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Abnormalities in programmed cell death (PCD) signaling cascades can be observed in the
development and progression of various cardiovascular diseases, such as apoptosis,
necrosis, pyroptosis, ferroptosis, and cell death associated with autophagy. Aberrant
activation of PCD pathways is a common feature leading to excessive cardiac remodeling
and heart failure, involved in the pathogenesis of various cardiovascular diseases.
Conversely, timely activation of PCD remodels cardiac structure and function after
injury in a spatially or temporally restricted manner and corrects cardiac development
similarly. As many cardiovascular diseases exhibit abnormalities in PCD pathways, drugs
that can inhibit or modulate PCD may be critical in future therapeutic strategies. In this
review, we briefly describe the process of various types of PCD and their roles in the
occurrence and development of cardiovascular diseases. We also discuss the interplay
between different cell death signaling cascades and summarize pharmaceutical agents
targeting key players in cell death signaling pathways that have progressed to clinical trials.
Ultimately a better understanding of PCD involved in cardiovascular diseases may lead to
new avenues for therapy.
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BACKGROUND

The development and homeostasis of multicellular organisms depend not only on the regulation of
cell survival and renewal, but also on the processing of those cells that are no longer needed or pose a
potential danger to the organism. This includes the removal of cells at risk of neoplastic
transformation or those infected by pathogens (Kramer et al., 2012; Saunders et al., 2015; Zhu
and Sun, 2018). Programmed cell death (PCD) is the primary approach organisms adapt to eliminate
these abnormal cells, which stimulates membrane-bound and cytoplasmic proteins by
developmental programs and stress-induced signaling, triggering cell death through complex
cascade transcriptional and post-translational protein modifications (Shi et al., 2017). Several
types of PCD have been discovered in the past 3 decades: autophagy, necrosis, ferroptosis,
apoptosis, and pyroptosis (Bai et al., 2017). Each type of PCD has its unique characteristics.
Apoptosis represents the coordinated disassembly of dead cells and typical “immune silencing”
clearance, while pyroptosis and necrosis refer to the relatively “violent” type of cell death,
characterized by the rupture of dead cells, from which effective inflammatory inducers are
released (Kung et al., 2011). Autophagy is an evolutionarily conserved catabolic process that
begins with forming autophagosomes, a double-membrane-bound structure surrounding
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cytoplasmic macromolecules and organelles which are ultimately
recycled (Nishida and Otsu, 2008; Oka et al., 2012). In addition,
another novel iron-dependent PCD mode, ferroptosis, is mainly
caused by the peroxidation of unsaturated fatty acids highly
expressed on the cell membrane under the action of divalent
iron or ester oxygenase inducing cell death (Dixon et al., 2012; Ma
et al., 2017). At present, research on PCD is generally limited to a
single type, and reports on synergistic or antagonistic effects
between different types of PCD are rare.

At present, increasing studies suggest that PCD is a significant
cause of cardiovascular diseases such as ischemia/reperfusion (I/
R) injury, myocardial infarction (MI) and cardiomyopathy
(Tower, 2015; Yang et al., 2016). Each PCD plays a vital role
in maintaining cellular homeostasis. Apoptosis ensures the
normal development and tissue homeostasis of mature
organisms, as well as pyroptosis, ferroptosis, and necrosis
protect the host from pathogens and other external threats
(Kung et al., 2011; Dixon et al., 2012; Corbalan et al., 2016;
Vande Walle and Lamkanfi, 2016). Unlike apoptosis and other
PCD, autophagy may commit suicide by undergoing cell death
and responding to excessive stress. This view is supported by the
analysis of different PCD pathways (Sciarretta et al., 2012).
Increasing evidence indicates that different PCD pathways in
cardiovascular diseases are associated and interplayed at multiple
levels. Still, no article had made a systematic study and report on
this issue.

Moreover, many clinical trials have found that the application
of appropriate drugs could target cell death signaling pathways in
cardiovascular diseases. A clinical phase 2 trial of simvastatin
found that targeting inhibition of apoptosis through miR-15a-5p
could protect the myocardium in non-coronary surgery, and
another trial of berberine found that it could regulate
myocardial autophagy through AMPK/mTOR pathway to
promote myocardial protection in postoperative patients (Qing
et al., 2018; Zhou et al., 2018). However, all the existing studies
focus on the targeted therapy through a single type of PCD
signaling pathway in cardiovascular diseases. Hitherto, there are
no relevant reviews systematically analyzing and collating the
interplay of different drugs in cardiovascular diseases through
crosstalk between different types of PCD signaling pathways.

Here, we discuss the role of PCD in cardiovascular disease, the
interactions between different PCD signaling cascades, and
describe the application of drugs targeting cell death signaling
pathways in cardiovascular pathology. Moreover, we summarize
the latest progress on the relevant studies that have progressed to
clinical trials and put forward a novel understanding for the better
transformation of PCD pathways in cardiovascular medicine.

DIFFERENT TYPES OF PCD AND
MOLECULAR MECHANISMS IN
CARDIOVASCULAR DISEASES
Apoptosis Pathways in Cardiovascular
Diseases
Apoptosis is usually induced by intrinsic and extrinsic (also
known as death receptor-mediated) triggers. The intrinsic

pathway, also called the mitochondrial or Bcl-2-mediated
pathway, is activated by Bh3 proteins (Bim, Puma, Bid, Bmf,
Bad, Hrk, Bik, Noxa) to initiate apoptosis when facing
intracellular stress caused by various physicochemical factors
(Dong et al., 2019). Activated Bax and Bak then form
oligomers that promote the activation of the caspase cascade
by releasing downstream apoptotic factors such as cytochrome c
and Smac/DIABLO from mitochondria, resulting in ultimate
protein cleavage and cell death. Extrinsic pathway, also known
as death receptor pathway, is the binding and activation of death
receptors such as tumor necrosis factor receptor (TNFR)
superfamily members, Fas/Fas ligand (FasL) system members
and death receptor family members (DR3, DR4 and DR5) with
corresponding ligands to form intracellular death-inducing
signaling complexes, which activate caspase-8 and its effector
(Wang et al., 2021a). However, in normal cells, the Bcl-2 protein
family (Bcl-2, Bcl-xl, Mcl-1, Bcl-W, and A1/BFL1) protects cell
survival by inhibiting Bax and Bak (Figure 1).

It has been found that myocardial apoptosis can
simultaneously exert detrimental effects on cardiac function.
For instance, Wu et al. found that bradykinin (BK) could
reduce myocardial apoptosis by reducing caspase-3 expression
in a human cardiac c-Kit + progenitor cell (hCPCs) myocardial
infarction model, thereby improving ischemic heart disease (Wu
et al., 2021a), Uberti F et al. showed that levosimendan could
interfere with mitochondrial function by regulating mitoK (ATP)
channels and NO, and could control the interaction between
autophagy and apoptosis to protect H9c2 cells against oxidative
damage (Uberti et al., 2011), Nie et al. reported that lncRNA
AK006774 could reduce I/R-induced infarct size and myocardial
apoptosis by regulating Bcl-2 expression through miR-448 in a
mouse I/R model (Nie et al., 2021), Xu et al. found that GSK-3β
upregulated CD47 expression in cardiac tissues after MI by
activating NF-κb, and then regulated apoptosis leading to
myocardial injury (Xu et al., 2021). Besides, AKT1/GSK3β,
NF-κb, and other related signaling molecules can also regulate
apoptosis in cardiovascular diseases (Supplementary Table S1)
(Shen et al., 2020; Jiang et al., 2021a; Wang et al., 2021a; Jiang
et al., 2021b; He et al., 2021; Lu et al., 2021; Sun et al., 2021; Xiong
et al., 2021; Xu et al., 2021).

Necrosis Pathways in Cardiovascular
Diseases
Necrosis is a type of PCD characterized by lytic necrosis and
could drive inflammation, in which the RIPK1/RIPK3/MLKL
axis may play an essential role (Chen et al., 2020; She
et al., 2019). Receptor-interacting protein kinase1 (RIPK1)
autophosphorylation is activated by RIPK3/MLKL sequence,
induces membrane permeability and cell destruction to release
cell damage-associated molecular pattern (cDAMP), and finally
leads to the occurrence of cell necrosis (Zhu and Sun, 2018).
Caspase-8 activation, on the other hand, could inhibit cell
necrosis by cleaving RIPK1 and RIPK3 (Figure 1). In their
study, M.I. Oerlemans et al. demonstrated that RIPK1, RIPK3,
and mixed lineage kinase domain-like (MLKL) expression was
up-regulated in the myocardium after reperfusion, and the
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necrosis inhibitor Necrostatin-1 could reduce the
phosphorylation levels of RIPK1 and RIPK3 and the
recruitment of MLKL, thus inhibiting cell necrosis and
reducing myocardial infarct size (Oerlemans et al., 2012).
Currently, I/R models are preferred to elucidate the effect of
different factors on cardiomyocyte necrosis through various
pathways such as mechanistic target of rapamycin (mTOR),
rate-oxygenation (ROX) and MLKL (Supplementary Table
S2) (Yang et al., 2018a; Zhu et al., 2018; She et al., 2019; Chen
et al., 2020; Jiang et al., 2021c; Han et al., 2021; Liu et al., 2021;
Pullaiah et al., 2021; Zhang et al., 2021).

Ferroptosis Pathways in Cardiovascular
Diseases
Ferroptosis, characterized by mitochondrial atrophy, increased
membrane density, and reduced mitochondrial cristae, is a new
form of PCD discovered recently, which proceeds with cell
morphology and function different from the various modes of
death described above (Dixon et al., 2012). Ferroptosis is usually
executed by compressive lipid peroxidation and inhibited by iron
chelators. In recent years, research has gradually unveiled its
mystery, and many characteristic molecules are identified: acyl-
CoA synthetase long-chain family 4 and lysophosphatidylcholine
acyltransferase 3 (ACSL4 and LPCAT3) of membrane lipids
susceptible to oxidation, xCT of the glutamate-cystine reverse

transport system, glutathione peroxidase 4 (GPX4), and
ferroptosis inhibitor protein 1, etc. (Figure 1) (Chen et al.,
2019; Li et al., 2019).

Current studies have found that cardiovascular diseases
caused by high iron levels are associated with ferroptosis (Wu
et al., 2021b). Baba et al. have demonstrated that rapamycin could
protect cardiomyocytes from excess iron-induced ferroptosis by
reacting with mechanistic targets (Baba et al., 2018). Ferrostatin-1
(Fer-1) is an inhibitor of ferroptosis and can mediate the death of
cardiomyocytes and neutrophil recruitment after heart
transplantation through the toll-like receptor 4/interferon-β
(TLR4/TRIF) signaling pathway (Li et al., 2019). Studies also
indicate that other signaling molecules such as NADPH oxidase 4
(NOX4) and GPX4 regulate ferroptosis and thus affect heart
disease (Supplementary Table S3). Ferroptosis is increasingly
considered a potential cause of cardiovascular morbidity, and
inhibition of ferroptosis represents a new strategy for these
patients (Liu et al., 2018a; Bai et al., 2018; Chen et al., 2019;
Fang et al., 2019; Feng et al., 2019; Fan et al., 2021).

Autophagy Pathways in Cardiovascular
Diseases
Autophagy is a highly conserved catalytic process that leads to the
autolysosomal degradation of primary cytoplasmic contents,
removing abnormally aggregated proteins and excess

FIGURE 1 | Molecular mechanisms of different types of PCD: critical molecular pathways of autophagy, apoptosis, necrosis, pyroptosis and ferroptosis.
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organelles. Generally, the activation of autophagy is triggered by
undernutrition and oxidative stress (Dong et al., 2019). It is also
associated with many other physiological and pathological
processes, such as development, differentiation,
neurodegenerative diseases, stress, infection, and cancer.
Autophagy can be classified into three types: macroautophagy,
microautophagy, and partner-mediated autophagy (Moujalled
et al., 2021). mTOR is an important regulatory molecule that
induces autophagy, and activating mTOR by
phosphatidylinositol 3-kinase (PI3K) and mitogen-activated
protein kinase (MARK) transduction can inhibit autophagy. In
contrast, the negative regulation of mTOR by adenosine
monophosphate-activated protein kinase (AMPK) and p53
signal transduction promotes autophagy (Dong et al., 2019;
Shi et al., 2020). The formed mTOR complex is extensively
linked to the downstream autophagy-related gene (ATG)
family to construct the autophagosomes and ultimately
complete the process of ubiquitin-like reactions. There is an
extensive interaction between autophagy and apoptosis, which
can be positively or negatively connected. Some studies have
suggested the apoptosis-protective factor Bcl-2 could inhibit
Beclin-1 dependent autophagy and function as its anti-
autophagy regulatory molecule (Figure 1) (Oka et al., 2012;
Grootaert et al., 2015; Dong et al., 2019).

In the normal physiological state of the heart, cardiomyocytes,
vascular epithelial cells, and smooth muscle cells, autophagy plays
an essential role in organelle function and cell renewal.
Autophagy is also activated in response to cardiovascular
stress, including I/R and heart failure. Sciarretta S et al. found
that in ischemic stress, Rheb, as a GTP-binding protein, could
inhibit autophagy by activating mTORC1, thereby aggravating
post-ischemic infarct size (Sciarretta et al., 2012). During heart
failure and aortic atherosclerosis, miR-212/132, laminar flow and
Danqi pills regulated autophagy by modulating autophagy-
related pathways and molecules, affecting cardiac function
(Supplementary Table S4) (Oka et al., 2012; Shi et al., 2020;
Grootaert et al., 2015; Ucar et al., 2012; Yuan et al., 2020; Wang
et al., 2021b). As mentioned before, autophagy restricted to an
appropriate extent protects against ischemic injury via
maintaining cardiomyocyte homeostasis, degrading organelles,
or misfolding proteins that produce adenosine triphosphate
(ATP). However, it is also reported that overwhelming cardiac
autophagy induction may also promote cell death and worsen
cardiac function in the setting of severe ischemia. Some studies
have found that knockdown of TLR4 or NOX4 in rats with heart
failure significantly inhibited autophagy activation, thereby
improving cardiac function. In addition, the PI3K/AKT/mTOR
pathway is indicated to be involved in regulating the excessive
autophagy process to protect cardiomyocytes (Supplementary
Table S5) (Xuan and Jian, 2016; Xuan et al., 2017; Liu et al.,
2018b; Chen et al., 2019; Zhang et al., 2020).

Pyroptosis Pathways in Cardiovascular
Diseases
Pyroptosis is an inflammatory PCD process that rapidly initiates
innate immune responses through pattern recognition receptors

(PRRs), and different inflammatory bodies can sense different
pathogen-associated molecular patterns and damage-associated
molecular patterns (PAMPs and DAMPs) that induce pyroptosis
(Zhu and Sun, 2018). Classical pyroptosis induction requires
activating caspase-1, which cleaves and activates inflammatory
cytokines (IL-1b, IL-18), caspase-1 cleaves and activates
Gasdermin D (GSDMD), which is also key to the occurrence
of pyroptosis (Figure 1) (Zhang et al., 2018a; Yue et al., 2019).

An increasing number of studies have shown that
cardiovascular risk factors can activate nod-like receptor
protein 3 (NLRP3) inflammasomes in cells. In addition,
NLRP3 inflammasomes mediated pyroptosis was observed in
various cardiovascular diseases. Studies suggested that NLRP3
inflammasomes and related pyrogenic signaling molecules played
an essential role in the progression of cardiovascular diseases
(Supplementary Table S6) (Liu et al., 2013; Jeyabal et al., 2016;
Zhou et al., 2016; Huang et al., 2017; Nazir et al., 2017; Zhang
et al., 2018a; Yang et al., 2018b; Li et al., 2018; Yue et al., 2019;
Ding et al., 2020; Li et al., 2020). For example: in myocardial I/R
model mice, Ding et al. found that Mi-29a expression was up-
regulated and Sirtuin-1 (SIRT1) expression was down-regulated,
which in turn regulated NLRP3 to attenuate myocardial I/R
injury and enhanced cardiomyocytes survival (Ding et al., 2020).

Interconnections Between Different PCD
Pathways
There is now increasing evidence that different PCD pathways in
cardiovascular diseases are interconnected and affect each other
on multiple levels. Studies have found that the PI3K/AKT
pathway can regulate autophagy by targeting mTOR, and can
also regulate apoptosis through the Bad pathway (Liu et al.,
2018b; Wu et al., 2021a). mTOR kinase is an important
regulatory molecule that induces PCD. Studies have found that
the AMPK/mTOR pathway is not only involved in necrosis and
pyroptosis, but can also regulate autophagy through Beclin-1
(Alers et al., 2012; Nazir et al., 2017; Han et al., 2021). Caspase-3
and caspase-7 act as executors and directly degrade structural and
functional proteins, whereas caspase-8 and caspase-10 act as
initiators and cause the caspase cascade after being activated
by signaling stimuli (Kurokawa and Kornbluth, 2009). The
caspase family is involved in the regulation of apoptosis and
mediates necrosis and pyroptosis (Martin and Henry, 2013;
Galluzzi et al., 2017; Yuan et al., 2018). Wu C et al. found that
BK effectively improves cardiac function by reducing
cardiomyocyte apoptosis, inflammatory infiltration, and
myocardial fibrosis in the infarcted heart by reducing cleaved
caspase-3 expression (Wu et al., 2021a). The study carried by
Wang K et al. showed that miR-874 could regulate
cardiomyocytes necrosis by affecting caspase-8 activity (Wang
et al., 2013). Zheng X et al. found that BNIP3 mediated
Doxorubicin-induced cardiomyocyte pyroptosis through
activation of caspase-3 and cleavage of gasdermin D
(GSDMD) (Zheng et al., 2020). In addition, it has been found
that there is an interaction between TNF-α/TNFαR, PAMP/TLR,
and DAMP/TLR that can activate NF-κB through the
IKK pathway. Activation of NF-κb induces the expression of
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pro-survival genes, including RIPK1 and Pro-IL-1β (Wajant and
Scheurich, 2011; Vande Walle and Lamkanfi, 2016). RIPK1 has
been implicated in the regulation of necroptosis, whereas Pro-IL-
1βmediated pyroptosis (Van Herreweghe et al., 2010; Yuan et al.,
2018). An interaction between ferroptosis and apoptosis in
cardiovascular diseases was also found in the present study
(Figure 2).

DIFFERENT TYPES OF PCD AND CLINICAL
DRUG THERAPY

Targeting Apoptosis in Clinical Practice
Currently, interventions targeting apoptosis may have a
significant impact on the treatment of cardiovascular diseases.
Bcl-2 family, p53 gene, IEG family, ICE gene family, and Fasl-Fas
system play essential roles in initiating and developing apoptosis
(Dispersyn and Borgers, 2001). Accumulating evidence from
clinical trials suggested that modulation of the Bcl-2 family
and the Fasl-Fas system as a novel intervention could improve
myocardial function (Corbalan et al., 2016). Zhou et al. and Li
et al. reported that statins could regulate the cardiomyocytes
apoptosis in patients by regulating the expression of Bcl-2 and
Bax, thereby protecting the cardiac function (Zhou et al., 2018; Li
et al., 2016); Adamopoulos S et al. and Skudicky D et al.
demonstrated that growth hormone (GH) and pentoxifylline
could alleviate cardiac insults by modulating the apoptosis of
cardiomyocytes and the level of soluble Fasl/Fas system
(Adamopoulos et al., 2002; Skudicky et al., 2000). Other agents

were also found to achieve the efficacy of myocardial protection
in apoptosis-targeted ways (Supplementary Table S7) (Rössig
et al., 2001; Zhang et al., 2005; Zhang et al., 2018b; Qing et al.,
2018). Considering that apoptosis plays a vital role in
cardiovascular pathologies, elucidating the underlying
therapeutic mechanisms of these drugs in clinical trials
provides us with a brand-new concept and idea for the
occurrence and development of cardiovascular diseases.

Targeting Necrosis in Clinical Practice
Necrosis is a class of cell death initiated by death receptor ligands,
mediated through death receptors, occurs in the inhibition of
apoptotic pathways. The death receptor-receptor interaction
protein-mitochondria-oxygen free radical pathway is proved to
be an essential regulator of cardiac necrosis, and current clinical
trials have found that drugs targeting this pathway can reduce
cellular necrosis and improve cardiac function (Kim et al., 2011;
Vandenabeele et al., 2010; Thévenod and Lee, 2013). Verma S
et al. verified the effect of PZ-128 in a phase 2 clinical trial. The
results indicated that it could reduce cyclic myocardial necrosis
by targeting protease-activated receptor-1 (PAR1) on vascular
cells on the inner surface of recipient cells, thereby further
improving the outcome of patients with myocardial infarction
(Wang, 2018); Silvain J et al. validated the combined efficacy of
ticagrelor and clopidogrel on patients undergoing percutaneous
coronary intervention (PCI) in a phase 3b clinical trial and found
that apart from their anti-platelet aggregation and effect, it could
also reduce perioperative myocardial necrosis by inhibiting NF-
κb pathway and further improve the postoperative recovery of

FIGURE 2 | The interrelationship between different PCD molecular mechanisms.
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patients with myocardial infarction (Silvain et al., 2020). Other
studies found that some drugs could regulate cell necrosis by anti-
aggregation, effect or reducing cell calcium overload, thereby
improving myocardial necrosis in patients before and after
surgery (Supplementary Table S8) (Alexander et al., 2008;
Talarico et al., 2009; Lader et al., 2016; Nauck et al., 2018; Liu
et al., 2019; Mohammad et al., 2020; Tcheng et al., 2020). At
present, more andmore attention has been focused on the clinical
trials evaluating anti-necrosis therapies in cardiovascular
diseases. The deepening of its targeted treatment in
cardiovascular diseases will undoubtedly profoundly impact
the clinical treatment of cardiovascular diseases.

Targeting Ferroptosis in Clinical Practice
Unlike classical apoptosis, there is no hallmark of apoptosis such
as chromatin condensation during ferroptosis, but it is
accompanied by mitochondrial shrinkage and accumulation of
lipid oxides. Studies have revealed that overloaded iron would
cause irreparable damage to multiple organs. The use of
inhibitors of apoptosis in clinical trials does not also inhibit
ferroptosis, while the use of iron chelators can inhibit the
ferroptosis process of cells. Wongjaikam S et al. demonstrated
that a combination of lamotrigine and desferrioxamine as
chelation therapy could reduce the level of myocardial iron by
restoring sarco/endoplasmic reticulum calcium ATPase (SERCA)
levels (Wongjaikam et al., 2017). Farmaki K et al. also found that
the combined chelation therapy of desferrioxamine and
desferrioxone can prevent and reverse the cardiac
complications caused by excessive iron in blood transfusion
(Farmaki et al., 2010). Other clinical trials concerning iron
chelators in cardiovascular diseases are shown in
Supplementary Table S9 (Penckofer and Schwertz, 2000; Al-
Rousan et al., 2009; Farmaki et al., 2010; Lal et al., 2013; Jansová
et al., 2014; Shakoor et al., 2014; Pennell et al., 2015; Ho et al.,
2017; Eghbali et al., 2019). Although iron ion chelators are
manifested as a promising drug target in clinical trials, their
potential molecular signaling pathways and networks remain to
be explored. Besides, the metabolism of iron at the systemic level
is another challenge. Iron metabolism forms homeostasis
between the body and target organs to regulate iron death in
the clinical treatment of cardiovascular diseases.

Targeting Autophagy in Clinical Practice
Autophagy plays a broad role in developing cardiovascular
pathology and can act as both a suppressor and a promoting
factor of cardiovascular disease. Although some drugs and
regimens can modulate autophagy, few clinical trials have
assessed their role in the cardiovascular system. Among them,
Qing et al. conducted a phase 2 clinical trial of berberine and
found that it could reduce myocardial injury by regulating the
AMPK/mTOR pathway; Hua et al. elucidated that
simvastatin could reduce myocardial injury by regulating
the expression of LC3-II/LC3-I, Beclin- 1, and AMPK
phosphorylation, which in turn improved cardiac function
(Supplementary Table S10) (Hua et al., 2017; Qing et al.,
2018). Another significant limitation in this field is the lack of
spatially specific delivery of exogenous autophagy

modulators for cardiac or vascular repair, so there is still a
long way to go for effective autophagy therapy. However, the
insights gained from these works will inspire future clinical
trials assessing autophagic responses to achieve therapeutic
efficacies.

Targeting Pyroptosis in Clinical Practice
Pyroptosis is a new programmed inflammatory death mainly
regulated by classical and non-classical pathways, the classical
pathway of which is mediated by caspase-1 dependence, and the
non-classical inflammasome pathway is mediated by caspase-4/5/
11 (Li et al., 2020). Numerous studies have shown that pyroptosis
is generally involved in the development and outcome of various
cardiovascular diseases such as myocardial infarction, heart
failure, and myocardial I/R (Zhu and Sun, 2018; Wang and
Kanneganti, 2021). To date, few clinical trials have assessed its
role in cardiovascular disease, mainly due to the lack of cell/
organ-targeted delivery of exogenous pyroptosis modulators for
cardiac or vascular repair. However, since pyroptosis is involved
in the development of a variety of cardiovascular diseases, the
subsequent in-depth study of cell/organ targeted delivery of
apoptosis modulators will provide a new direction and
effective target for the therapeutic research of related diseases.

SUMMARY AND DISCUSSION

While research into cardiovascular disease has focused on the
molecular mechanisms of individual PCD types, it is now clear
that different PCD pathways do not operate in isolation. Indeed, a
more likely explanation basing on current knowledge about the
various possibilities of triggering and reconnecting PCD signaling
cascades suggests that autophagy, apoptosis, ferroptosis,
pyroptosis, and necrosis constitute a pluralistic, coordinated
cell death system in which one pathway can flexibly
compensate for the other (Konstantinidis et al., 2012; Tower,
2015; Wang and Kanneganti, 2021). For example, it is
demonstrated that in I/R injury models, both pyroptosis and
necrosis could affect cardiovascular disease through AMPK/
mTOR and other pathways (Oerlemans et al., 2013; Nazir
et al., 2017). In this review, we describe the characteristics and
molecular mechanisms of individual PCD types and discuss the
interactions between different cell death signaling cascades to
provide a better understanding of the relationship between PCD
and cardiovascular diseases.

Up to now, while the increasingly important role of different
PCD is unveiled, few clinical trial studies are conducted to treat
cardiovascular diseases by pharmacological intervention to PCD
(Mani, 2008). Therefore, we describe the critical role of drugs
targeting cell death signaling pathways and their efficacy in
various cardiovascular diseases by collecting currently available
drugs studied in clinical trials. Multiple medications are targeted
in cardiovascular disease by modulating different types of PCD in
many clinical trials. For instance, statins can regulate myocardial
apoptosis in patients by regulating the expression of Bcl-2 and
Bax (Zhou et al., 2018). Simvastatin can regulate the autophagy
of cardiomyocytes by regulating the expression of LC3-I/II,
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Beclin-1, and other factors (Hua et al., 2017). Drugs such as
liraglutide and pyridoxal 5′-phosphate (MC-1) can modulate the
necrosis of cardiomyocytes by intervening calcium ions (Nauck
et al., 2018; Alexander et al., 2008). Amlodipine and pantoprazole
regulate ferroptosis in cardiomyocytes by affecting iron absorption
(Shakoor et al., 2014; Eghbali et al., 2019) (Figure 3). Therefore, more
work is needed to explore whether drugs can target therapy in various
cardiac cells by handling multiple types of PCD. Most previous drug
studies reported only a single PCD type, while recent studies found
that drugs could act simultaneously by regulating multiple different
types of PCD. For example, Qing et al., in phase 2 of clinical trials,
found that berberine could reduce cardiomyocyte autophagy and
apoptosis by regulating the AMPK/mTOR pathway, thereby reducing
myocardial injury in PCI patients (Qing et al., 2018). In general,
treatment for any type of PCD can reverse further damage to the heart
to some extent (Moujalled et al., 2021). More research is needed to
clarify whether PCD acts as an initiator or a critical node in the injury
path when studying drugs acting through the PCD pathway.

Apart from cardiovascular disorders, PCD is also involved in
other diseases, including respiratory and digestive tumors
(Venderova and Park, 2012; Tai et al., 2018). However,
current studies reported only PCD on a single type of cell, and

the effects and differences between different types of cells are
poorly informed. Therefore, in future work, we can start from
various cell types and study the impact of drugs on cardiovascular
diseases by intervening in various types of PCD in different cell
types, which can not only reduce the adverse events of PCD-
targeted therapy but also more accurately treat various types of
cardiovascular diseases.

While the underlying biological mechanisms regarding the
PCD remain uncovered, therapeutic manipulation of cell
death pathways holds great promise. At present, among
various types of diseases, the most studied is the
intervention of drugs in various tumors: recent clinical
trials reported that the combination of deferoxamine
(DFO) and deferiprone (DFP) effectively improves
hematologic malignancies (Wongjaikam et al., 2017). The
combined therapy of drugs regulates ferroptosis in the
clinical treatment of various diseases by affecting iron
metabolism at the systemic level and allowing iron
metabolism to form homeostasis between the body and
target organs. Based on this, recently, Farmaki K et al.
found that combination therapy with desferrioxamine
drugs also improved prognosis in cardiovascular disease

FIGURE 3 | Drugs target cardiomyocytes through different types of PCD.
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and has been initiated in clinical trials (Farmaki et al., 2010).
Moreover, combination therapy with DFO and DFP can
improve cardiac function by inhibiting ferroptosis by
reducing iron levels in the heart (Wongjaikam et al.,
2017). Studies in future work can be carried out in
different types of cardiovascular diseases based on drug-
mediated signaling pathways.

Therefore, our review may pave the way for further novel
research in the future. On the one hand, we hope to uncover
complex signaling pathways between different PCD and clarify
their functions in cardiovascular pathologies. On the other hand,
acceleration in clinical transformation is warranted to enable
PCD-targeted agents to be applied to detect, prevent, and treat
cardiovascular diseases.
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