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The development of various therapeutic interventions, particularly immune checkpoint
inhibitor therapy, have effectively induced tumor remission for patients with advanced lung
cancer. However, few cancer patients can obtain significant and long-lasting therapeutic
effects for the limitation of immunological nonresponse and resistance. For this case, it’s
urgent to identify new biomarkers and develop therapeutic targets for future
immunotherapy. Over the past decades, tumor microenvironment (TME)-related long
non-coding RNAs (lncRNAs) have gradually become well known to us. A large number of
existing studies have indicated that TME-related lncRNAs are one of the major factors to
realize precise diagnosis and treatment of lung cancer. Herein, this paper discusses the
roles of lncRNAs in TME, and the potential application of lncRNAs as biomarkers or
therapeutic targets for immunotherapy in lung cancer.
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INTRODUCTION

Lung cancer ranks the most important leading cause of cancer-related deaths globally (Bray et al.,
2018; Nasim et al., 2019). Non-small cell lung cancer (NSCLC) accounts for more than 80% of all
lung cancers (Bender, 2014). Despite the improvements of NSCLC treatment in traditional therapies,
the overall cure and survival rates for NSCLC remain low, particularly in metastatic diseases (Siegel
et al., 2020). Existing research suggests that combination treatment options (using immunotherapies
or targeted therapies) may be the ultimate curative option. Hence, it is quite essential to investigate
the precise molecular mechanism and biomarkers to promote the effectiveness of treatment,
especially immune checkpoint inhibitors (ICIs).

ICIs reactivate dysfunctional and/or exhausted T cells by targeting immune checkpoints including
cytotoxic T lymphocyte related protein 4 (CLTA-4), programmed cell death protein 1 (PD-1), or its
ligand, PD-L1. To date, ICIs have altered treatment paradigm in multiple indications such as

Edited by:
Zong Sheng Guo,

Roswell Park Comprehensive Cancer
Center, United States

Reviewed by:
Mario Cioce,

Campus Bio-Medico University, Italy
Claudia De Vitis,

Sapienza University, Italy

*Correspondence:
Feng Luo

hxluofeng@163.com
Zhi-Wu Wang

tcm2000@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 15 October 2021
Accepted: 08 December 2021
Published: 03 January 2022

Citation:
Dai S, Liu T, Liu Y-Y, He Y, Liu T, Xu Z,

Wang Z-W and Luo F (2022) Long
Non-Coding RNAs in Lung Cancer:

The Role in Tumor Microenvironment.
Front. Cell Dev. Biol. 9:795874.
doi: 10.3389/fcell.2021.795874

Abbreviations: LncRNAs, Long Non-coding RNAs; LUAD, Lung adenocarcinoma; TME, Tumor microenvironment; ICIs,
Immune checkpoint inhibitors; NSCLC, Non-small cell lung cancer; SQC, Lung squamous cell carcinoma; CLTA-4, cytotoxic T
lymphocyte related protein 4; ORR, objective response rate; M1, Classically activated macrophages; M2, alternatively activated
macrophage; MPS, monocyte macrophage system; EMT, Epithelial-to-mesenchymal transition; KCs, Kupffer cells; CTLs,
Cytotoxic T lymphocyte cells; VEGF, Vascular endothelial growth factor; CSCs, Cancer stem cells; MDSCs, Myeloid-derived
suppressor cells; Tregs, Regulatory T cells; VEGFA: vascular endothelial growth factor A.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7958741

REVIEW
published: 03 January 2022

doi: 10.3389/fcell.2021.795874

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.795874&domain=pdf&date_stamp=2022-01-03
https://www.frontiersin.org/articles/10.3389/fcell.2021.795874/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.795874/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.795874/full
http://creativecommons.org/licenses/by/4.0/
mailto:hxluofeng@163.com
mailto:tcm2000@163.com
https://doi.org/10.3389/fcell.2021.795874
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.795874


melanoma, NSCLC, renal cell carcinoma (RCC) and so on
(Pardoll, 2012; Hoos, 2016; Papaioannou et al., 2016; Munn
and Jain, 2019; Xin Yu et al., 2019). However, the treatment
response of ICIs remains unsatisfactory, and the objective
response rate (ORR) for ICIs alone is only about 15–25%, and
even lower in pancreatic carcinoma, triple negative breast
cancer, and colorectal cancer with microsatellite stability
(MSS) (Gao et al., 2019). Most patients still face the dilemmas
of primary/acquired resistance of ICIs. A great number of
studies have investigated the resistance mechanisms that
limit the efficacy of ICIs such as disability of neoantigen
presentation, activation of T cell, the impaired formation of
T cell memory and the dysregulation of tumor
microenvironment (TME) (Gajewski et al., 2013; Hegde et al.,
2016; Jenkins et al., 2018; Yi et al., 2019; Schoenfeld and
Hellmann, 2020). TME, comprised of the interaction between
tumor cells, tumor-associated stromal cells as well as extracellular
matrix, has been considered to be of great significance in
activating the effect of ICIs. Notably, identifying abnormal
TME and treatment-related biomarkers are not only the
important means of antitumor therapy, but also of immune
efficiency improvement (Gao et al., 2019).

LncRNAs, the most frequently expressed nonprotein-coding
RNAs, have at least 200 nucleotides and are usually located in the
cell nucleus, cytoplasm and exosomes where they interact with
various molecules like DNA, RNA, proteins and so forth
(Atianand and Fitzgerald, 2014). Multiple pathophysiological
processes through the epigenetic, transcriptional and post-
transcriptional regulation of gene are regulated by lncRNAs, of
which lncRNAs include at least five categories including
intergenic lncRNAs, intronic lncRNAs, antisense lncRNAs,
sense lncRNAs and bidirectional lncRNAs (pseudogenes and
retrotransposons) (Rinn and Chang, 2012). In TME, lncRNAs
can directly or indirectly affect the growth of tumor cells, and play
a nonnegligible role in the regulatory recircuit of the immune
cells, promoting recruitment of immunosuppressive cells such as
Tregs, M2-type macrophages and myeloid-derived suppressor
cells (MDSCs), down-regulating the expression of adhesion
molecules on endothelial cells, as well as up-regulating of
immune checkpoints (PD-1/PD-L1 and CTLA4), which could
contribute to tumor development and resistance to drugs or
radiotherapy (Fu et al., 2021; Taheri et al., 2021). Specifically,
lncRNAs are new emerging therapeutic targets and important
prognostic biomarkers in multiple cancers including lung cancer

FIGURE 1 | Interaction of lncRNAs with tumor microenvironment (TME) regulating lung cancer development.
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(Tokgun et al., 2020). Accumulating studies have identified that
lncRNAs are essential mediators of intercellular communication
between tumor and stromal cells in local and distant
microenvironment of lung cancer.

In this review, we focus on describing how lncRNAs derived
from tumor cells, immune cells or exosomes regulate the TME in
lung cancer to promote tumor progression, emphasizing the role
of these lncRNAs in tumor cells, lymphoid immune cells,
macrophages, cancer-related fibroblasts, tumor vasculature and
other components of TME (Figure 1).

LNCRNAS AFFECT LYMPHOID IMMUNE
CELLS

Existing research has reported that lymphoid immune cells
within tumors have two-sided (positive and negative) effects
on tumorigenesis and tumor progression (Joyce and Pollard,
2009). LncRNAs as important regulator molecules influence
the activity and sensitivity of tumor-infiltrating T cells. Duan
et al. conducted lncRNA profiling to screen for differentially
expressed lncRNAs related to CD8+ T cells and activated memory
CD4+ T cells in NSCLC (Duan et al., 2020). A total of 90
DElncRNAs (differential expression lncRNA) showed different
expression patterns in CD8+ T immune cells, and 48 DElncRNAs
were associated with activated memory CD4+ T cells. The
enrichment pathway analyses revealed that differentially
expressed lncRNAs were mainly involved in cytokine–cytokine
receptor interaction as well as viral protein interaction with
cytokine–cytokine receptor, suggesting that T cell-specific
lncRNAs mediated an immune response during NSCLC
progression. This study provided a cursory but comprehensive
indication of the vital role of lncRNAs in influencing the
biological function of T lymphoid cells in lung cancer.
Specifically, a study reported that a large proportion of CTLs/
Th1 cells underwent apoptosis in NSCLC, a process that could be
further facilitated by anti-CD3, while the proportion of Th2 cells/
Treg cells were relatively low in TME, suggesting CTLs/Th1 cells
were more sensitive to activation-induced cell death (AICD) than
Tregs/Th2 cells. Further analysis indicted that STAT1-mediated
transcription of NKILA caused AICD of CTLs/Th1 cells by
suppressing NF-κB which was upregulated in Tregs/Th2 cells
compared with CTLs/Th1 cells (Huang et al., 2018). Tang et al.
also observed that the propotion of Th2 was high in peripheral
blood of NSCLC, and the proportion of CTLs/Th1 cell was lower
than that in normal control. LncRNA NEAT1 was also reported
to be upregulated in lung cancer tissues with high TILs. NEAT1
negatively regulated CD8+ T cells in lung cancer cells via
increasing CXCL10, CCL5, and IFN-β expression, which
directly induced cGAS/STING Signaling, to suppress immune
response (Ma et al., 2020). In addition, signaling from SOX2-OT/
miR-30d-5p/PDK1 contributed to apoptosis of CD8+ T cells,
which in turn promoted immune escape of NSCLC (Chen et al.,
2021). The direct interaction between SChLAP1 and AUF1
antagonized the binding between AUF1 and PD-L1 mRNA 3′-
UTR, resulting in improving PD-L1 mRNA stability and
expression, thereby attenuating CTLs function (Du et al.,

2021). Collectively, lncRNAs control lung cancer development
and metastasis by affecting T cell function in TME, and targeting
lncRNA may alter the activity of CTLs, thereby enhancing the
effectiveness of immunotherapy.

LNCRNAS IN CANCER STEM CELLS

Cancer stem cells (CSCs) are regarded as a population of tumor
cells characterized by abilities to self-renew or to differentiate into
cancer non-stem progenies, and therefore often involved in the
resistance to cancer therapies, tumorigenesis, epithelial-to-
mesenchymal transition (EMT) and tumor metastases (Clarke
and Fuller, 2006; Zhao, 2016). CD44, CD133, OCT-4, Bmi-1,
ALDH1, ABCG2 and KLF4 are common CSC biomarkers that are
specifically and highly expressed on the cell surface. For example,
Prior researches elucidated the determinants about the resistance
to cancer treatments including growth features associated with
slow division and quiescence (Vidal et al., 2014; Ajani et al., 2015),
ATP-binding cassette (ABC) transporters expression levels
involved in elimination of drugs (Abdullah and Chow, 2013),
and the presence of increased detoxification of endogenous and
exogenous aldehyde substrates via the aid of aldehyde
dehydrogenases (ALDHs) (Sládek, 2003; Ahmed Laskar and
Younus, 2019). As a pivotal component of the TME, the
maintenance of CSCs as well as the growth and progression of
tumors are inseparable from the cancer microenvironment,
together with various regulatory factors. To date, lncRNAs
involved in both CSCs biological functions and cancer
development have received considerable research attention
(Schwerdtfeger et al., 2021). Here we have reviewed relevant
literatures to summarize the functions.

In regulating tumorigenesis, lncRNA HOTAIR was reported
to exert pro-cancer effects by inducing CSCs and EMT formation
under the direct regulation of STAT3 under cigarette smoke
exposure (Liu et al., 2015). The relationship between stemness
and EMT programs has been reviewed in previous literature
(Wilson et al., 2020). DUXAP10 was obviously upregulated in
Cd-induced lung cancer cells. DUXAP10 knockdown induced the
stemness markers including KLF4, KLF5 and Nanog
downregulation, weakened the capacity of spheres formation
and reduced the number of stem cells marked by CD133 via
inhibiting the Hedgehog signaling pathway signal, which was
involved in Cd carcinogenesis in lung cells (Lin et al., 2021). As
for resistance to cancer therapies, Liu et al. revealed that lncRNA
HOTAIR could cause cisplatin resistance via inducing stem cell-
related biomarkers β-catenin and KLF4, especially directly
regulating KLF4, to promote stemness (Liu et al., 2016).
Similarly, LINC01224 is obviously upregulated in NSCLC cells
and associated with NSCLC radioresistance. LINC01224 knock-
down dramatically promotes the abilities of self-renew by
regulating the expression of ZNF91 and therefore suppresses
the irradiation sensitivity of NSCLC (Fu et al., 2021). In terms of
EMT and metastasis, FOXF1-AS1 acted as a protective factor and
interacted with PRC2 components EZH2 to hinder self-renewal
of NSCLC CSCs and reduce the number of stem-like cells, thus
leading to impaired EMT capacity of tumor cells (Miao et al.,

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7958743

Dai et al. Long Non-Coding RNAs in TME

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


2016). LncTCF7 overexpression increased NSCLC sphere
formation and expression of specific markers (EpCAM, Sox2,
Oct4 and Nanog). Further study of the molecular mechanism of
TCF7 regulation of CSC revealed that TCF7 may exhibit
oncogenic activity by regulating EpCAM via competitively
binding miR-200c, which stimulated invasive activity and
enhanced the self-renewal capacity of CSCs (Wu and Wang,
2017). The interaction with LINC00662 and its RNA binding
protein Lin28 can elevate CSCs stemness and invasion ability of
tumor cells, contributing to the poor prognosis of NSCLC (Gong
et al., 2018). The expression of LINC01123 is up-regulated in
LUAD. Mechanistically, LINC01123 could precipitate miR-449b-
5p to release NOTCH1, thereby promoting downstream

NOTCH1 signaling and resulting in accelerating LUAD cell
stemness and EMT (Zhang et al., 2020). More LncRNAs
affecting CSC properties are summarized in Table 1. Taken
together, all these data elucidate that dysregulation of lncRNAs
affects CSCs traits and tumor invasion, and could be potential
targets of tumor immunotherapy.

LNCRNAS CONTRIBUTE TO
MACROPHAGE PLASTICITY

Macrophages, most of which derived from blood monocytes, are
involved in EMT and are present in almost all tissues such as

TABLE 1 | LncRNAs and their respective molecules or pathways involved in theTME.

LncRNA Effects Mechanism References

FGD5-AS1 M2 Regulating FGD5-AS1/miR-944/MACC1 axis Lv et al. (2021)
XIST M2 Regulates M2 polarization Sun and Xu (2019)
GNAS-AS1 M2 GNAS-AS1/miR-4319/NECAB3 axis Li et al. (2020a)
SOX2-OT M2 Targeting miR-627-3p/Smads signaling pathway Zhou et al. (2021)
NKILA CTLs/Th1 Enhancing AICD of CTLs/Th1 cells by suppressing NF-κB Huang et al. (2018)
NEAT1 CTLs Suppressing cGAS/STING Signaling Ma et al. (2020)
SOX2-OT CTLs SOX2-OT/miR-30d-5p/PDK1 Chen et al. (2021)
SChLAP1 CTLs Regulating the AUF1/PDL1 axis Du et al. (2021)
HOTAIR CSCs Inducing EMT and CSCs under the direct regulation of STAT3 Liu et al. (2015)
HOTAIR CSCs Inducing CSCs-related biomarkers β-catenin and Klf4 Liu et al. (2016)
FOXF1-AS1 CSCs Interacting with EZH2 to inhibit the EMT ability of tumor cells Miao et al. (2016)
TCF7 CSCs Regulating TCF7/miR-200c/EpCAM Wu and Wang (2017)
LINC00662 CSCs Interacting with Lin28 Gong et al. (2018)
DUXAP10 CSCs Inhibiting the Hedgehog signaling pathway signal Lin et al. (2021)
MCF2L-AS1 CSCs Regulating miR-873-5p Li and Lin (2021)
LINC01224 CSCs Interacting with ZNF91 dove irradiation resistance Fu et al. (2021)
LINC01123 CSCs Precipitating miR-449b-5p to activate NOTCH1 pathway signal Zhang et al. (2020)
DANCR CSCs Activating DANCR/miR-216a signaling axis Yu et al. (2020)
DHRS4-AS1 CSCs Modulating DHRS4-AS1/miR-224-3p signaling Yan et al. (2020)
MACC1-AS1 CSCs MACC1-AS1/UPF1/LATS1/2 axis Wang et al. (2020)
loc107985872 CSCs Activating the notch1 signaling pathway Guo et al. (2020)
SLNCR1 CSCs Interacting with sPLA2 Xu et al. (2019)
LINC00887 CSCs Stimulating multiple microRNAs (miRNAs) Tian et al. (2019)
HAND2-AS1 CSCs Interacting negatively with TGF-β1 Miao et al. (2019)
TUSC-7 CSCs sponging miR-146 Huang et al. (2019)
CASC11 CSCs Interacting with TGF-β1 to increase stemness of CSCs Fu et al. (2019)
CCAT1 CSCs Activating Wnt signalling Xu et al. (2018)
DGCR5 CSCs DGCR5/miR-330-5p/CD44 axis Wang et al. (2018)
NEAT1 CSCs Activating Wnt signalling Jiang et al. (2018)
HOTAIRM1 MDSCs Targeting HOXA1 Tian et al. (2018a)
RUNXOR MDSCs Regulating RUNX1 mRNA Tian et al. (2018b)
LncRNA Pvt1 MDSCs Attenuating Arg1 activity and ROS production Zheng et al. (2019)
AK036396 MDSCs Repressing Arg1 activity in vitro and CD244 expression Tian et al. (2020)
MALAT1 MDSCs Unknown Zhou et al. (2018)
LINC00301 Tregs Accumulating Tregs upon targeting TGF-β1 Sun et al. (2020)
C5orf64 Tregs Decreasing Tregs abundance Pang et al. (2021)
NRK CAFs Unknown Wei et al. (2021)
LINC00173.v1 Vasculature Sponging miR-511-5p as a ceRNA Chen et al. (2020)
EPIC1 Vasculature Ang2 -Tie2 signaling pathway Hou et al. (2021)
LINC00667 Vasculature Inducing eukaryotic translation initiation factor 4A3 (EIF4A3) Yang et al. (2020)
F630028O10Rik Vasculature Sponging miR-223-3p Qin et al. (2020)
MCM3AP-AS1 Vasculature Targeting miR-340-5p/KPNA4 axis Li et al. (2020b)
PVT1 Vasculature Targeting the miR-29c/VEGF signaling pathway Mao et al. (2019)
LINC00312 Vasculature Binding YBX1 Peng et al. (2018)
lnc-MMP2-2 Vasculature Regulating MMP2 expression Wu et al. (2018)

LncRNAs: Long Non-coding RNAs; CSCs: Cancer stem cells; MDSCs: Myeloid-derived suppressor cells; Tregs: Regulatory T cells; M2: alternatively activated macrophage.
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hepatic Kupffer cells (KCs) or brain microglia (Varol et al., 2015).
According to the different mechanisms of action, macrophages
are roughly divided into classically activated macrophages known
as “killer” macrophages (M1) activated by IFN-γ, TNF-α as well
as lipopolysaccharide (LPS) and alternatively activated
macrophages known as “repair” macrophage (M2) activated by
IL-4, IL-10 or IL-13 (Li et al., 2019). Basic studies have indicated
that in mouse models, high levels of MHC II molecules are
expressed in tumor-associated macrophages (TAMs) with the
hallmark of M1 during the early stages of tumor development.
However, the advanced stage of tumor is mainly characterized
by low-level MHC II molecules of M2, which indicates that an
M1-to-M2 transformation is present in tumor progress
(Mantovani et al., 2002; Wang et al., 2011). Obviously, the
accumulation of macrophages is related to tumor
angiogenesis, tumor invasion and immunosuppression
(Condeelis and Pollard, 2006). LncRNAs expression has
been implicated in many cellular and developmental
processes like cell proliferation and apoptosis (Batista and
Chang, 2013; Heward and Lindsay, 2014). Prior reports have
suggested that lncRNAs are also involved in regulating
macrophage polarization (Huang et al., 2016).

In recent years, it has been shown that lncRNAs originating
from tumor cells are involved in the polarization of TAMs and
result in tumor progression. Tumor cell-derived FGD5-AS1 via
exosomes transportation promotes upregulation of M2
polarization markers (CD163, CD206, ARG1) and
downregulation of M1 macrophage markers iNOS and IL-2 in
NSCLC (Lv et al., 2021). Sun et al. summarized that the
upregulated lncRNA XIST promoted macrophage conversion to
M2 characterized by the deletion of specific makers like IL-10 and
CD163, to affect tumor invasion and migration of lung cancer (Sun
and Xu, 2019). GNAS-AS1 inhibits miR-4319 expression, and
consequently activates N-terminal EF-hand calcium binding
protein 3 (NECAB3) in THP-1-differentiated macrophages.
Therefore, GNAS-AS1 increases the number of M2 macrophage
and consequently promoting NSCLC cell growth and metastasis (Li
Z. et al., 2020). Moreover, tumor-derived exosomal SOX2
overlapping transcript also play an important role in modulating
the polarization of TAMs in NSCLC though regulating SOX2/miR-
627-3p/Smads axis (Zhou et al., 2021). Taken together, lncRNAs
directly or indirectly regulate the polarization of TAMs to affect lung
cancer progression and metastasis, but the specific regulatory
mechanism controlling the macrophages M2 polarization in lung
cancer needs to be further studied.

LNCRNAS PROMOTE BY REGULATING
IMMUNE SUPPRESSIVE CELLS

Studies have shown that the interactions between non-tumor cells
exposed to the tumor microenvironment and tumor cells
contribute to tumor progression and metastasis. In addition,
T cells in tumors are often dysregulated and unable to
generate specific responses to tumor cells in a timely manner.
Immunosuppressive cells, including regulatory T cells (Tregs)
usually expressing CD4, CD25 and FOXP3 markers (T cells that

are not immunosuppressive) and MDSC, can contribute directly
or indirectly to immunosuppression, which are reviewed in
detail below.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) express two specifical
markers, CD11b and Gr1, and represent a heterogeneous
population of myeloid origin that are activated and
proliferated by growth factors and cytokines released by tumor
cells. Once MDSCs are activated, they accumulate in lymphoid
organs and tumors and exert immunosuppression on T cells.
Currently, the cellular mechanisms by which MDSCs have been
shown to be involved in immunosuppressive activity are: 1)
inhibition of CTL cells activation and proliferation in an
MHC-restricted or unrestricted and antigen-specific manner
(Nagaraj et al., 2007; Zou et al., 2021); 2) indirectly affects
T cell activation via the induction of Treg proliferation and
benefiting from TGF, IL-10 production (Serafini et al., 2008);
3) Stimulation of macrophage conversion to M2 by secreting IL-
10 and down-regulation of IL-12 that promotes M1 generation
(Sinha et al., 2007); 4) interaction with type II iNKT, which
promotes tumor progression through IL-13 production, thereby
inducing aggregation of MDSCs (Zou et al., 2021). Of note,
MDSCs have immunosuppressive activity only when activated.
The molecules that can activate MDSCs include two main
categories: 1) tumor-derived soluble factor (TDSF), which
inducing the proliferation of MDSCs though activating STAT3
to stimulate the proliferation of myeloid cells and inhibit the
differentiation of mature myeloid cells, including VEGF, SCF,
GM-CSF, G-CSF, IL-6, IL-10, IL-12, MMP9 and CCL2
(Talmadge, 2007; Marigo et al., 2008); 2) soluble factors
released by activated T cells and tumor-derived stromal cells,
such as IFN-γ, TLRs ligands, IL-4, IL-13 as well as TGF-β, are
responsible for the activation of different transcription factors
such as STAT6, STAT1 and NFγB (Gabrilovich and Nagaraj,
2009). Recently, it has been shown that lncRNAs affect lung
cancer progression by regulating the immunosuppressive
function of MDSCs in TME. Tian et al. discovered that
HOTAIRM1 is obviously downregulated in MDSCs and its
expression reduces in peripheral blood of lung cancer.
Overexpression of HOTAIRM1 can positively target HOXA1
and induce subsequent reduction of the immunosuppression
function of MDSCs, as well as increase the number of Th1/
CD8+ cytotoxic T lymphocyte cells (CTLs), thereby sustaining
improving the antitumor immune response (Tian et al., 2018a).
Moreover, they also observed that the expression of lncRNA
RUNXOR is higher in the blood of lung cancer patients than the
levels in healthy samples, while decreases after surgery. Further
detection suggested that RUNXOR can promote the activation of
MDSCs and decrease the proportion of Th1/CTL cells by
regulating RUNX1 mRNA expression (Tian et al., 2018b). A
study on lncRNA MALAT1 indicated that MALAT1 directly
affected MDSCs differentiation in lung cancer (Zhou et al., 2018).
Some studies are more detailed. Zheng et al. identified that the
expression level of lncRNA Pvt1 was upregulated in G-MDSCs
following induction of IL-6 and GM-CSF. In contrast, when Pvt1
was knocked down, Arg1 activity and ROS production were
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significantly reduced and the ability of G-MDSCs to suppress
T cells turned weak. In mice injected with Lewis lung carcinoma
cells, they found that the number of CTLs/Th1 cells increased
compared with the normal treatment group. The function of
G-MDSCs was obviously upregulated under hypoxic conditions
though targeting HIF-1α, and inhibition of HIF-1α by YC-1
apparently reduced Pvt1 expression in G-MDSCs (Zheng
et al., 2019). Owing to the diverse phenotype of MDSCs,
MDSCs tend to be classified into CD11b+Ly6G+Ly6Clow

polymorphonuclear MDSCs (PMN-MDSCs) and
CD11b+Ly6G+Ly6Chi monocytic MDSCs (M-MDSCs) in mice
(Youn et al., 2008). A latest study revealed that LncRNA
AK036396 had a fairly high level of expression in PMN-
MDSCs, whereas knockdown of AK036396 repressed Arg1
activity in vitro and CD244 expression leading to reduction of
immunosuppressive effects of PMN-MDSCs (Sagiv et al., 2015). At
the mechanistic level, the researchers found that lncRNA
AK036396 could interact with Fcnb through abrogating its
ubiquitination to enhance its stability in the cytoplasm of
myeloid cells, to enhance the immunosuppression of PMN-
MDSCs and attenuate Th1/CTL cells responses, and ultimately
accelerating tumor progression (Tian et al., 2020). These studies
have demonstrated that lncRNAs play a significant role in the
aggregation and activation of MDSCs. However, the role and
regulatory mechanism during tumor progression of these
lncRNAs within MDSCs in lung cancer awaits further exploration.

Treg Cells
Regulatory T cells (Tregs), as a major subset of infiltrating CD4+

T cells in TME, specifically express the master transcription factor
FOXP3 (Sakaguchi et al., 2020), and have been found to suppress
anti-tumor immune responses in diverse ways, including: 1)
targeting TGF-β, thus inhibits the anti-tumor effects promoted
by CD4+ cells, CD8+ cells, and NK cells (Konkel and Chen, 2011;
Sun et al., 2020); 2) disrupting metabolism by scavenging
cytokines such as IL-2, or producing immunosuppressive
adenshakes by extracellular enzymes CD39 and CD73 (Spolski
et al., 2018); 3) inhibiting the maturation and function of DC; 4)
dissolved by granulase A or B and perforation induced CD8+

lymphocytes. Several studies involving humans and mice have
shown that extrinsic tissue and tumors in different tissues contain
the largest Tregs, and that the absence of Treg cells can
significantly improve anti-tumor immunity. A few studies
reported that lncRNA affects tumor progression by regulating
the biological behaviors and function of Tregs. Sun et al.
identified a novel lncRNA, LINC00301, that can promote the
accumulation of Tregs and decrease CD8+ T cell in NSCLC upon
targeting TGF-β1 (Sun et al., 2020). Moreover, lncRNA C5orf64
expression is positively correlated with NSCLC survival, but
negatively associated with Tregs levels (Pang et al., 2021).

THE ROLE OF LNCRNA IN
CANCER-ASSOCIATED FIBROBLASTS

Cancer-associated fibroblasts (CAFs), as one of major
components in TME that derive from the differentiation of

quiescent fibroblasts by activation of various external factors
like cytokines/chemokines, growth factors, hypoxia factors,
lncRNAs and so on, participate in the entire cancer
developmental process, from tumor initiation to progression,
including carcinogenesis, proliferation, migration, EMT, drug
resistance, metabolic reprogramming, angiogenesis and
immunosuppression (Wu et al., 2017; Shoucair et al., 2020;
Yang et al., 2021). Growing studies also reveal that lncRNAs
also play a nonnegligible role in cancer cells and CAFs by
shuttling via exosomes and directly within CAFs or cancer
cells. But, the roles of lncRNAs in CAFs during lung cancer
progression indeed remain unclear and are poorly studied. Teng
et al. had attempted to identify differentially expressed lncRNAs
between CAFs and normal fibroblasts in NSCLC using lncRNA
profiling analysis with the intention of selecting important
biomarkers working in TME. They found that upregulated
lncRNAs were involved in important cancer-related regulatory
pathways such as NOD-like receptor signaling (Teng et al., 2019).
The roles and mechanisms of action of individual lncRNAs in
CAFs of lung cancer are starting to be realized.

THE TUMOR VASCULATURE IS
SUPPORTED BY LNCRNAS

In physiological environment, angiogenesis maintains a relatively
dynamic homeostasis and is strictly controlled by pro-
angiogenesis and anti-angiogenesis regulators (Ribatti et al.,
2007). Hypoxia and acidosis in tumor bed are often attributed
to a large consumption of oxygen and nutrients and an active
metabolism under a disproportionate blood supply (Kerbel, 2008;
Sun, 2012). In this case, it continues to induce the production of
large amounts of pro-angiogenic factors in TME (Ronca et al.,
2017). Meanwhile, various angiogenic factors such as Vascular
endothelial growth factor (VEGF) (Ferrara et al., 2003),
angiopoietin (ANGPT) (Fagiani and Christofori, 2013) and
basic fibroblast growth factor (bFGF) (Zheng et al., 2018) also
increase and have immunosuppressive functions. As a result, the
balance of pro- and anti-angiogenesis is disturbed in cancer,
leading to a shift to angiogenesis and immunosuppressive
microenvironment (Ribatti et al., 2007). Some evidence has
shown that lncRNAs act on tumor progression by regulation
of VEGF in lung cancer. A report (Chen et al., 2020) showed that
LINC00173.v1 is upregulated in lung squamous cell carcinoma
(SQC) tissues and is negatively associated with SQC prognosis.
Knockdown of LINC00173.v1 suppresses VEGFA expression,
thus attenuating vascular endothelial cell proliferation and
migration, as well as tumorigenesis of SQC cells. Mechanistic
evidence has exhibited that LINC00173. v1 exerts these functions
by sponging miR-511-5p as a ceRNA. Hou et al. (2021) reported
that lncRNA EPIC1 is significantly upregulated in NSCLC tissues
and cells. EPIC1 silence represses Ang2 -Tie2 signaling pathway-
related proteins, thereby inhibiting HUVECs (human umbilical
vein endothelial cell) proliferation and channel forming abilities.
lncRNA LINC00667 induces eukaryotic translation initiation
factor 4A3 (EIF4A3) expression and secretion, and
consequently activates the mRNA and protein levels of
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VEGFA. Therefore, LINC00667 promotes angiogenesis of
NSCLC cells and consequently results in NSCLC tumor
growth and metastasis (Yang et al., 2020). Knockdown of
lncRNA F630028O10Rik in lung cancer increases VEGFA and
VEGFR2 expression by sponging miR-223-3p, which means that
F630028O10Rik could inhibit tube formation in vascular
endothelial cells, thus further influencing angiogenesis in lung
cancer (Qin et al., 2020). Besides, lncRNAs, MCM3AP-AS1 (Li X.
et al., 2020) and PVT1 (Mao et al., 2019) also play a key role in
accelerating angiogenesis in lung cancer, respectively. These
researches provide a rationale for using the anti-angiogenic
effects of lncRNAs as a therapeutic option for lung cancer.
Yet, the effect on tumor angiogenesis for lncRNAs still awaits
further investigation.

LNCRNAS AS PROGNOSTIC BIOMARKERS

Diagnosis and therapies using lncRNAs are being developed. For
example, the investigators have conducted clinical settings to
identify lncRNA biomarkers from the plasma to facilitate
detection of early lung cancer (NCT03830619). Studies have
suggested that lncRNAs not only interact with the TME, but
closely correlate with cancer prognosis. We extracted a number of
gene expression profiles of lncRNAs in Lung adenocarcinoma
from the TCGA database (N � 468). Based on the best cutoff value
of gene expressions, we performed Kaplan-Meier survival
analysis to validate the association between part of lncRNAs
mentioned above and prognosis of lung cancer using the R
package “Survminer”. As illustrated in Figure 2, the key
lncRNAs exhibit good performance in prognostic prediction of

lung cancer (p < 0.05). For instance, FDG5-AS1, HOTAIR,
NKILA and LINC00662 are regarded as risk factors for
survival of lung cancer (Liu et al., 2015; Gong et al., 2018;
Huang et al., 2018; Lv et al., 2021), while C5orf64, DHRS4-
AS1 and FOXF1-AS1 are protective factors. These genes have
important effects on lung cancer (Miao et al., 2016; Yan et al.,
2020; Pang et al., 2021). As far as these lncRNAs are concerned,
although there is no specific clinical application in lung cancer to
date, they are still potential for the comprehensive treatment and
diagnosis of lung cancer.

CONCLUSION AND FUTURE
PERSPECTIVES

Lung cancer is a highly malignant tumor that poses a serious
threat to human health and life. There is a lack of effective means
to identify early-stage lung cancer, leading to high mortality and
failure of comprehensive interventions. Meanwhile, with
advances in immunotherapy, the role of TME in the lung
cancer diagnosis and prognostic is becoming increasingly
critical. Components of TME interacting with lncRNA have
been shown to contribute to immunomodulation and cancer
progress. Hence, we summarized recent advancement involving
lncRNAs and their roles in the crosstalk between components of
TME including infiltrated immune cells, CSCs, immune
suppressive cells, macrophage, CAFs and part of the
underlying molecular mechanisms. So far, only a small
number of lncRNAs have been well elucidated in tumor-
mesenchymal crosstalk, and in-depth studies are worthwhile to
identify more lncRNAs and their specific biological functions and

FIGURE 2 | Kaplan-Meier curves of overall survival (OS) between low- and high-expression groups of lncRNAs in the TCGA cohort.
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mechanisms of involvement. A deeper understanding of the role
played by lncRNAs in the tumor microenvironment may greatly
facilitate further discovery of potential biomarkers and the
development of novel targeted therapies for the treatment of lung
cancer. Todate, the pressing issue has been the in-depth and systematic
elucidation of the regulatory determinant mechanism of lncRNAs.

In conclusion, the important regulatory roles of lncRNAs in
the TME have been gradually described; however, the clinical
applications of lncRNAs still need to be further explored. Along
with further research, tumor-associated lncRNAs crosstalk will
open a new era of anti-tumor therapy.
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