasderminD (GSDMD) is also cleaved and inserted into themembrane, forming pores and inducing pyroptosis. GSDMDNterm,GSDMDamino-terminal cell death
domain; NEK7, NIMA-related kinase 7; NF-κB, nuclear factor-κB; P2X7, P2X purinoceptor 7; ROS, reactive oxygen species; TLR, Toll-like receptor; TNF, tumor necrosis
factor; TNFR, tumor necrosis factor receptor; TWIK2, two-pore domain weak inwardly rectifying K+ channel 2. This figure was created with BioRender.com.
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NLRP3 and pro-caspase-1. Caspase-1 is the effector protein of
NLRP3 inflammasome, cleaved by the precursor molecule pro-
caspase-1. Recently, NIMA-related kinase 7 (NEK7) is a serine-
threonine kinase that appears to be a component specific to
NLRP3 inflammasome (Shi H. et al., 2016; He et al., 2016;
Schmid-Burgk et al., 2016). Upon inflammasome activation,
NEK7 oligomerizes with NLRP3 into a complex essential for
ASC speck formation and caspase-1 activation. Since
inflammasome activation is an inflammatory process, it must
be strictly regulated. With few exceptions, inflammasome
activation is considered a two-step process (Guo et al., 2015;
Swanson et al., 2019). First, it must be primed, and then it can be
activated. The first step is to promote nuclear factor-κB (NF-κB)
into the nucleus and upregulate the expression of NLRP3,
caspase-1, and pro-IL-1β (Bauernfeind et al., 2009). This
transcriptional upregulation can be induced through pattern
recognition receptors (PRRs) such as Toll-like receptors
(TLRs) recognizing various pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns
(DAMPs), or through cytokines such as TNF and IL-1β (Xing
et al., 2017). The second step is activated by recognizing NLRP3
activators such as ATP, pore-forming toxins, viral RNA, or
particulate matter. This cellular and molecular effect promotes
the oligomerization of inflammasomes and leads to caspase-1-
dependent release of pro-inflammatory cytokines IL-1β and IL-
18, as well as gasdermin D (GSDMD)-mediated pyroptotic cell
death (Rathinam and Fitzgerald, 2016; Swanson et al., 2019).

Increasing evidence demonstrates that NLRP3 inflammasome
is implicated in developing diabetes and associated complications
(Schroder et al., 2010; Wada and Makino, 2016; Tang and Yiu,
2020; Li et al., 2021). Diabetes and its complications activate
NLRP3 inflammasome through hyperglycemia,
hypercholesterolemia, and hyperuricemia, resulting in a rise of
IL-1β and IL-18 levels and inducing inflammatory response
(Schroder et al., 2010). The current study revealed that
reducing NLRP3 inflammasome activation can prevent and
reduce diabetic complications (Ashrafizadeh et al., 2021; Li
et al., 2021). As an upstream regulator of NLRP3
inflammasome, lncRNA can exert control over diabetes and its
complications (Li et al., 2017b). Understanding the mechanism
by which lncRNA regulates NLRP3 inflammasome is significant
to discover novel therapeutic targets for diabetes and its

complications. This review summarizes the mechanism by
which lncRNAs contribute to the development of diabetes and
its complications by regulating NLRP3 inflammasome.

THE MECHANISM OF LNCRNA INVOLVED
IN NLRP3 INFLAMMASOME REGULATION

LncRNAs are linear non-coding RNAs having a length of more
than 200 nucleotides (Hon et al., 2017). According to their
relative protein-coding gene location in the genome, lncRNAs
can be classified into five types (Table 1) (Ponting et al., 2009):
(A) sense lncRNAs: their transcriptional direction is the same as
that of neighboring protein-coding gene; (B) antisense lncRNAs:
their transcriptional direction is opposite to that of neighboring
protein-coding genes; (C) bidirectional lncRNAs: they can be
simultaneously transcribed from the same and opposite direction
with neighboring protein-coding genes; transcription occurs in
the opposite two directions; (D) intronic lncRNAs: they can be
transcribed from the intronic regions of genes; and (E) intergenic
lncRNAs: they are derived from intergenic transcription of two
genes. In addition, lncRNAs can be classified into four categories
based on their biological functions (Table 1) (Guo et al., 2019):
(A) signals lncRNAs: act as molecular signals or indicators of
transcriptional activity; (B) decoy lncRNAs: bind to and sequester
other regulatory RNAs or proteins; (C) guide lncRNAs: direct the
localization of ribonucleoprotein complexes to specific targets;
(D): scaffold lncRNAs: act as platforms for the assembly of
relevant molecular elements (proteins and/or RNAs).

Recent evidence indicates that lncRNAs play essential
functions in many biological processes, such as X chromosome
inactivation, dosage compensation, genomic imprinting,
chromatin modification and remodeling, cellular proliferation,
differentiation, and apoptosis (Kopp and Mendell, 2018; Nair
et al., 2020). The mechanisms involved are mainly regulation at
gene expression levels. In general, lncRNAs regulate gene
expression through multiple pathways and molecular
mechanisms at three levels: epigenetic, transcriptional, and
post-transcriptional (Kopp and Mendell, 2018). On the one
hand, lncRNAs can regulate gene expression at the epigenetic
level (dosage compensating effects, chromatin modifications, and
genomic imprinting). On the other hand, lncRNAs can be
regulated at the transcriptional level by interfering with the
transcription of messenger RNA (mRNA) or other non-coding
RNAs, complexing with proteins, or acting through cis-acting
elements (Gil and Ulitsky, 2020). Moreover, lncRNAs can be
regulated at the post-transcriptional level by participating in
mRNA degradation, regulating mRNA translation, and
competitively binding miRNAs (Thomson and Dinger, 2016).

As known, lncRNAs not only regulate cell proliferation,
differentiation, and metabolism but also participate in the
pathological processes of various diseases, including cancer,
diabetes, and neurodegenerative diseases (Boon et al., 2016;
Leung and Natarajan, 2018; Feng et al., 2019; Guo et al.,
2019). Diabetes-induced inflammation has been linked to the
development of a variety of illnesses. As long-term hyperglycemia
induces inflammatory response, vascular and target organs

TABLE 1 | Two classification kinds of lncRNAs.

Category Feature

Classification based on genomic location
Sense LncRNA transcribed from the same direction
Antisense LncRNA transcribed from the opposite direction
Bidirectional LncRNA transcribed from the same and opposite direction
Intronic LncRNA transcribed from intronic regions of genes
Intergenic LncRNA transcribed from intergenic transcription of two genes
Classification based on function
Signals LncRNA act as molecular signal or indicator
Decoy LncRNA bind to and sequester other regulatory RNAs or proteins
Guide LncRNA direct the localization
Scaffold LncRNA act as platform
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damage occurs (Nolan et al., 2011), ultimately increasing the
incidence of tumors (Shikata et al., 2013; Singh et al., 2021),
cardiovascular and cerebrovascular diseases (Kozakova et al.,
2019; Eckel et al., 2021), and other infections (D’Elia et al.,
1991; Knapp, 2013; Fang et al., 2021). NLRP3 inflammasome
regulation by lncRNAs is a current research hotspot and has been
widely documented in many diseases, such as inflammatory
bowel diseases (Samoilă et al., 2020), Parkinson’s disease
(Haque et al., 2020; Cao et al., 2021), and cancer (Farooqi
et al., 2020; Tang et al., 2020). Studies indicate that lncRNAs
and NLRP3 inflammasome are overexpressed in diabetes
complications, implying that lncRNAs could cause
inflammatory responses by activating NLRP3 inflammasome
(Hu et al., 2019; Farooqi et al., 2020; Liu et al., 2020).

Notably, a vast number of studies have demonstrated that
upregulation or downregulation of lncRNAs can inhibit
NLRP3 inflammasome activation and reduce inflammatory
response, hence improving diabetic complications (Xie
et al., 2019; Liu et al., 2021). LncRNAs indirectly regulate
NLRP3 inflammasome by acting as competing endogenous
RNAs (ceRNAs) and sponging miRNAs (Figure 2). miRNAs

could directly regulate downstream protein NLRP3
expression, ultimately affecting NLRP3/IL-1β pathway.
Numerous investigations have demonstrated this lncRNA/
miRNA-mediated NLRP3 inflammasome regulation
mechanism in diabetic complications (Che et al., 2020c; Du
et al., 2020; Liu et al., 2020; Xu et al., 2020; Wang and Zhao,
2021).

REGULATION OF LNCRNA ON NLRP3
INFLAMMATION IN DIABETES AND ITS
COMPLICATIONS
Nephropathy
Diabetic nephropathy (DN) is a microvascular complication
caused by diabetes-induced glomerular capillary damage. The
main pathogenesis comprises glucose metabolism disorder,
abnormal renal hemodynamics, extracellular matrix
accumulation, abnormal expression of cytokines, genetic
factors, and reactive oxygen species (ROS) formation (Wolf,
2004).

FIGURE 2 | Mechanisms of long non-coding RNAs involved in inflammatory responses of diabetic complications via NLRP3 inflammasome. These experiments
used high-glucose induction to establish diabetic mouse models. LncRNA-Gm4419 activates NF-κB pathway to upregulate NLRP3 expression in DN. LncRNA-
MALAT1 activates ASK1/p38 pathway to upregulate NLRP3 in DR. In addition, most lncRNAs, such as ANRIL, Kcnq1ot1, NEAT1, HCP5, SNHG16, H19, and HCG18
promote or inhibit NLRP3 expression by sponging miRNA and regulating downstream target genes. NLRP3 and pro-caspase-1 are indispensable to NLRP3
inflammasome assembly. NLRP3 inflammasome activates pro-caspase-1 into caspase-1, promoting IL-1β and IL-18 generation. NF-κB, nuclear factor-κB; ASK1,
apoptosis signal-regulating kinase 1; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; lncRNA, long non-coding RNA; miRNA, microRNA; ANRIL,
antisense noncoding RNA in the INK4 locus; Kcnq1ot1, Kcnq1 overlapping transcript 1; NEAT1, nuclear-enriched abundant transcript 1; HCP5, HLA complex P5;
SNHG16, small nucleolar RNA host gene 16; HCG18, HLA complex group 18.
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Numerous studies have demonstrated that inflammation plays
a key role in DN pathogenesis, proving possible regulatory
mechanisms (Matoba et al., 2019). NF-κB signal pathway is
not only one of the principal inflammatory signal pathways in
DN progression but also the signal pathway that governs DNA
transcription in vivo. One recent study revealed that long
intergenic noncoding RNA (lincRNA)-Gm4419 expression is
elevated in mesangial cells (MCs) under a high glucose
medium. Gm4419 can directly interact with P50, a functional
subunit of NF-κB, activating NF-κB pathway. Meanwhile, P50
promotes transcription of NLRP3 inflammasome and
inflammatory cytokines. These results indicate that Gm4419
may contribute to inflammation, fibrosis, and proliferation in
MCs exposed to high glucose via NF-κB/NLRP3 inflammasome
signaling pathway (Yi et al., 2017). NLRP3 inflammasome
activation causes podocyte pyroptosis, proliferation of MCs,
and renal tubular injury (Xiong et al., 2021). Interestingly, P50
can form a positive synergistic Gm4419 regulation in MCs (Yi
et al., 2017).

Studies have indicated that lncRNAs can act as regulators by
interacting with particular miRNAs in DN. Zhang C et al. found
that lncRNAs promote podocyte pyroptosis by NLRP3
upregulation through interaction with microRNA (miR)-486a-
3p. Additionally, podocytes were induced by sublytic
complement C5b-9 (sC5b-9) in vitro (Zhang et al., 2021). This
means that lncRNA/miRNA/NLRP3 signal pathway can be
activated under specific conditions. Another experiment
revealed that DN serum samples and high-glucose (HG)-
treated MCs increased lncRNA-HLA complex P5 (HCP5) and
high mobility group AT-hook 2 (HMGA2) expression and
decreased miR-93-5p expression. Experiments have verified
that lncRNA-HCP5 upregulates HMGA2 expression via miR-
93-5p sponging. Additionally, HMGA2 can promote the release
of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6.
Therefore, targeting lncRNA-HCP5/miR-93-5p/HMGA2 axis
can inhibit hyperproliferation, fibrosis, and inflammation of
HG-treated MCs (Wang X. et al., 2021). In addition, there are
additional similar signaling pathways that have a similar function
in DN (Li et al., 2017b; Liu et al., 2020; Zhan et al., 2020; Zhu et al.,
2020). Specifically, long noncoding RNA-growth arrest-specific 5
(lncRNA-GAS5) expression was downregulated in HG-induced
human renal tubular (HK-2) cells. Meanwhile, GAS5
overexpression could downregulate the expression of NLRP3,
cleaved-caspase1, IL-1β, and GSDMD-N by directly targeting
miR-452-5p (Xie et al., 2019). However, the specific inhibitory
mechanism remains unclear. It may competitively inhibit NLRP3
expression by promoting the expression of specific
downstream genes.

Thioredoxin-interacting protein (TXNIP) as a mediator of OS
(oxidative stress) was implicated in activating NLRP3
inflammasome in DN progression (Samra et al., 2016). Both
lncRNA-antisense noncoding RNA in the INK4 locus (ANRIL)
and TXNIP expressions were significantly increased in DN
kidney tissues and HG-treated HK-2 cells, whereas miR-497
was reduced. ANRIL has been proved to promote pyroptosis
in DN, most likely via miR-497/TXNIP/NLRP3 pathway
transmission (Wang and Zhao, 2021). Another research

revealed that maternally expressed 3 (MEG3) knockdown
resisted hyperoxia-induced lung cell pyroptosis by promoting
miR-18a expression, whereas miR-18a inhibited TXNIP (Zou
et al., 2020).

Overall, these outcomes reveal that lncRNA plays a critical
part in DN pathogenesis (Table 2). In recent years, DN-specific
processes, such as podocyte loss, glomerulosclerosis, and
tubulointerstitial fibrosis, mediated by lncRNA through acting
on NLRP3 inflammasome, have garnered considerable attention.
However, the critical regulatory targets remain unknown. Further
mechanism research is required to provide new ideas for DN
treatment.

Retinopathy
Diabetic retinopathy (DR) is a significant consequence of diabetes
caused by diabetic microvascular disease. Approximately one-
third of diabetic patients have DR (Wong et al., 2016). The
pathophysiological processes of DR mainly include abnormal
proliferation, migration, and neovascularization in the retina (Cai
et al., 2021).

Although the mechanisms by which lncRNAs contribute to
DR remain largely unclear, an increasing number of studies has
demonstrated critical regulatory functions of various lncRNAs in
microvascular dysfunction. For instance, Yan et al. has explored
the mechanism of retinal microvascular dysfunction caused by
diabetes and found that lncRNA-myocardial infarction-
associated transcript (MIAT) expression increased in diabetic
retinopathy. MIAT can act as a competing endogenous RNA,
forming a feedback loop with vascular endothelial growth factor
and miR-150-5p to regulate endothelial cell function, thereby
contributing to pathological angiogenesis (Yan et al., 2015).

DR is a major cause of blindness in middle-aged and elderly
patients. Visual function is a significant function of the body. If it
can be protected early, it improves health-related quality of life in
patients. Recently, one research has demonstrated that lncRNA
small nucleolar RNA host gene 16 (SNHG16) upregulation in
HG-stimulated human retinal microvascular endothelial cells
(hRMECs) reduces proliferative DR-related abnormalities in
cell proliferation, migration, and angiogenesis via regulating
miR-146a-5p/interleukin-1 receptor-associated kinase 1
(IRAK1) and miR-7-5p/insulin receptor substrate 1 (IRS1) to
activate NF-κB and phosphatidylinositol 3-kinase (PI3K)/AKT
signaling pathways (Cai et al., 2021). It was also confirmed that
SNHG16 exerts its function by isolating miR-146a-5p andmiR-7-
5p (Cai et al., 2021). Therefore, SNHG16 can guide individual
therapy in DR. Another experiment revealed that in retinal
pigment epithelial (ARPE-19) cells with HG conditions,
lncRNA H19 and silence information regulator factor-related
enzymes 1 (SIRT1) decreased while miR-19b increased. Besides,
SIRT1 suppresses the expression of inflammatory cytokines, such
as TNF-α, IL-1β, and IL-6 (Luo et al., 2021).

LncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) knockdown prevents hyper-
proliferation of retinal endothelial cells through p38 mitogen-
activated protein kinase (MAPK) signaling (Liu et al., 2014). This
year, another research has demonstrated that NLRP3 promoted
tube formation and angiogenesis of retinal microvascular
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endothelial cells (Zou et al., 2021). Also, the findings indicated
that NLRP3-mediated aberrant retinal angiogenesis in DR was
regulated via apoptosis signal-regulating kinase 1 (ASK1)/p38
axis (Zou et al., 2021). Obviously, MALAT1 regulates diabetes-
related retinal vessel function by activating ASK1/p38/NLRP3
signaling pathway.

Cardiomyopathy
Diabetic cardiomyopathy (DCM) is a serious end-stage
complication related to diabetes. Nowadays, it is recognized
that DCM pathogenesis includes hyperglycemia, protein non-
enzymatic glycosylation, oxidative stress, myocardial fibrosis,
abnormal calcium ion transport, increased fatty acid
oxidation, neuroendocrine function activation, etc. (Yilmaz
et al., 2015).

Myocardial fibrosis is one of the main causes of DCM. One
study revealed that lncRNA-MALAT1 is elevated in diabetic mice
and cardiac fibroblasts (CFs) treated with high glucose. Melatonin
has the function of reducing collagen production in CFs treated
with high glucose. It suppresses lncRNA-MALAT1/miR-141-
mediated inflammatory activation of NLRP3 inflammasome
and transforming growth factor (TGF)-β1/Smads signaling to
produce anti-myocardial fibrosis effects (Che et al., 2020b). Other
researchers discovered that lncRNA-Kcnq1ot1 was highly
upregulated in diabetic myocardial tissues and CFs cultured
under high glucose. After silencing lncRNA-Kcnq1
overlapping transcript 1 (Kcnq1ot1), miR-214-3p can inhibit
caspase-1 due to the competitive binding between Kcnq1ot1
and miR-214-3p turns into loosening. Additionally, its
downstream inflammatory cytokine IL-1β reduces collagen

TABLE 2 | LncRNAs regulating NLRP3 inflammasome in diabetes complications.

lncRNA Expression Target Expression Mechanism Phenomenon Diseases Reference

Gm4419 ↑ NF-κB activate activates NF-κB pathway MCs pyroptosis DN Yi et al. (2017)
ANRIL ↑ miR-497 ↓ ↑TXNIP, ↑NLRP3 HK-2 pyroptosis DN Wang and Zhao,

(2021)
Kcnq1ot1 ↑ miR-

486a-3p
↓ ↑NLRP3 podocyte pyroptosis DN Zhang et al.

(2021)
MALAT1 ↑ miR-23c ↓ ↑ELAVL1, ↑NLRP3 HK-2 pyroptosis DN Li et al. (2017a)
GAS5 ↓ miR-

452-5p
↓ ↑NLRP3 HK-2 pyroptosis DN Xie et al. (2019)

Kcnq1ot1 ↑ miR-
506-3p

↓ ↑NLRP3 HK-2 pyroptosis DN Zhu et al. (2020)

MALAT1 ↑ miR-
200c

↑ ↑NRF2, ↑NLRP3 podocyte pyroptosis DN Zuo et al. (2021)

MALAT1 ↑ miR-30c ↓ ↑NLRP3 HK-2 pyroptosis DN Liu et al. (2020)
NEAT1 ↑ miR-34c ↓ ↑NLRP3 HK-2 pyroptosis DN Zhan et al. (2020)
HCP5 ↑ miR-

93-5p
↓ ↑HMGA2

↑TNF-α, IL-6, IL-1β
excessive proliferation, fibrosis and
inflammation of MCs

DN Wang et al.
(2021a)

SNHG16 ↑ miR-
146a-5p

↓ ↑IRAK1 activates NF-κB pathway positively regulates proliferation,
migration, and angiogenesis of hRMECs

DN Cai et al. (2021)

SNHG16 ↑ miR-7-5p ↓ ↑IRS1 activates PI3K/AKT pathway DN Cai et al. (2021)
MALAT1 ↑ p38 — activates ASK1/p38 pathway,

↑NLRP3
positively regulates proliferation,
migration, and angiogenesis of hRMECs

DR Zou et al. (2021)

H19 ↓ miR-19b ↑ ↓SIRT1,↑TNF-α, IL-1β, IL-6 negatively regulates inflammatory
responses of ARPE-19 hRMECs

DR Luo et al. (2021)

GAS5 ↓ miR-
34b-3p

↑ ↓AHR, ↑NLRP3 HL-1 cardiomyocytes pyroptosis DCM Xu et al. (2020)

MALAT1 ↑ miR-141 ↓ ↑NLRP3 cardiac fibrosis DCM (Che et al.,
2020c)

Kcnq1ot1 ↑ miR-
214-3p

↓ ↑caspase-1, IL-1β cardiac fibrosis DCM Yang et al.
(2018)

GAS5 ↑ miR-
21-5p

↓ activates TLR4/NF- κB pathway AC16 cardiomyocytes pyroptosis DCM Zhao et al.
(2020)

HCG18 ↑ miR-
146a

↓ ↑TRAF6,↑TNF-α, IL-1β, IL-6 M1 macrophage polarization DPN Ren et al. (2021)

PVT1 ↑ miR-
146a

↓ activates TGF-β/SMAD4 pathway,
↑TNF-α, IL-1, IL-6 and TGF-β1

promotes cartilage degradation DOA Wang et al.
(2021b)

NF-κB, nuclear factor kappa light-chain enhancer of activated B cells; MCs, mesangial cells; ANRIL, antisense noncoding RNA, in the INK4 locus; miR, miRNA; TXNIP, thioredoxin-
interacting protein; HK-2, human renal tubular cells; Kcnq1ot1, Kcnq1 overlapping transcript 1; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; ELAVL1, ELAV-like
RNA, binding protein 1; GAS5, growth arrest-specific 5; NRF2, nuclear factor erythroid-2-related factor 2; NEAT1, nuclear-enriched abundant transcript 1; HCP5, HLA, complex P5;
HMGA2, high mobility group AT-hook 2; SNHG16, small nucleolar RNA, host gene 16; IRAK1, interleukin-1, receptor-associated kinase 1; IRS1, insulin receptor substrate 1; PI3K,
phosphatidylinositol 3-kinase; hRMECs, human retinal microvascular endothelial cells; SIRT1, silence information regulator factor-related enzymes 1; ARPE-19, retinal pigment epithelial;
AHR, aryl hydrocarbon receptor; TLR4, Toll-like receptor 4; HCG18, HLA, complex group 18; TRAF6, TNF, receptor associated factor 6; PVT1, plasmacytoma variant translocation 1;
TGF-β1, transforming growth factor β1; SMAD4, mothers against decapentaplegic homolog 4; DN, diabetic nephropathy; DR, diabetic retinopathy; DCM, diabetic cardiomyopathy; DPN,
diabetic peripheral neuropathy; DOA, diabetic osteoarthritis.
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deposition and myocardial fibrosis (Yang et al., 2018). Therefore,
Kcnq1ot1/miR-214-3p/caspase-1 regulatory signaling pathway is
critical for regulating DCM myocardial fibrosis.

Inflammation has a key role in DCM development and
progression. A study in 2020 revealed that lncRNA-GAS5
expression was upregulated in AC16 cardiomyocytes induced
by high glucose. Additional studies indicated that lncRNA-
GAS5 could competitively bind to miR-21-5p. Because miR-
21-5p targets Toll-like receptor 4 (TLR4), silencing GAS5 can
partially inhibit miR-21-5p-mediated TLR4/NF-κB signaling
pathway, hence reducing inflammatory response triggered by
high glucose (Zhao et al., 2020). However, another study
concluded the opposite result. Xu, Y. et al. induced cardiac
muscle cell line (HL-1) cardiomyocytes by high glucose and
found that GAS5 was severely downregulated in DCM mice.
Further experiments revealed that GAS5 overexpression could
inhibit NLRP3 activation by regulating miR-34b-3p/aryl
hydrocarbon receptor (AHR) signaling pathway, thereby
reducing cardiomyocytes pyroptosis (Xu et al., 2020). The
different results may be due to differences between cell lines or
because multiple regulatory pathways coexist in the cell. As
DCM is a complication of diabetes, the principal Frontier of
its research is self-evident. To summarize, these results imply
that lncRNA might be an underlying therapeutic target for
DCM by alleviating NLRP3 inflammasome activation,
fibrosis, and apoptosis.

Peripheral Neuropathy
Diabetic peripheral neuropathy (DPN) is a ubiquitous
complication of diabetes. Redox-sensitive transcription factors
such as NF-lB play a critical role in triggering the cascade of
cytokine and chemokine production, including proinflammatory
cytokines IL-1β, IL-6, TNF-α, etc. (Zhou and Zhou, 2014). These
are key inflammatory factors downstream of NLRP3
inflammasome and are involved in inflammatory response of
DPN, which can not only enhance inflammation and immune
response but also promote activation of various downstream cell
oxidative stress pathways. Wang, C. et al. employed whole-
transcriptome sequencing technology to systematically analyze
the differential expression of lncRNAs, mRNAs, and miRNAs in
Schwann cells (SCs) of DPN and control rats and constructed
lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA)
network of SCs. This network has identified the inhibited
relationship of lncRNA, miRNA, and mRNA and underlined
that they function as key mediators in the pathophysiological
process of SCs in DPN (Wang et al., 2020). This ceRNA
regulatory network has a particular clinical application value
in DPN. Another recent array study demonstrated that four
lncRNAs, namely XR_353891, XR_600244, XR_595664, and
XR_598132, can regulate inflammation signaling pathways by
competitively binding with miR-146a-5p in DPN rats using qRT-
PCR (Feng et al., 2020). LncRNA HLA complex group 18
(HCG18) promotes the polarization of M1 macrophages and
DPN progression by regulating miR-146a/TNF receptor-
associated factor 6 (TRAF6) axis. Additionally, in DPN model,
inflammatory factors, such as TNF-α, IL-1β, and IL-6, are
upregulated (Ren et al., 2021).

Other Diabetes Complications
Diabetic foot is a serious complication of diabetes, mainly caused
by DPN, peripheral vascular diseases, or infection. As known,
lncRNAs usually act as sponges for microRNAs to exert their
regulatory effects. However, some ceRNAs in diabetic feet require
additional investigation. For instance, inhibiting miR-217 can
upregulate hypoxia-inducible factor-1 (HIF-1α)/vascular
endothelial growth factor (VEGF) pathway to promote
angiogenesis in diabetic foot ulcer rats and effectively improve
inflammatory response by decreasing inflammatory factors (IL-
1β, TNF-α, and IL-6) (Lin et al., 2019). Furthermore, emodin has
been demonstrated to protect diabetic foot through miR-9
upregulation and modulation of PI3K/AKT and NF-κB
signaling pathways in neuron-like PC-12 cells (Fan et al.,
2018). Consequently, it is imperative to further investigate the
interaction and contrast relationship between lncRNA and
miRNA to better cure diabetic foot.

The incidence of diabetic osteoarthritis (OA) increases,
making it critical to identify an exact therapy. One research
has verified that lncRNA plasmacytoma variant translocation 1
(PVT1) promoted cartilage degradation in diabetic OA mice by
downregulating miR-146a and activating TGF-β/mothers against
decapentaplegic homolog 4 (SMAD4) signaling pathway. It has
been demonstrated that silencing PVT1 decreases the expression
of proinflammatory mediators such as TNF-α, IL-1, IL-6, and
TGF-β1, hence alleviating joint inflammation (Wang Y.-Z. et al.,
2021). Interestingly, another experiment confirmed that PVT1
silencing could act as a sponge for miR-149 to combat metabolic
imbalance to catabolism and inflammation after IL-1β exposure
(Zhao et al., 2018). It provided a new direction for diabetic OA
treatment.

Potential Drugs Targeting
LncRNA-Regulated NLRP3 Inflammasome
in Diabetes and Its Complications
Melatonin can be produced by the pineal gland and is also present
in various plants. It possesses pharmacological activities,
including antioxidant, anti-inflammatory, liver protection,
heart protection, and neuroprotection properties. In recent
years, the effect of treating cancer and diabetes has been
demonstrated (Ashrafizadeh et al., 2021). The clinical use of
melatonin is controversial (Garaulet et al., 2020), but there are
now some basic studies on its mechanism for different diabetes
complications. For instance, melatonin has been demonstrated to
have a protective effect of alleviating cardiac fibrosis on DCM by
inhibiting lncRNAMALAT1. miR-141-5p, which acts as a sponge
of MALAT1, inhibits the expression of NLRP3 inflammasome
and TGF-β1/Smads signaling (Table 3) (Che et al., 2020c). TGF-
β1 can initiate cardiac fibrosis via regulating extracellular matrix
proteins in cardiac fibroblasts through activating Smads-
mediated signal pathways in diabetic mice (Chen et al., 2015).
In another work, melatonin can inhibit OS and inflammation by
enhancing the activity of long non-coding RNAMEG3/miR-204/
Sirt1 axis in experimental DR rats (Tu et al., 2020). Sirt1 can
deacetylate the target gene forkhead box o1 (Foxo1) and the
subunit p65 of NF-κB, leading to downregulation of
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inflammatory factors (Tu et al., 2021). Therefore, melatonin may
be implemented as a potential agent for treating diabetic
neuropathy (Che et al., 2020a).

Metformin has become a ‘foundation therapy’ for treating
diabetes due to its excellent efficacy and safety. As a first-line
treatment option for diabetes, metformin effectively controls the
amount of glycogen when used alone or in combination with
other drugs, such as sulfonylurea, thiazolidinedione, DPP-4
inhibitor, SGLT2 inhibitor, and GLP-1 receptor agonist or
insulin (Sanchez-Rangel and Inzucchi, 2017). Recently,
metformin has been confirmed to regulate lncRNA-mediated
NLRP3 inflammasome in diabetes complications. Diabetic
periodontitis is caused by diabetes leading to excessive
inflammatory response of periodontal microbiome, and it
subsequently increases insulin resistance (Lalla and
Papapanou, 2011). NIMA-related kinases 7 (NEK7) is an
essential mediator of NLRP3 activation downstream of
potassium efflux (He et al., 2016). One research has revealed
that metformin suppresses NEK7 expression in diabetic
periodontitis to improve NLPP3 inflammasome-mediated
pyroptosis (Zhou et al., 2020). Therefore, with additional
research into the mechanism of action, metformin has a good
clinical treatment prospect in diabetes and its complications,
which warrants much attention.

Atorvastatin (AT) has lipid-decreasing, anticoagulant,
antioxidative and anti-inflammatory functions (Shi M.-M.
et al., 2016). Clinically, AT is often universally applied to
treat lipid abnormalities and related angiopathies. Nuclear
factor erythroid-2-related factor 2 (NRF2) plays a
tremendous role in regulating OS and is lowly expressed
under HG environments (Uruno et al., 2015). For example,
one study has indicated that NRF2 hyperactivation can induce
nephrogenic diabetes insipidus in early renal tube
development (Suzuki et al., 2017). LncRNA MALAT1 is
thought to be intimately linked to pyroptosis in diabetes
complications (Li et al., 2017a). Interestingly, MALAT1 can
stabilize and activate NRF2 in human umbilical vein
endothelial cells under H2O2 disposed (Zeng et al., 2018).
miR-200c overexpression can promote OS in endothelial
cells and interact with MALAT1 structurally (Li et al., 2016;
Carlomosti et al., 2017). In addition, Zuo Y et al. demonstrated
that AT suppresses caspase-1, GSDMD, and NLRP3
expressions by regulating MALAT1/miR-200c/NRF2
activation to prevent podocyte pyrolysis and OS induced by
high glucose (Zuo et al., 2021). It opens a new door to AT-
induced therapy for diabetes complications.

Sinapic acid, a small naturally occurring hydroxycinnamic acid,
contains 3,5-dimethoxyl and 4-hydroxyl substitutions in the phenyl
ring of cinnamic acid. Sinapic acid is well known to show
antioxidant, anti-inflammatory, anticancer, antiglycemic, and
neuroprotective activities (Chen, 2016). Numerous regulation
mechanisms for sinapic acid in diabetes and its complications
have been revealed (Zych et al., 2019; Alaofi, 2020; Altındağ
et al., 2021). Diabetic atherosclerosis is caused by chronic
inflammation, dyslipidemia, and vascular endothelial injury under
high blood sugar levels and is also an important cause of death and
disability in diabetic patients (Giacco and Brownlee, 2010). It was
stated that sinapic acid could alleviate inflammatory responses via
inhibiting NLRP3 inflammasome activation (Lee et al., 2021).
Recently, a study revealed that low-dose sinapic acid inhibits
lncRNA-MALAT1 to downregulate NLRP3 expression, thereby
alleviating macrophage pyroptosis in diabetic atherosclerosis rats
(Han et al., 2018). These outcomes have revealed that sinapic acid
has potential therapeutic value for diabetes complications.

In short, NLRP3 inflammasome is required for the
inflammatory signaling pathway. IL-1β, IL-18, caspase-1,
caspase-11, and NF-κB are important inflammatory factors in
the inflammatory signaling pathway, whose expression indicates
the role of NLRP3 inflammasome (Al Mamun et al., 2021).
Simultaneously, the function of NLRP3 inflammasome
provides a vital theoretical basis for using lncRNA as a
therapeutic target to treat diabetes complications.

CONCLUSIONS AND FUTURE
PERSPECTIVES

This review discussed the role and potential regulatory mechanism
of lncRNAs on NLRP3 inflammasome, presented recent progress
on the functional role of lncRNA-linked NLRP3 inflammasome
regulation for developing and progressing various diabetes
complications, and illustrated potential medications that might
be useful in preventing and treating diabetes and its complications.
This opens up potential new avenues to treat diabetes and its
complications by targeting lncRNA-linked NLRP3 inflammasome.

At present, with lncRNA as the target, research on the role of
drugs to interfere with diabetic complications is in its infancy.
LncRNA intervention has been demonstrated to affect initiation
and activation of NLRP3 inflammasome, as well as the expression
of its downstream genes, consequently inhibiting the occurrence
and development of diabetic complications. However, the specific
mechanisms still require in-depth studies.

TABLE 3 | Mechanism of drugs treating diabetic complications.

Drugs Diseases Mechanism Reference

Melatonin Diabetic Cardiomyopathy inhibits lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling (Che et al., 2020c)
Melatonin Diabetic Retinopathy inhibits NLRP3 inflammasome by upregulating MEG3/miR-204/Sirt1 axis Tu et al. (2020)
Metformin Diabetic Periodontitis inhibits lncRNA NEK7 to improve NLRP3 inflammasome-mediated pyroptosis Zhou et al. (2020)
Atorvastatin Diabetic Neuropathy inhibits NLRP3 expression by regulating MALAT1/miR-200c/NRF2 axis Zuo et al. (2021)
Sinapic acid Diabetic Atherosclerosis inhibits lncRNA-MALAT1 to downregulate NLRP3 expression Han et al. (2018)

MALAT1, metastasis-associated lung adenocarcinoma transcript 1; miR, miRNA; TGF-β1, transforming growth factor β1; MEG3, maternally expressed 3; NEK7, NIMA-related kinases 7;
NRF2, nuclear factor erythroid-2-related factor 2.
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As a key role in developing and progressing diabetes
complications, NLRP3 inflammasome brings new research
directions for preventing and treating diabetes complications in
the future. The treatment of NLRP3 inflammasome inhibition by
targeting lncRNA of specific inflammatory signaling pathwaysmay
become a novel strategy for delaying the progression of diabetic
complications in the future. Given the complexity of diabetes
pathogenesis and its complications, lncRNA regulation on
NLRP3 inflammasome has been investigated.

Additional research is required to elucidate the role and
mechanism of lncRNA-linked NLRP3-inflammasome regulation
in diabetes complications and other inflammatory diseases.
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